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tive support, as well as to members, colleagues and fellow students from the XML
and Web Engineering Research Group. However, achieving results of my research
would not be possible even without the effort of all the anonymous reviewers.

I am also deeply obliged to Xiaofang Zhou and Shazia Sadiq from the Uni-
versity of Queensland, Brisbane, Australia that they offered me an unforgettable
opportunity to spend six months as an intern in the Data and Knowledge En-
gineering Group, and hence allowed me to meet so many inspiring and friendly
people such as Farzaneh Pakzad.

Nevertheless, my greatest gratitude no doubt deserve my life partner Štěpánka,
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Abstract: XML documents and related technologies represent one of the most
widespread ways how data on the Web are maintained and interchanged. Unfor-
tunately, many of the real-world documents contain various types of consistency
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In this thesis we focus on the problem of the structural invalidity and its correc-
tion. In particular, having one potentially invalid XML document modeled as a
tree, and a schema in DTD or XML Schema languages modeled as a regular tree
grammar, our goal is to find all the minimal corrections of this tree.

The model we proposed builds on top of the recursively nested structures of cor-
rection multigraphs, where the shortest paths are being found. For this purpose
we formally introduce three correction strategies with different pruning optimiza-
tions applied. According to the experiments we performed, the refinement correc-
tion strategy not only significantly outperforms all the other existing approaches,
but also guarantees important characteristics the others cannot.
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Abstrakt: XML dokumenty a souvisej́ıćı technologie reprezentuj́ı jednu z nej-
rozš́ı̌reněǰśıch cest údržby a výměny dat na Webu. Velké množstv́ı reálných
dokument̊u ale bohužel obsahuje nejr̊uzněǰśı formy nekonzistence, které bráńı
jejich úspěšnému a automatizovanému zpracováńı.

V této práci se konkrétně věnujeme problému strukturálńı nevalidity a jej́ı ko-
rekce. Máme-li tedy jeden potenciálně nevalidńı XML dokument modelovaný
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vané jako regulárńı stromová gramatika, naš́ım ćılem je naj́ıt všechny minimálńı
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Kĺıčová slova: XML, validita, opravy, regulárńı stromové gramatiky, nejkratš́ı
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1. Introduction

XML (Extensible Markup Language) [20] is a language that allows us to encode
semi-structured data in textual documents that are self-describing and inter-
pretable by both humans and machines. Notwithstanding its negative aspects
such as verbosity and complexity, probably its simplicity, generality and open
specification caused that this format no doubt became one of the most important
and widespread ways how data on the Internet are represented.

And not only it permits us to model, structure and represent data, it is also
widely used for temporary or even long-term data storing, as well as it enables
knowledge sharing, communication and data interchange in general. Probably a
few hundred of particular but widely used and accepted languages based on XML
were successfully proposed.

They contribute not only to a basic infrastructure of the contemporary World
Wide Web, or for the benefit of just a small group of specialists from the area of
computer science and information technologies, but they also became involved in
a wide range of practical and everyday applications – applications spanning from
applied sciences to everyday activities of common people, though they might not
necessarily be aware of it directly, nor they do not need to be.

To name at least a few representatives, let us begin with a protocol for ex-
changing XML-based messages SOAP [58], an XML serialization [39] of RDF
triples [30], or OWL [101] as a language for ontologies on the Web. Then we
should definitely mention XHTML [100] as a reformulation of HTML [69] used
for building web pages, or RSS [70] as a web content syndication format. But
there are even more applications like a language describing mathematical nota-
tions MathML [22], then SVG [31] as a representation of scalable vector graphics,
or even, for example, library information systems are mostly based on traditional
MARCXML [51] or METS [52] for metadata of digitized objects.

However, XML is not just a universal markup language with all its publicly
shared as well as other proprietary language instances – it is a whole family of
various standards and technologies.

There exist different ways of enriching the data representation as such (for
example XLink [32] or XPointer [40]), different means of restricting the allowed
content of documents expressed using their schemata (DTD [20] and XSD [35]),
well established XML-enabled database systems allowing to store and maintain
XML data (Oracle [67] or Microsoft SQL Server [56] to name at least some of
them), but also native database systems (such as MarkLogic [55], Virtuoso [65]
or Sedna [46]), and, last but not least, languages allowing us process, transform
or query the content of XML documents (XPath [10], XQuery [15] or XSLT [26]).

Real-World Data Analyses

Our work began with a software project Analyzer [90] – an extensible framework
for managing and executing statistical analyses of real-world data. It helps users
to gather and automatically download documents from the Web, discover links
between them, configure, compose and schedule particular analyses using the
available universal and specific plugin implementations, and to browse all the
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analysis results, reports and summaries in a well-arranged and unified way.
Although our main focus was initially put on XML documents, the framework

itself is not bound to the family of XML technologies in the least, nor its design
or architecture build on their specific aspects.

The main motivation behind Analyzer is to provide a user-friendly environ-
ment for performing systematic and especially repeatable analyses, so that their
results could then be used to detect characteristics of the real-world data. Having
identified and understood them, we may hopefully be able to optimize algorithms
we use for their processing in general. Without the knowledge of such features,
distribution of their values, or extent of occurrences as such, we might tend to
put only too high and unnecessary attention to constructs or situations that are
not important or emerge only scarcely.

In other words, it seems beneficial to propose algorithm or model optimiza-
tions with respect to the truly observed nature of the real-world data, and not
just our unfounded expectations or general intentions.

Building on the existing analyses by Bex et al. [13], Mlynkova et al. [59], and
Mignet et al. [57], our initial work then led us to an analysis of query statements
in XPath and XQuery languages. We primarily used queries from the publicly
available XML Query Use Cases [23] and parsed them in terms of the Normal-
ized XQuery Core Grammar [34]. In particular and for example, we thoroughly
studied the usage of for or if constructs, path expressions, or other concepts
like individual XPath axes as well.

The entire framework, including all the particular analyses we performed, as
well as a detailed description of all its components, was then summarized in [75].

Linked Data Querying

The second part of our research focused on the efficient processing of Linked
Data [14], i.e. data on the Web published in a way that they follow certain
recommended techniques and rules enabling their easier automated processing.
Broadly speaking, these basic principles could be summarized as follows. First,
real-world entities should by assigned with unique URI identifiers [11]. When
trying to dereference such URI identifiers via HTTP [36], we should be provided
with a usable information about these entities. And, finally, entities should be
linked together, so that they can contribute to the idea of the Web of Data as a
global cloud of open and interlinked data interpretable by machines.

Though other particular approaches can be used as well, the most fundamen-
tal data representation format seems to be RDF [30, 44] (Resource Description
Framework). RDF data are based on triples (subject, predicate, object), forming
statements about real-world entities. Triples within a particular dataset can al-
ternatively be viewed in a form of a graph, where vertices correspond to subjects
and objects, whereas edges labeled with predicates encode the triples themselves.
From the technical point of view, RDF triples can be serialized into XML [39],
N-Triples [8], or Turtle [9]. And to restrain, describe, or even enrich RDF triples,
schemata RDFS [21] and ontologies OWL [101] are used.

In our research we paid attention to the area of RDF data querying using
SPARQL [41], certainly the most important and still evolving query language.
First, in our early work [87] we identified a set of open questions that need to be
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tackled in order to perform query evaluation efficiently enough. In principle, the
identified challenges are related to and caused by data distribution, dynamics, and
scaling. From the practical point of view, these unfold to challenges in dynamic
indexing structures, management of links, data quality, as well as appropriate
query processing architectures.

Having set our goals, we published a survey [88], where we described and
mutually compared the existing indexing systems, all that with respect to a set
of characteristics dealing with the intended deployment scopes, considered data
and indexing models, as well as supported query languages and achieved pruning
or other query evaluation optimizations.

To name at least some of these approaches: a quad indexing approach build
on top of B+-trees proposed by Harth and Decker [42], RDF-X stream processor
for querying local RDF data by Neumann and Weikum [61], HexaStore approach
with ordered nested lists by Weiss et al. [102], or even more challenging proposals
like BitMat by Atre et al. [6] utilizing three-dimensional matrices and their slices,
GRIN index by Udrea et al. [99] based on subgraph patterns, or other like [1, 53,
98, 79, 68, 43] to make our list complete.

Understanding the internal principles and assumptions of all these approaches,
and taking into account an existing study by Ding and Finin [33], we conducted
yet another analysis of real-world data. This time focusing on characteristics of
RDF datasets and triples as such [74], all that according to the outlined general
optimization strategy.

In particular, we inspected several characteristics of terms in RDF triples,
cardinalities of subject, predicate and object projections, as well as projections
based on pairs of these triple components. We also inspected more complex
structures like occurrences of paths of different lengths, or occurrences of subgraph
patterns in a shape of ingoing or outgoing stars.

Considering all the obtained observations we finally outlined an architecture
of a query system [89] that could efficiently deal with the distribution and data
volatility aspects of RDF datasets, especially within a context and needs of an
ongoing initiative aiming at publishing open data about procurement [48], we
partly got involved too.

Processing of Graph Data

Though it might not be apparent from the first point of view, our entire research
was directly or indirectly motivated and related to the general challenge of efficient
processing of graph data.

XML documents themselves are basically tree structures, and when constructs
like identifier references or keys are considered too, they can be modeled as even
more complex graph structures than just ordinary trees. On the other hand,
RDF triples represent a perfect example of a graph data model, as well as RDF
datasets and links among them form graphs too.

Beside an experimental comparison of graph databases we presented in [49], or
newly initiated but not yet published contributions focusing on the information
propagation models and algorithms within the scope of social networks, process-
ing of incorrect XML documents is the last topic to which we devoted our main
research interest.
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And right to this topic we would like to dedicate the content of this entire
thesis. In particular, to the problem of the correction of invalid XML documents.

Consistency Issues of XML Documents

The variety of available XML technologies and standards is wide, as is the usage
of XML documents on the Web in practice. Unfortunately, a high number of
these documents and a distributed nature of the Web itself, as well as changes
in time are only some of the reasons why we can often come across with XML
documents that suffer from various types of inconsistencies or errors, as not only
Mlynkova et al. [59] observed.

Probably the most essential category of these errors is represented by docu-
ments that are not well-formed at all. This basically means that a given document
contains syntactic issues that prevent us from parsing and representing it using
a tree structure comprising of mutually nested elements. It means representing
its content in a way natural to the data model XML documents are based on.

Having a well-formed document, we can focus on its structure, the allowed
nesting of elements, as well as on several other basic restrictions – constraints
the given document must abide by in order to be declared as valid. Although we
have already mentioned two most common schema languages – DTD and XSD
(XML Schema) – that both allow us to describe such restrictions, there are other
approaches available as well. And they all offer us with slightly or even very
different constructs we can exploit for this purpose.

Whereas Schematron [71] is based on rules that allow us to validate asser-
tions about the presence or absence of particular patterns in XML documents,
Relax NG [27] (REgular LAnguage for XML Next Generation) permits us to
specify patterns of the allowed structure the given documents should conform to.

And even when XML documents are valid, we can still inspect further con-
straints posed on the data values they contain. In particular, we can study
functional dependencies, keys or complex multivalued dependencies as well.

To sum up, all these inconsistencies may generally cause that processing of
XML documents becomes more difficult, requires special attention, or is not pos-
sible at all. In order to tackle this problem, we could decide to make the process-
ing algorithms more robust, so that they become able to get over such obstacles
whenever possible.

On the other hand, a more general, reusable and promising solution seems to
be to find corrections of the documents themselves.

Correction of XML Documents in General

First of all, let us have a look on the existing approaches that aim at correcting
XML documents, that provide us with necessary formal concepts, or that at least
discuss ideas related to our goals.

Context-free grammars [45], or their alternatives such as balanced context-free
grammars [12] or extended context-free grammars [47], are basic formal concepts
that can help us when parsing and processing XML documents. They view them
in terms of ordinary sequences of symbols, i.e. words, and so they are when focus-
ing on low-level aspects such as the well-formedness. Utilizing the corresponding
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push-down automata [4], approaches by Staworko et al. [78] or Thomo et al. [97]
can then start to tackle the correction problem at this level.

On the other hand, when dealing with the structural validity of XML doc-
uments, it seems to be a better idea to view such documents directly as trees,
and so rather to use formal concepts of regular tree grammars [60, 62] or regular
hedge grammars [91], together with their corresponding tree automata.

How the algorithms allowing us to verify such validity should be designed, is
the first question that naturally arises now. Though the basic approaches are
straightforward [60], validation under specific conditions such as, for example, in
case of streaming XML documents [73, 25, 50, 72], or incremental validation [7,
17, 2] were studied as well.

The validation itself, unfortunately, cannot provide us with direct answers
how invalid documents should be corrected in order they become valid, nor it can
even suggest or estimate the extent of such corrections. In other words, one thing
is to identify a particular inconsistent location in a document that is breaching
the validity requirements, or even to provide technical reasons why this happens,
but finding the suitable correction is yet another challenge on its own.

The correction itself is tightly related and motivated by the problems of tree-
to-tree and tree-to-language edit distances. While the former case is discussed,
for example, by Nierman and Jagadish [64] or Cobena et al. [28], the latter one
is studied by Xing et al. [103], Tekli et al. [95] or Ng and Ng [63].

Furthermore, one thing is to detect such similarity distances, another one is
to find a suitable corrected XML document, and yet another to find more such
corrections at a time – especially when edit scripts with particularly expressed
differences to the original document should be provided as well.

Since there exists a very recent and thorough comparison presented by Amavi
et al. [5], we believe that only a brief overview of the existing correction approach-
es will suffice for our purposes. Therefore, while Boobna and de Rougemont [16]
use testers from the theory of program verification, Suzuki [80, 81] guarantees
finding a set of minimal edit scripts, and Bouchou et al. [19, 18] finding a set of
all the corrections within a given similarity threshold.

Though the variety of the mentioned approaches is wide, only some of them
are really able to provide the required corrections. And if they do, they mutually
differ in the supported edit operations, considered schemata, characteristics of
discovered corrections and their number, as well as the availability of their imple-
mentation or source codes. And as a consequence, having different assumptions
and objectives, these approaches then cannot be directly compared with each
other from the experimental point of view.

The approach by Bouchou et al. [19, 18] we named as the last one, based on
an earlier paper by Cheriat et al. [24] from the same group of authors, served us
as a main inspiration for our entire work. In this approach, the corrected XML
documents – sequences of child nodes in particular – are generated dynamically by
exploring and traversing state spaces of finite automata recognizing the allowed
content models of elements.

Despite the efficiency issues related to the repeated computations, the main
problem of this approach is that the user must provide a threshold parameter
in order to prune correction directions that could potentially lead to infinite
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documents. More specifically, this threshold must be chosen prior to the entire
correction – and when its value is set only too low, the algorithm is not able to
find any solution at all. Later on, these authors extended and finalized their work
in the already mentioned overview [5].

Staworko and Chomicky [77] inspired us as well by their work on querying
of XML documents that are not valid. They came with an idea of restoration
graphs that are able to compactly represent all the suitable correction scenarios,
but focused on the querying aspect and not the correction itself.

Last but not least, to make our insight into the existing correction approaches
complete even from the perspective of the last group of consistency issues of
XML documents, let us also briefly mention approaches by Flesca et al. [38, 37]
or Tan et al. [94, 93, 92], both dealing with integrity constraints such as functional
dependencies, keys and foreign keys.

Overview of Our Correction Model

To summarize the correction problem we decided to focus on, having one poten-
tially invalid XML document modeled as a data tree with nodes corresponding to
elements, and its schema in DTD [20] or XML Schema [35] expressed using the
concept of regular tree grammars, our goal is to detect whether this document
abides by all the requirements the given schema poses on elements and their nest-
ing. And if not, then to find its suitable structural corrections. In particular, all
the minimal corrections, i.e. valid data trees that are as close as possible to the
original data tree to be corrected.

The correction model we proposed is based on edit operations via which we
are able to insert new subtrees, delete existing ones or repair them with an option
of changing labels of their nodes. Given a data tree to be corrected, we process
it from its root node towards leaves, always attempting to find new and allowed
sequences of child nodes whenever required.

For this purpose we use an idea of recursively nested correction multigraphs
which allow us to transform the problem of finding corrections to the well es-
tablished problem of finding shortest paths. This means that we do not need to
generate the allowed node sequences dynamically one by one, but we are able
to statically represent all of them right within these correction multigraph struc-
tures. As a consequence, not only that they permit us to significantly improve the
overall correction efficiency, they also permit us to store all the found corrections
in a compact way, so that the users can then directly choose right one from the
discovered possible corrections, without the need of explicitly enumerating all of
them as sequences of the mentioned edit operations.

Whereas the correction model as such only follows the recursive structure and
nesting of data tree nodes on one hand, and nesting of grammar production rules
on the other, making the required correction algorithm itself efficient enough is a
nontrivial issue.

Beside certain practical requirements, we also have to, for example, deal with
nodes of the same labels but different contents (which refers to the problem of
competing nonterminal symbols), avoid generation of potentially infinite data
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trees (because of recursive production rules or content models based on regu-
lar expressions with iterations), as well as we have to appropriately deal with
the exponential worst-case time complexity that would emerge in case the naive
correction strategy would be blindly followed.

At the very beginning, our motivation for the correction of XML documents
came from the already discussed Analyzer framework [90]. We first proposed
a correction model [83] that took into account not only elements of XML docu-
ments, but also their attributes. We also considered a wider set of edit operations,
through which we were able to handle insertions and removals of inner data tree
nodes too. However, we left these operations later on in order to increase the
model efficiency [76].

In our next paper [86] we then presented the caching correction algorithm, i.e.
an extension of our previous algorithms in which we successfully integrated both
a dynamic programming method to deal with the top-down recursive processing
paradigm, as well as a horizontal pruning strategy to improve the algorithm
efficiency even more.

Summarizing the entire model and the so far proposed correction algorithms
in [75], we then moved toward the last of our former correction algorithms, the
incremental one [85]. In this algorithm we adapted the searching for the shortest
correction paths in a way that we could rely only on partially evaluated subprob-
lems and estimations of their correction costs. Unfortunately, this algorithm did
not perform well enough to fulfill our expectations – not because of this vertical
pruning optimization strategy as such, but because of the particular implemen-
tation constructs we used.

Putting all our previous experience, observations and ideas together, we finally
managed to completely split three mutually orthogonal aspects of our correction
algorithms: correction strategies dealing with pruning optimizations, execution
approaches focusing on implementation aspects, and signature modes allowing to
avoid repeated computations.

Hence we obtained a whole set of new and improved correction algorithms,
particular configurations, among which we identified the most efficient one in the
very end – and the most efficient one in terms of not only our theoretical expecta-
tions, but with respect to the results of the conducted experimental evaluation as
well. Moreover and beside other optimizations, we also extended the correction
model itself to support not only the subclass of single-type tree grammars, but
the class of all regular tree grammars as such [84].

In this thesis we are going to discuss all the details, definitions and important
aspects and features of our correction model and all the correction algorithms we
proposed, right in this final and most generalized form.

And though we originally started with the correction of XML documents, the
resulting model and algorithms actually solve a more general one – the problem
of the correction of trees with respect to regular tree grammars.
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Summary of Contributions

When we put our correction model and algorithms into the context of the oth-
er existing correction approaches, we can identify the following characteristics,
advantages and contributions of our solution.

• We support the full expressive power of the entire class of regular tree
grammars, and not just single-type tree grammars (mostly corresponding
to XSD) or even local tree grammars (corresponding to DTD) where the
presence of competing nonterminal symbols is restricted.

• Regardless the particular correction strategy, execution approach or signa-
ture mode we choose, we are always able to find all the minimal corrections,
specifically regardless the extent of invalidity of a document to be corrected.

• We do not require to be provided with any parameter in order to initiate
the correction. In particular, we do not need any similarity threshold pa-
rameter that is not easy to determine, especially because it is not related
to the extent of invalidity, and so cannot be reliably determined before the
correction is commenced.

• All the corrections we discover for a provided data tree are decoded in a com-
pact and recursively nested structure of intent repairs, which allows users
to interactively choose right one from the found corrections even without
the need of explicitly enumerating all the sequences of edit operations.

• Though the worst-case time complexity is polynomial with respect to the
size of data trees measured in a number of nodes, when the maximal ob-
served fan-out is sharply lower than the overall number of nodes, the algo-
rithm tends to be nearly linear in practice.

• We implemented all the newly proposed correction algorithms and made
this implementation including all the source files publicly available [82].

• Considering a wide set of characteristics, we conducted thorough experi-
ments dealing with documents of sizes of even 100 000 nodes, i.e. sizes up
to 2 orders of magnitude higher than were considered so far by the existing
approaches, yet with execution times in the order of just a few seconds.

Now we shortly compare our model and algorithms to the other existing cor-
rection approaches. First, the approach by Boobna and de Rougemont [16] as-
sumes only a restricted version of DTD, was experimentally evaluated on data
trees up to 800 nodes, and though it aims at the minimal corrections, it is not
able to provide them in all situations.

Next, the approach by Suzuki [81] assumes single-type tree grammars, guar-
antee that edit sequences for k-closest corrections will always be found, but the
approach was not implemented, nor experimentally evaluated.

Finally, the most important comparison with respect to the original approach
by Bouchou et al. [18]. They consider local tree grammars, find all the corrections
within a given threshold, but if this threshold is set too low, no correction is found
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at all. Their experiments were based on data trees of 450 nodes with execution
times in the order of minutes.

Although our correction model can generally find its usage at the very prac-
tical level (for example, it could be integrated into XML-enabled editors in order
to support users with correction suggestions when editing XML documents), its
impact lies in the theoretical level as well.

The correction problem itself, as already noted, is tightly related to the more
general problem of similarity among trees. And according to Tekli et al. [96], not
only the following areas can be considered as its direct applications: exchange
and integration of XML data, searching and composition of web services, querying
over inconsistent data [77], classification [103] or ranking [95] of XML documents,
as well as document and schema evolution [19, 18].

Thesis Outline

In Chapter 2 we first discuss all the basic concepts which we need to formally
introduce our correction model and algorithms. We describe how the XML doc-
uments we are working with are modeled, how schemata are represented using
regular tree grammars, as well as we recall basic notions from the areas of regular
expressions and finite automata.

The purpose of Chapter 3 is to provide a thorough description of the whole
correction model we proposed, with all the involved definitions and examples
as well. In particular, we introduce edit operations allowing us to transform
invalid data trees into valid ones, correction intents as descriptions of the recursive
correction problem to be solved, and correction multigraphs with their shortest
correction paths as a means to fulfill this goal. Finally, we describe how the
intent repair structures are encapsulated and how they can then be translated
into particular sequences of edit operations.

However, the question how the shortest correction paths should actually be
found, and found efficiently enough, is the subject of Chapter 4. Starting with
several basic observations and explaining the role and importance of intent signa-
tures, we then go through all the introduced correction strategies and execution
approaches, and provide their formal algorithms and details too.

Having described the entire correction model and all the correction algorithms,
we move toward the experimental evaluation presented in Chapter 5. Exploiting
a wide set of characteristics and execution times as one of them, we thoroughly
study all the proposed algorithm configurations in order not only to verify several
expectations justifying the correction model and proposed optimizations, but to
identify the most efficient algorithm configuration in particular.

To conclude, in Chapter 6 we provide an overview of the most important
aspects of the whole model and all the algorithms, as well as we recall their
features and contributions.

The content of this thesis – it means a description of the correction model and
algorithms, their features, as well their experimental evaluation – directly follows
our publications [83, 76, 86, 75, 85, 84].
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2. Preliminaries

The main purpose of this section is to provide and discuss an essential theoretical
background and knowledge from the areas of regular expressions, finite automata
and regular tree grammars – it means notions on which our entire correction
model and algorithms are built.

First of all, we describe a means how we view and model XML documents
that we want to work with. The core idea of this model is based on a notion of an
underlying tree – it is a structure that forms a rooted tree. Next, we define XML
documents themselves by enriching underlying trees by all other information we
want to capture.

Finally, XML schemata are used to restrain the allowed content of XML doc-
uments. Although there are several very different ways of achieving this general
aim, we only consider schemata that can be represented as regular tree grammars.
In brief, they describe the only permitted way how elements in XML documents
can be mutually nested into each other. For this purpose, we also need to recall
some basic facts related to regular expressions and finite automata in order to
describe this nesting rules and restrictions formally.

2.1 Data Trees

We start with a detailed description of our representation of XML documents.
As we already outlined, we view these documents as data trees that are based on
underlying trees.

2.1.1 Strings

Before we introduce them, we first recall notions of some basic operations over
strings, and sets of strings. In particular, we are interested in the concatenation
. and iteration ∗ (Kleene star) operations.

Assuming that ε is a special symbol for the empty word such that ε /∈ Σ for a
particular alphabet Σ, let u = u1.u2 . . . um and v = v1.v2 . . . vn be two words over
Σ for some m,n ∈ N0, i.e. ui ∈ Σ for ∀ i ∈ N, 1 ≤ i ≤ m and vj ∈ Σ for ∀ j ∈ N,
1 ≤ j ≤ n. Then we define the concatenation of words u and v as a word u.v =
u1 . . . um.v1 . . . vn.

If L1 and L2 are two sets of words over Σ, then L1.L2 = {v1.v2 | v1 ∈ L1 and
v2 ∈ L2}.

Let us now focus on the iteration operation, first over symbols, then over
words. Given S0 = {ε} and inductively Si+1 = {v.s | v ∈ Si and s ∈ Σ} for all
i ∈ N0 and for some alphabet Σ, we define Σ∗ =

⋃
i∈N0

Si as the set of all finite
words over Σ, i.e. the set of all possible finite words using symbols from Σ.

Let finally L ⊆ Σ∗ be a set of some words over Σ. Given L0 = {ε} and
inductively Li+1 = {v.s | v ∈ Li and s ∈ L} for all i ∈ N0, we analogously define
L∗ =

⋃
i∈N0

Li as the smallest set which contains ε and which is closed under the
concatenation operation over L.
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2.1.2 Underlying Trees

So, what are the already mentioned underlying trees? Assume now that N∗0 is
a set of all finite words over the set of all non-negative integers N0. Having
an ordinary rooted tree with ordered sibling nodes (which actually each XML
document straightforwardly is), we can simply utilize the idea of prefix numbering
of nodes to capture the structure of such tree. This means we can use a suitable
subset of N∗0 to represent such tree structure formally.

Definition 2.1 (Underlying Tree). We say that a set D ⊂ N∗0 is an underlying
tree, if both the following conditions hold:

• D is closed under prefixes, i.e. having a reflexive, antisymmetric and tran-
sitive binary prefix relation � (where ∀u, v ∈ N∗0 we define u � v if u.w = v
for some w ∈ N∗0) we require that ∀u, v ∈ N∗0, u � v: v ∈ D implies u ∈ D.

• ∀u ∈ N∗0, ∀ j ∈ N0: if u.j ∈ D then ∀ i ∈ N0, 0 ≤ i ≤ j, u.i ∈ D.

The first condition enforces the expected hierarchical structure of an under-
lying tree (whenever a particular node is in a given underlying tree, its parent
node is in this tree as well), while the second one ensures the expected continuous
arrangement of sibling nodes (there are no skipped positions in a sequence of all
child nodes of a given node).

We say that D is an empty tree, if D = ∅. Items of D are called nodes, ε is
a root node and a set of leaf nodes is defined as LeafNodes(D) = {u | u ∈ D
and ¬∃ i ∈ N0 such that u.i ∈ D}. Given a node u ∈ D we define fanOut(u) as
n ∈ N0 such that u.(n − 1) ∈ D and ¬∃n′ ∈ N, n′ > n − 1 such that u.n′ ∈ D.
If u.0 /∈ D, we put n = 0. Furthermore, for the root node ε ∈ D we put depth(ε)
= 1, and for u ∈ D, u 6= ε, u = v.i for some v ∈ N∗0 and i ∈ N0 we put depth(u)
= depth(v) + 1.

In other words, fanOut(u) of a node u ∈ D denotes the number of its child
nodes, whereas depth(u) denotes the depth of u in D. We also sometimes use a
term position to talk about nodes when we want to emphasize their addressing
effect rather than to view them as objects of underlying trees as themselves.

Finally, we define D∆p = {s | s ∈ N∗0, p.s ∈ D} for some p ∈ D as a subtree of
D at position p. It is worth noting that the notion of a subtree is not based only
on a subset of nodes of the original tree D, but we also truncate node prefixes
accordingly. As a consequence, each subtree is always a tree.

Figure 2.1: Sample underlying tree D
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Example 2.1. Assume that D = {ε, 0, 0.0, 1, 1.0, 2, 2.0, 2.1}. It is a correctly
defined underlying tree with 8 nodes from which LeafNodes(D) = {0.0, 1.0, 2.0,
2.1} are its leaf nodes and the remaining ones (including the root node) are its
internal nodes. For example, the root node has 3 child nodes, i.e. fanOut(ε) =
3, whereas fanOut(2.1) = 0 holds for the leaf node 2.1. This underlying tree D
is depicted in Figure 2.1.

Finally, to illustrate how subtrees are formed, D∆2 = {ε, 0, 1} is a subtree
of D at position 2, as we can see in Figure 2.2. Its nodes correspond one after
another to nodes 2, 2.0, 2.1 of the original underlying tree D.

Figure 2.2: Subtree D∆2 of a sample underlying tree D

To make our insight into underlying trees complete, let us furthermore describe
how their nodes (viewed as positions) can be ordered or mutually compared.

Hence, assume that u = u1.u2 . . . um and v = v1.v2 . . . vn are two words over
the alphabet N0 for some m,n ∈ N0, i.e. u and v are two underlying nodes.
Without loss of generality, let us also suppose that m ≤ n. Then we can define
the partial order relation ≤ for words from N∗0 as follows. Let c ∈ N0, 0 ≤ c ≤ m
be the maximal possible number such that ∀ k ∈ N, 1 ≤ k ≤ c: uk = vk (i.e. the
first c symbols of both the words mutually equal to each other). Then we put
u ≤ v if c = m (which means that u � v) or otherwise (in case of c < m) if
uc+1 ≤ vc+1.

2.1.3 Data Trees

Once we have introduced the underlying trees, we can move forward and discuss
the representation of XML documents themselves. First of all, we must empha-
size that our correction model only focuses on elements, their allowed content
and nesting. Although we have also experimented with attributes, this thesis
only covers structural corrections of elements. Therefore, our model of XML
documents only needs to capture these elements and (original) data values (to
preserve them when presented). On the other hand, attributes, processing in-
structions and other constructs are fully ignored.

Before we provide a definition of data trees, we introduce V as a domain of data
values and, analogously, E as a domain of element labels (i.e. a set of distinct
element names). These domains are not bound to particular XML documents
(and nor their schemata) – they are defined universally and contain really all the
possible data values and element names respectively.
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Definition 2.2 (Data Tree). Let D be an underlying tree, V the domain of data
values and E the domain of element labels. A tuple T = (D, lab, val) is a data
tree, if both the following conditions are satisfied:

• lab is a labeling function D → E ∪ {data}, where data /∈ E and:

– DataNodes(T ) = {p ∈ D | lab(p) = data} is a set of all data nodes,

– if p ∈ DataNodes(T ) then we also require that p ∈ LeafNodes(D)
necessarily holds;

• val is a value function DataNodes(T ) → V∪{⊥} assigning values to data
nodes, supposing that ⊥ /∈ V represents undefined values.

The idea behind data trees is simple – we use an underlying tree to form a
required tree structure on one hand, and two partial functions on nodes of this
underlying tree to store data values and element labels on the other. In particular,
for the purpose of data values (textual contents of elements), we use data nodes,
i.e. nodes having assigned a special reserved name data.

Analogously to underlying trees, having a particular data tree T = (D, lab,
val) and a node p ∈ D, we define T ∆p = (D′, lab′, val′) to be a data subtree of
T at position p. In this case, D′ = D∆p and for each function φ ∈ {lab, val}: if
φ(p.s) for any s ∈ N∗0 and p.s ∈ D is defined, then φ′(s) = φ(p.s), otherwise φ′(s)
is undefined.

For the sake of clarity and throughout this entire thesis, we say that some
function or item is defined if and only if it is assigned some meaningful value, i.e.
value other than ⊥. Otherwise it is undefined, i.e. it is explicitly assigned ⊥ or
it is not assigned anything at all.

Example 2.2. Suppose we have the following XML document fragment:

<?xml version="1.0"?>

<a>
<x><c/></x>
<d><c/></d>
<d><c/><a/></d>

</a>

It corresponds to a data tree T = (D, lab, val) which is depicted in Figure 2.3.
Its underlying tree D is exactly the same as the underlying tree in Example 2.1;
element names are inscribed in nodes. To be precise, lab = {(ε, a), (0, x), (0.0, c),
(1, d), (1.0, c), (2, d), (2.0, c), (2.1, a)} in case of the labeling function, and val = ∅
for the value function.

Finally, a data subtree rooted at position 2 of the data tree T then equals to
T ∆2 = (D′, lab′, val′), where D′ = D∆2 = {ε, 0, 1}, lab′ = {(ε, d), (0, c), (1, a)}
and val′ = ∅.
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Figure 2.3: Sample data tree T

2.2 Regular Expressions

Despite there are also other concepts of XML schema languages, the traditional
ones provide constructs for restricting the allowed nesting of elements through
definitions of permitted content models via regular expressions.

2.2.1 Regular Expressions

Therefore, we start with the formal definition of these regular expressions and
regular languages they represent.

Definition 2.3 (Regular Expression). Let Σ be a nonempty alphabet and S = {∅,
ε, |, ., ∗, (, )} are special and auxiliary symbols such that Σ ∩ S = ∅. Then we
inductively define a regular expression r over Σ to be a word in alphabet Σ ∪ S
such that:

• each of the following is an atomic regular expression:

– r = ∅,

– r = ε, and

– ∀x ∈ Σ: r = x,

• and when r1 and r2 are already defined regular expressions, then each of the
following is a compound regular expression:

– r = (r1|r2),

– r = (r1.r2), and

– r = r1
∗.

The previous definition directly follows the widely accepted inductive notion
of regular expressions, where (r1|r2) corresponds to a choice, (r1.r2) to a sequence
and r1

∗ to an iteration. Having a regular expression r = s1 . . . sn viewed as a word
over Σ ∪ S, we define symbols(r) = {s | s ∈ Σ and ∃ i ∈ N0, 0 ≤ i ≤ n, si = s}
to be a set of all symbols from Σ with at least one occurrence in r.

Each regular expression r over Σ represents a regular language L(r) – the set
of all words over Σ that conform to this regular expression. How we define it?
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Definition 2.4 (Regular Language). Let r be a regular expression over an alpha-
bet Σ. We inductively define L(r) to be a regular language of r this way:

• In case r is an atomic regular expression:

– if r = ∅, then L(r) = ∅,
– if r = ε, then L(r) = {ε}, and

– if r = x for x ∈ Σ, then L(r) = {x}.

• In case r is a compound regular expression:

– if r = (r1|r2), then L(r) = L(r1) ∪ L(r2),

– if r = (r1.r2), then L(r) = L(r1).L(r2), and

– if r = r1
∗, then L(r) = (L(r1))∗.

Schemata in DTD can use two additional operators we have not mentioned
yet. They are: ? (0 or 1 occurrence) and + (1 or more occurrences). Although our
definition does not take them into account, obviously r? = (r|ε) and r+ = (r.r∗).
Using an analogous idea we could also deal with constructs that are offered by
XSD, like e.g. minOccurs and maxOccurs, both allowing to restrict the number
of occurrences explicitly.

From now on, we also adopt a widely accepted convention of omitting paren-
theses to simplify regular expressions when there cannot be any confusion.

Example 2.3. Having Σ = {A, B, C, DA, DB} as an alphabet, we can introduce
a simple regular expression rA = C.DA

∗. It defines a language that contains all
words over Σ that start with exactly one occurrence of C and continue with an
arbitrary number of DA, i.e. L(rA) = {C, C.DA, C.DA.DA, C.DA.DA.DA, . . . }.
Besides, symbols(rA) = {C, DA}.

2.2.2 Unique Particle Attribution

We also cannot omit one important feature of regular expressions as they are as-
sumed by both DTD and XSD languages – that is 1-unambiguity, or, equivalently,
unique particle attribution.

Before we can formally describe this feature, we need to introduce a notion
of marked regular expressions. Having a regular expression r over an alphabet
Σ, first let ΣM be a marked alphabet such that ΣM = {x#i | x ∈ Σ and i ∈ N}.
Given a particular marked symbol x#i ∈ ΣM , we define its symbol projection as
sym(x#i) = x, i.e. sym is a function ΣM → Σ that is able to fetch the original
symbols from Σ.

Now, let us take the original regular expression r together with its inductive
structure in mind and replace each individual occurrence of any symbol x from Σ
by a marked symbol x#i from ΣM with some i ∈ N, only assuring that different
occurrences of the same original symbol x will be replaced by different marked
symbols. For example, we can number all occurrences from left to right, starting
with 1. Since this approach might be considered as one of the simplest in practice,
let us choose it for the purpose of the following text.

The resulting rM is a marking of r or a marked regular expression for r.
Obviously, rM is a regular expression over ΣM .
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Definition 2.5 (1-unambiguous Regular Expressions). Assume that r is a reg-
ular expression over an alphabet Σ and rM is its marking. We say that regular
expression r is 1-unambiguous if and only if for all words u, v, w ∈ (ΣM)∗ and
marked symbols x, y ∈ ΣM , x 6= y: whenever u.x.v and u.y.w ∈ L(rM), then
sym(x) 6= sym(y).

The advantage of working only with 1-unambiguous regular expressions is that
they enable more efficient processing, since words of their regular languages can
be matched deterministically against symbols of these regular expressions while
having a look ahead of just one symbol.

Example 2.4. To illustrate how marked regular expressions can be constructed
according to the left-to-right numbering approach we adopted, assume the follow-
ing regular expressions: r1 = X.(Y |Z) and r2 = (X.Y ) | (X.Z). Their markings
are equal to rM1 = X#1.(Y#2|Z#3) and rM2 = (X#1.Y#2) | (X#3.Z#4).

Despite L(r1) = L(r2) are the same regular languages, r1 is an example of a
1-unambiguous regular expression, but r2 is not. The reason is that there exists
two words (actually there are no words other than these two) w1 = X#1.Y#2 and
w2 = X#3.Z#4 in L(rM2 ) such that they start with different marked symbols X#1

and X#3, though they can be projected to the same original symbol of Σ, i.e.
sym(X#1) = sym(X#3) = X.

2.3 Finite Automata

Asking whether a given word conforms to a regular expression (e.g. whether a
sequence of child nodes of a given data tree node conforms to an allowed content
model in our scenario) can be figured out using finite automata.

2.3.1 Deterministic Finite Automata

We first provide their general definition and then discuss a particular way how
they can be constructed.

Definition 2.6 (Finite Automaton). A deterministic finite automaton is a tuple
A = (Q, Σ, δ, q0, F ), where:

• Q is a set of states,

• Σ is an input alphabet,

• δ is a partial transition function Q× Σ→ Q,

• q0 ∈ Q is an initial state, and

• F ⊆ Q is a set of accepting states.

If the transition function δ describes how the finite automaton works – that
is in discrete steps by reading one symbol from the input word by another – we
can use it to define an extended transition function δ∗: Q× Σ∗ → Q that would
describe processing of the entire input words. In particular, having a word w ∈ Σ∗

and a state q ∈ Q we define δ∗(q, w) as follows. When w = ε is an empty word,
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then δ∗(q, w) = q. Otherwise assuming that w = a.v for some a ∈ Σ and v ∈ Σ∗

we recursively put δ∗(q, w) = δ∗(δ(q, a), v) in case δ(q, a) is defined, otherwise
δ∗(q, w) = ⊥ becomes undefined as well.

We say that a given input word w ∈ Σ∗ is accepted by a finite automaton
A = (Q, Σ, δ, q0, F ), if and only if δ∗(q0, w) ∈ F , i.e. when the transition
function δ allows us to start at the initial automaton state q0, follow its prescribed
transitions, and terminate at one of the accepting states F while having processed
the entire input word w at the same time.

Definition 2.7 (Regular Language). Given a finite automaton A = (Q, Σ, δ,
q0, F ), we define L(A) = {w | w ∈ Σ∗ for which δ∗(q0, w) ∈ F} to be a regular
language recognized by A, i.e. a set of all words over Σ that are accepted by A.

Before we move forward, we also explain the notion of reachability in the
automaton state space. For each q ∈ Q we define reachable(q) = {q′ | ∃w ∈ Σ∗,
q′ = δ∗(q, w)} to be a set of all automaton states reachable from q. Furthermore,
we say that a state q′ ∈ Q is reachable if q′ ∈ reachable(q0), i.e. q′ is reachable
from the initial state q0.

Figure 2.4: Sample finite automaton for C.DA
∗

Example 2.5. In Figure 2.4 we can see a visualization of a sample finite au-
tomaton A = (Q, Σ, δ, q0, F ) with Q = {0, 1} as a set of states, Σ = {C, DA}
an input alphabet, δ = {(0, C, 1), (1, DA, 1)} a transition function, q0 = 0 the
initial state, and F = {1} a set of accepting states.

This automaton A is capable of recognizing the language L(rA) of a regular
expression rA = C.DA

∗ from Example 2.3, i.e. words over Σ that start with C
and end with some DA (if any).

Though we have the general definition of finite automata, we still need to
have a particular technique to be able to construct a suitable automaton Ar for
a given regular expression r, if we want to use it for making decisions whether
certain words belong to the language of such r. Formally, we need to find a way
how to construct a finite automaton Ar such that L(Ar) = L(r).

Without loss of generality, we have chosen Glushkov automata [3], because
they are deterministic for 1-unambiguous regular expressions, and also without
ε-transitions (transitions that do not read a symbol from the input). Thus, they
fully conform to our Definition 2.6.

On the other hand, none of these two characteristics actually affects our cor-
rection model in any way. We could easily use any other deterministic automaton
as well. And we could even use any nondeterministic finite automaton (either we
could slightly modify our further definitions to support them, or we could trans-
form them to equivalent deterministic automata, which is always possible). As a
consequence, our correction model is not limited just to 1-unambiguous expres-
sions.
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2.3.2 Glushkov Automata

How the Glushkov automata are then constructed? Let us first introduce a set
of four auxiliary functions through which we will be able to describe such con-
struction process precisely.

They are empty, first, follow and last. Supposing that RE(Σ) represents
the set of all regular expressions over an alphabet Σ, they are defined as follows:

• empty is a function RE(Σ) → {false, true} detecting whether a regular
expression r ∈ RE(Σ) can lead to the empty word ε, i.e. empty(r) = true

if ε ∈ L(r), otherwise empty(r) = false,

• first is a function RE(Σ) → P(Σ) assigning to a regular expression r ∈
RE(Σ) a set of all symbols that can appear as the first symbol in some
word of the language L(r), i.e. first(r) = {x | x ∈ Σ and ∃w ∈ L(r) such
that w = x.v for some suitable v ∈ Σ∗},

• follow is a function RE(Σ) → P(Σ× Σ) assigning to a regular expression
r ∈ RE(Σ) a set of all pairs of symbols s1 and s2 ∈ Σ such that s2 can appear
immediately after s1 in some word of the language L(r), i.e. follow(r) =
{(s1, s2) | s1, s2 ∈ Σ and ∃w ∈ L(r) such that w = u.s1.s2.v for some
suitable u and v ∈ Σ∗},

• last is a function RE(Σ) → P(Σ) assigning to a regular expression r ∈
RE(Σ) a set of all symbols that can appear as the last symbol in some
word of the language L(r), i.e. last(r) = {x | x ∈ Σ and ∃w ∈ L(r) such
that w = u.x for some suitable u ∈ Σ∗}.

All of the previously described functions refer to the existence of some appro-
priate words in the language L(r), and so it is obvious that we actually need to
find a more practical way to be really able to evaluate them when a particular
regular expression r ∈ RE(Σ) is provided. Luckily enough, we only need to follow
the inductive definition of regular expressions:

• For an atomic regular expression r we define:

– If r = ∅, then
empty(r) = false, first(r) = ∅, follow(r) = ∅, and last(r) = ∅.

– If r = ε, then
empty(r) = true, first(r) = ∅, follow(r) = ∅, and last(r) = ∅.

– If r = x for x ∈ Σ, then
empty(r) = false, first(r) = {x}, follow(r) = ∅, and last(r) = {x}.

• And for a compound regular expression r based on r1 and r2:

– If r = (r1|r2), then
empty(r) = empty(r1) ∨ empty(r2),
first(r) = first(r1) ∪ first(r2),
follow(r) = follow(r1) ∪ follow(r2), and
last(r) = last(r1) ∪ last(r2).
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– If r = (r1.r2), then
empty(r) = empty(r1) ∧ empty(r2),
first(r) = first(r1) ∪ first(r2) when empty(r1) = true,

otherwise first(r) = first(r1),
follow(r) = follow(r1) ∪ follow(r2) ∪ [last(r1)× first(r2)], and
last(r) = last(r2) ∪ last(r1) when empty(r2) = true,

otherwise last(r) = last(r2).

– If r = r1
∗, then

empty(r) = true,
first(r) = first(r1),
follow(r) = follow(r1) ∪ [last(r1)× first(r1)], and
last(r) = last(r1).

Example 2.6. Let us now return to a regular expression rA = C.DA
∗ from Ex-

ample 2.3. Although we have not yet provided details, construction of Glushkov
automata is based on marked regular expressions. So, for r we have its marking
equal to rMA = C#1.DA#2

∗.
Now we derive values of all four introduced auxiliary functions for this regular

expression rMA . We simply look at its inductive structure, start with its atomic
subexpressions, evaluate involved operators, until we finish with rMA itself:

For the first atomic expression C#1 we derive:

empty(C#1) = false,
first(C#1) = {C#1},
follow(C#1) = {}, and
last(C#1) = {C#1}.

Analogously for DA#2 we derive:

empty(DA#2) = false,
first(DA#2) = {DA#2},
follow(DA#2) = {}, and
last(DA#2) = {DA#2}.

Now we consider the iteration operator over DA#2. That is:

empty(DA#2
∗) = true,

first(DA#2
∗) = first(DA#2) = {DA#2},

follow(DA#2
∗) = follow(DA#2) ∪ [last(DA#2)× first(DA#2)] =

{} ∪ [{DA#2} × {DA#2}] = {(DA#2, DA#2)}, and
last(DA#2

∗) = last(DA#2) = {DA#2}.
Finally, for the entire rMA = C#1.DA#2

∗ and its sequence operator we put:

empty(rMA ) = empty(C#1)∧ empty(DA#2
∗) = false∧ true = false,

first(rMA ) = first(C#1) = {C#1} since empty(C#1) = false,
follow(rMA ) =

follow(C#1) ∪ follow(DA#2
∗) ∪ [last(C#1)× first(DA#2

∗)] =
{} ∪ {(DA#2, DA#2)} ∪ [{C#1} × {DA#2}] =
{(DA#2, DA#2), (C#1, DA#2)}, and

last(rMA ) = last(DA#2
∗) ∪ last(C#1) = {DA#2} ∪ {C#1} =

{DA#2, C#1} since empty(DA#2
∗) = true.
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When interpreting the previous results, we can conclude that the language
L(rMA ) does not contain the empty word ε, its words begin with C#1, or that they
end either with C#1 or DA#2.

And how to put all the defined auxiliary functions together to finally con-
struct an automaton that would be able to recognize words from L(r) for a given
regular expression r ∈ RE(Σ)? The answer is given in the following definition of
Glushkov automaton. As already outlined, note that the used auxiliary functions
are based on rM and not directly r.

Definition 2.8 (Glushkov Automaton). Let r be a regular expression over an
alphabet Σ such that r is 1-unambiguous, and rM its marked regular expression.
Then we define a Glushkov automaton for r to be a deterministic finite automaton
Ar = (Q, Σ, δ, q0, F ), where:

• Q = symbols(rM) ∪ {q0} is a set of states (symbols(rM) ⊂ ΣM),

• Σ is the original input alphabet,

• δ is a transition function Q× Σ→ Q such that

– for each s ∈ first(rM) we put δ(q0, sym(s)) = s, and

– for each (s1, s2) ∈ follow(rM) we put δ(s1, sym(s2)) = s2,

• q0 ∈ Q is the artificially introduced initial state such that q0 /∈ ΣM , and

• F ⊆ Q is a set of accepting states such that

– if empty(rM) = true then F = last(rM) ∪ {q0},
– otherwise F = last(rM).

It is important to emphasize that the previous definition only works since we
assumed a regular expression r to be 1-unambiguous. Because of this feature we
are sure that ∀ s1, s2 ∈ first(rM), s1 6= s2: sym(s1) 6= sym(s2). In other words,
we know that ¬∃ a ∈ Σ for which there would exist s1 and s2 ∈ first(rM),
s1 6= s2 such that sym(s1) = a = sym(s2). Analogously we also know that
∀ (s, s1) and (s, s2) ∈ follow(rM), s1 6= s2: sym(s1) 6= sym(s2) once again. Both
these observations directly imply from Definition 2.5.

As a result, the above transition function δ is defined correctly, and so the
entire Ar is defined correctly. The practical consequence is that when r is 1-
unambiguous, the corresponding Glushkov automaton Ar is deterministic (hence
we can also talk about such r as a deterministic regular expression). On the
contrary, when r would not satisfy the 1-unambiguity condition, the resulting
Glushkov automaton would require to be constructed as a nondeterministic one.

Example 2.7. Now we are ready to describe the Glushkov automaton ArA for
our regular expression rA = C.DA

∗. To construct it, we first need to evaluate all
the empty, first, follow and last auxiliary functions on rMA , which we already
managed to do in Example 2.6.

Directly applying the definition, we can write that A = (Q, Σ, δ, q0, F ), where:
Q = {q0, C#1, DA#2} is a set of states, δ = {(q0, C, C#1), (C#1, DA, DA#2),
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(DA#2, DA, DA#2)} is a transition function, q0 is the designated initial state and
F = {C#1, DA#2} is a set of accepting states.

Because we chose the left-to-right approach for numbering occurrences when
generating the marked symbols, we can leave their complicated names and sim-
ply use 0 for the designated initial state instead of q0, and i instead of x#i ∈
symbols(rM) in case of the remaining states. Note that this conversion is just for
illustration purposes and has no effect on meaning of our definitions.

The resulting automaton would then be ArA = (Q, Σ, δ, q0, F ), where: Q =
{0, 1, 2}, δ = {(0, C, 1), (1, DA, 2), (2, DA, 2)}, q0 = 0 and F = {1, 2}.

This final Glushkov automaton ArA is depicted in Figure 2.5. It is obviously a
different automaton when comparing to the automaton discussed in Example 2.5
and presented in Figure 2.4, but both of them accept exactly the same L(rA),
which only illustrates the general fact that there may exist different automata, yet
serving the same objective.

Figure 2.5: Glushkov automaton ArA for rA = C.DA
∗

Just to conclude, having a 1-unambiguous regular expression r, we use Ar to
denote its corresponding Glushkov automaton, i.e. a deterministic finite automa-
ton that is capable of recognizing the language L(r).

2.4 Regular Tree Grammars

At this moment we have already described how we model XML documents we
want to work with, and we have also provided basic definitions from the theory
of finite automata, regular languages and regular expressions. The question is,
how to represent restrictions posed by schemata against which we actually would
like to define our intended corrections.

2.4.1 Regular Tree Grammars

The natural answer to the previous question could be the notion of regular tree
grammars [60]. Via them, we can directly describe how data trees should look like
such that they conform to our expectations of the allowed nesting of elements.

Definition 2.9 (Regular Tree Grammar). A regular tree grammar is a tuple
G = (N , T , S, P ), where:

• N is a set of nonterminal symbols,

• T is a set of terminal symbols,

• S ⊆ N is a nonempty set of starting symbols,
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• P is a set of production rules, each rule of the form [t, r → n], where:

– t ∈ T is a terminal symbol,

– r is a regular expression over N ,

– n ∈ N is a nonterminal symbol.

Without loss of generality, for each t ∈ T and n ∈ N there exists at most one
rule [t, r → n] ∈ P .

Despite these grammars do not allow us to describe all the constructs of
DTD and XSD languages, they represent an appropriate way of capturing those
constructs that describe the allowed nesting and content of elements, i.e. exactly
those which we are interested in.

Intuitively, terminal symbols (or just terminals) correspond to labels of ele-
ments (their names) and nonterminal symbols (nonterminals) represent sort of
types of these elements. It is worth highlighting that regular expressions in pro-
duction rules are based on an alphabet of nonterminal and not terminal symbols.
As a consequence, we are able to describe elements with the same label, but
different content depending on different contexts.

Also note that the last condition in the definition enables us to reference
particular production rules just by fixing values of a terminal t and nonterminal
n, i.e. by Ft,n we can easily reference the only production rule that can exist in
P for a pair of such t and n symbols.

Example 2.8. Suppose we have a regular tree grammar G = (N , T , S, P ), where
N = {A, B, C, DA, DB} are nonterminal symbols, T = {a, b, c, d} are terminal
symbols and S = {A, B} are starting nonterminal symbols. The set P contains
these production rules:

F1 = Fa,A = [ a, C.DA
∗ → A ],

F2 = Fb,B = [ b, DB
∗ → B ],

F3 = Fc,C = [ c, ε → C ],
F4 = Fd,DA

= [ d, C∗ → DA ] and
F5 = Fd,DB

= [ d, A|B|C → DB ].

2.4.2 Validity of Data Trees

Our situation, however, differs from the so far outlined and intuitive comprehen-
sion of the introduced tree grammars with their production rules – we do not
want to use them for generating new data trees, but for validation – and later on
correction as well – of the existing ones. In other words, our basic problem is that
we have an XML document and we would like to decide, whether it conforms to
a particular DTD or XSD schema – i.e. whether the given data tree abide by the
corresponding regular tree grammar.

It also implicitly means that we need to know how to translate schemata into
these grammars. However, this translation is not complicated and we will not
discuss it in this thesis.

The following notion of an interpretation tree is the first step towards the
definition of data tree validity.
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Definition 2.10 (Interpretation Tree). Let T = (D, lab, val) be a data tree and
G = (N , T , S, P ) a regular tree grammar. An interpretation tree of data tree T
against grammar G is a tuple N = (D, int), where:

• D is the original underlying tree,

• int is a function D → N mapping nodes to nonterminal symbols such that:

– for each node p ∈ D and a sequence of its child nodes p.0, p.1, . . . , p.k
for k = fanOut(p) − 1 there exists a production rule [t, r → n] ∈ P
satisfying:

· int(p) = n,

· lab(p) = t, and

· int(p.0).int(p.1) . . . int(p.k) ∈ L(r).

This means that we take an underlying tree D of a given data tree T and
attempt to resolve values of the interpretation function (i.e. nonterminal symbols)
by finding appropriate production rules of the grammar G – those rules having a
corresponding element label t as in the original data tree and, at the same time,
a regular expression r matching the actual element content.

Note that our definition of the interpretation tree does not include any spe-
cific conditions posed on the root node, since this approach allows us to easily
introduce concepts of both local and full validity.

Definition 2.11 (Data Tree Validity). Let T = (D, lab, val) be a data tree and
G = (N , T , S, P ) a regular tree grammar.

We say that data tree T is locally valid with respect to a production rule
F = [t, r → n] ∈ P of grammar G, if and only if ε ∈ D and there exists at least
one interpretation tree N = (D, int) of T against G such that lab(ε) = t and
int(ε) = n.

Next, we say that data tree T is locally valid with respect to grammar G in
general, if and only if T is locally valid with respect to some (any) production
rule F ∈ P of grammar G.

Finally, we say that data tree T is valid with respect to grammar G, if and
only if ε ∈ D and there exists at least one interpretation tree N = (D, int) of T
against G such that int(ε) ∈ S.

As a consequence, we also have a direct method how to decide whether a
provided data tree T is valid with respect to some grammar G, or whether it
is not valid, i.e. is invalid in such case. The only thing we need to do is to
attempt to construct an interpretation tree, starting with the root node and
moving toward leaves, always trying to find suitable and matching production
rules of the grammar.

It is also apparent that if data tree T is valid, it must also be locally valid.

Definition 2.12 (Regular Tree Language). Let G = (N , T , S, P ) be a regular
tree grammar. Given a production rule F ∈ P of grammar G, we first define
LlocF (G) = {T | T is locally valid with respect to F}. Then we also put Lloc(G) =
{T | T is locally valid with respect to G in general }.

And finally, we define L(G) = {T | T is valid with respect to G} as a regular
tree language of grammar G.
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Example 2.9. Now, we are ready to return to our data tree T from Example 2.2
(illustrated in Figure 2.3) and regular tree grammar G from Example 2.8.

Data tree T is not valid against G, since there cannot exist any interpretation
tree N – this is true, for example, because of a node at position 0 (its label is
equal to x that is apparently not allowed by a set of terminals T ). So, despite
T ∆1 is locally valid, both T ∆0 and T ∆2 are not, therefore, entire T cannot be
locally valid and neither valid at all.

On the other hand, let us consider data tree T3 from Figure 2.6. This data tree
is valid with respect to G and its interpretation tree N3 is depicted there as well.
If T3 = (D3, lab3, val3), then we can write that N3 = (D3, int3), where int3 =
{(ε, A), (0, C), (1, DA), (1.0, C), (2, DA), (2.0, C), (2.1, C)}. We used production
rules Fa,A, Fc,C, Fd,DA

, Fc,C, Fd,DA
, Fc,C and Fc,C (in this order according to

int3) to construct this interpretation.
We will see later on that T3 is one of the possible corrections of the original

data tree T that our correction algorithm is capable to find.

Figure 2.6: Data tree T3 and its interpretation tree

2.4.3 Classes of Regular Tree Grammars

The problem of regular tree grammars is that they have unnecessarily high ex-
pressive power comparing to our needs. Besides, we have also outlined that DTD
does not offer as expressive possibilities as XSD does. This observation is formally
described by the following notion of competing nonterminals [60].

Definition 2.13 (Competing Nonterminal Symbols). Let G = (N , T , S, P ) be a
regular tree grammar and n1 and n2 ∈ N , n1 6= n2 are two different nonterminal
symbols. We say that n1 and n2 are competing with each other, if there exist two
production rules [t, r1 → n1] and [t, r2 → n2] ∈ P sharing the same terminal
symbol t.

The presence of such competing nonterminals in grammars makes their usage
more complicated, thus, it makes sense to define grammar subclasses with less
expressive power, and, therefore, hopefully with easier processing.

The explanation is simple. Assume that we have a data tree T = (D, lab, val)
and some of its nodes p ∈ D such that this node has a label equal to a = lab(p).
When we are searching for the suitable production rules that match p – those
having exactly this label a as a terminal symbol on their left sides, i.e. production
rules of the form [a, r → n] for some regular expressions r and nonterminal
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symbols n – we might be able to find more of such production rules and, so,
any of them could be considered as a potential candidate when constructing the
required interpretation tree.

We will use two classes of regular tree grammars, though even other could be
introduced as well. Both of them will pose different restrictions on the presence
of competing nonterminals [60].

Definition 2.14 (Local and Single-Type Tree Grammars). We say that a regular
tree grammar G = (N , T , S, P ) is a local tree grammar, if it has no competing
nonterminals, i.e. ¬n1, n2 ∈ N , n1 6= n2 such that n1 and n2 would be competing
with each other.

We say that G = (N , T , S, P ) is a single-type tree grammar, if for each its
production rule [t, r → n] ∈ P all the nonterminal symbols in symbols(r) do not
compete with each other, and above that the starting nonterminal symbols in S
do not compete with each other too.

Apparently, each local tree grammar is a single-type tree grammar and each
single-type tree grammar is a regular tree grammar. On the other hand, some
regular tree grammars are not single-type, and, analogously, some single-type tree
grammars are not local ones. In other words, local tree grammars have strictly
less expressive power than single-type tree grammars and these grammars have
strictly less expressive power than regular tree grammars.

Without any further details, we can assume that schemata in DTD correspond
to local tree grammars, and that schemata in XSD (largely) correspond to single-
type tree grammars [60].

When considering DTD, content of an element always depends only on its
name and never its context. This feature is in a direct correspondence with
the full absence of competing nonterminals. In other words, we do not need to
distinguish between terminals and nonterminals at all.

Processing of XML documents according to XSD, on the other hand, is more
complicated, because there can exist more possible types (nonterminals) for ele-
ments with the same name (terminal).

Fortunately enough, when making decisions on the validity of data trees, we
are still always guaranteed in both these classes that at most one appropriate
production rule may exist – and, therefore, either there is no interpretation tree
(and the processed data tree is not valid), or there is right one such tree (and
so the data tree is valid). This is important because regular tree grammars may
generally lead to more interpretation trees.

Anyway, our correction model efficiently supports even the class of regular
tree grammars.

Example 2.10. Our regular tree grammar G from Example 2.8 is a single-type
tree grammar, but not a local tree grammar, because there are nonterminal symbols
DA and DB that compete with each other (via production rules F4 = Fd,DA

and
F5 = Fd,DB

they both lead to the same terminal d).

2.4.4 Consistency of Grammars

Unfortunately, even a syntactically correct grammar may not be consistent. This
means that there simply does not exist a single data tree that would be valid
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with respect to such grammar. However, even grammars that are consistent in
this way may contain production rules that might cause us difficulties in the
correction model we are about to propose. Therefore we try to restrict ourselves
only to grammars that are safe for us to use.

Let G = (N , T , S, P ) be a regular tree grammar. Given a nonterminal
symbol n ∈ N , we first put Rn

−1 = ∅, Rn
0 =

⋃
F=[t,r→n]∈P symbols(r), and then

inductively Rn
i = Rn

i−1 ∪
⋃
n′∈Rn

i−1\Rn
i−2,F ′=[t′,r′→n′]∈P symbols(r

′) for each i ∈ N.

Since G is finite, there must exist a fixpoint k ∈ N such that Rn
k = Rn

k+1, and
so we can define ReachableNonterminals(G, n) =

⋃
i∈N0

Rn
i = Rn

k as a set of
all nonterminal symbols that are reachable from the given nonterminal n using
production rules of G.

Having the notion of reachability for individual nonterminals, let us now de-
fine ReachableNonterminals(G) =

⋃
n∈S({n} ∪ ReachableNonterminals(G, n))

= S ∪
⋃
n∈S ReachableNonterminals(G, n) to be a set of all reachable nontermi-

nals of grammar G, and then ReachableRules(G) = {F | F ∈ P , F = [t, r → n]
and n ∈ ReachableNonterminals(G)} to be a set of all reachable rules of G.

Definition 2.15 (Consistency of Grammars). We say that a regular tree grammar
G = (N , T , S, P ) is an inconsistent grammar, if and only if L(G) = ∅. Otherwise
G is a consistent grammar. We say that a production rule F ∈ P is a useless
rule, if and only if LlocF (G) = ∅.

At this point we have all the required definitions in order to formally describe
the mentioned assumptions. In particular and from now on, we only suppose that
all the regular tree grammars we work with are consistent grammars, and that
none of their reachable rules F ∈ ReachableRules(G) is useless at the same time.

Though this constraint might seem to be unnecessarily restrictive – which is
true – it allows us to make our further definitions of the correction model and
algorithms easier. On the other hand, at least the requirement on the grammar
consistency as such does not need to trouble us at all, since if a provided grammar
was not consistent, then there would be no data tree valid with respect to such
grammar, and so we could hardly find any corrections for a provided data tree to
be corrected.

Later on we will show that none of our current assumptions is actually required
at all, i.e. that our correction model can work with any regular tree grammar
without exceptions.
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3. Model

In the previous chapter we have discussed the basic theoretical background of
our correction model and provided the essential notions from the areas of regular
expressions, finite automata and regular tree grammars used to model structural
validity of XML documents.

The aim of this chapter is to formally describe the proposed correction model,
its capabilities, features and principles, whereas the question how to actually
design recursive evaluation algorithms and to design them efficiently enough, we
postpone until yet another chapter.

We start with a brief outline of all important notions and ideas in order to
provide a basic overview of the entire model at a glance. Then, we focus on
particular model components – step by step, and in a detail.

3.1 Model Overview

First of all we need to define actions we are allowed to use to transform data trees
into valid ones. It is obvious that such operations would be the fundamental part
of any correction model – directly influencing what type of corrections can and
cannot be obtained at all. We call these transformations edit operations.

Using them we are able to add new leaf nodes, remove existing leaf nodes,
and change labels of existing nodes. When composing these edit operations into
suitable sequences, we are able to get more complex operations via which we are
able to insert entire new subtrees, remove existing ones or recursively repair them
as well.

If our main goal is to find all the corrections for a provided data tree with
respect to a given grammar, i.e. to find all data trees that are valid and that are
as close as possible to the original data tree – we figure out this task by finding
sequences of edit operations, via which we can then acquire such data trees.

The correction algorithm itself processes a given data tree from its root node
towards leaves. Being at a particular node, our task is to find its corrections – i.e.
corrections of a sequence of its child nodes – efficiently inspecting new suitable
sequences that are allowed by grammar and that can be acquired right using the
introduced set of edit operations. We talk about these recursive assignments as
correction intents.

The purpose of each correction intent lies in two levels. First, we need to
horizontally correct the mentioned sequence of sibling nodes. This is motivated
by a traditional approach for correction of ordinary words. Unfortunately, sibling
nodes are not just flat sequences of nodes, they also (usually) have their own
subtrees that need to be treated as well – vertically by recursive nesting.

Broadly speaking, correction intents either describe sort of an assignment for
this recursive correction, but they also exactly define, what corrections do we
actually want to inspect and what not.

When finding new permitted node sequences, we could dynamically generate
them one by one – simply simulating a state space traversal within a corre-
sponding finite automaton. Instead, we decided to inspect all the suitable node
sequence corrections statically – all together in a form of correction multigraphs.
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These structures directly encode such corrections and allow us to transform the
problem of their finding to the problem of finding the shortest correction paths.
Once these paths are obtained, they are encapsulated into compact intent repair
structures. They are the final product of our correction process.

To summarize the entire model: provided with a potentially invalid data tree
and a regular tree grammar to which it should conform, we traverse this data
tree in a top-down manner, recursively invoking nested correction intents, con-
structing correction multigraphs, and finally gathering computed intent repairs
with encapsulated shortest correction paths on the way back – until we return to
the root node once again at the very end.

Having found the repair for the root node, we have found the required correc-
tions for the entire data tree, and so the whole correction process terminates.

To provide another perspective – correction intents, correction multigraphs as
well as intent repairs are all recursively nested structures. Each correction intent
represents a description of a problem to be figured out – and for this purpose it
recursively invokes other correction intents that are responsible for solving the
identified subproblems. A correction multigraph is a structure that provides us
a means to figure out a corresponding correction intent by finding the shortest
correction paths inside it. Finally, an intent repair is a structure that represents
a solution for a given correction intent.

The remaining parts of this chapter focus in detail on all the notions of the
correction model we have just shortly sketched. In particular, we start with a
description of edit operations and sequences into which they can be composed to.
Then we discuss the universal interface of recursively nested correction intents.
Having them, we define correction multigraphs together with correction paths,
and specifically the shortest correction paths in which only we are interested in.
Finally, having wrapped the found intent repairs, we also discuss how to unfold
them to actually obtain all the edit sequences on which we built our correction
model from the formal point of view.

3.2 Edit Operations

As we have outlined, edit operations are elementary transformations we use for
altering invalid data trees into valid ones. They behave like functions, always
performing small local modifications of a provided data tree. Applying them, we
are able to add a new leaf node into a data tree (addLeaf), remove an exist-
ing leaf node (removeLeaf), or change a label of an existing node of any type
(renameNode).

3.2.1 Edit Operations

However, before we can introduce edit operations formally, we need to describe
how to derive a few auxiliary sets of underlying nodes – sets that help us to
identify and grasp specific groups of nodes with respect to the execution of edit
operations themselves.
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So, given an underlying tree D, we first define the following set of nodes:

• InsertPositions(D) = {u.i | u ∈ D, i ∈ N0, u.i /∈ D and either i = 0,
or in case of i > 0 then u.(i − 1) ∈ D}. If D = ∅ is an empty tree, then
InsertPositions(D) = {ε}.

Next, given an underlying tree D and a node p ∈ D, p 6= ε, p = u.i, u ∈ N∗0,
i ∈ N0, we define yet the following auxiliary sets of nodes:

• ExpiredNodes(D, p) = {u.k.v | k ∈ N0, i ≤ k < fanOut(u), v ∈ N∗0,
u.k.v ∈ D}.

• ShiftedRightNodes(D, p) = {u.(k + 1).v | k ∈ N0, i ≤ k < fanOut(u),
v ∈ N∗0, u.k.v ∈ D}.

• ShiftedLeftNodes(D, p) = {u.(k − 1).v | k ∈ N0, i+ 1 ≤ k < fanOut(u),
v ∈ N∗0, u.k.v ∈ D}.

Nodes in a set InsertPositions(D), together with the given underlying tree
D itself, represent all the positions where a new leaf node can be inserted by
a corresponding addLeaf edit operation. To do it, we must also shift all the
potentially existing sibling nodes located to the right from the position p, where
the insertion is being performed. In particular, we must shift these nodes (and, of
course, their subtrees too, if present) by one to the right, i.e. to replace the original
affected ExpiredNodes(D, p) with nodes from ShiftedRightNodes(D, p).

In case of a removeLeaf operation, we must analogously shift all the influ-
enced sibling nodes from ExpiredNodes(D, p) (and their subtrees once again) by
one to the left to form ShiftedLeftNodes(D, p).

Figure 3.1: Data tree positions of T allowing leaf insertions

Example 3.1. Assume that we have the same data tree T as in Example 2.2 and
Figure 2.3, and so we have its underlying tree D = {ε, 0, 0.0, 1, 1.0, 2, 2.0, 2.1}.

First of all, what are the positions where a new leaf node can be added into
D except D itself? They are InsertPositions(D) = {0.0.0, 0.1, 1.0.0, 1.1, 2.0.0,
2.1.0, 2.2, 3}. When looking at the tree structure depicted in Figure 3.1, these
positions are marked as gray nodes without labels.
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Now, suppose for example that we want to add a new leaf node at a position
p = 0 (right before the existing element with label equal to x, currently located
at position 0). Then all the nodes in ExpiredNodes(D, 0) = {0, 0.0, 1, 1.0,
2, 2.0, 2.1} become obsolete and need to be shifted by 1 to the right to become
ShiftedRightNodes(D, 0) = {1, 1.0, 2, 2.0, 3, 3.0, 3.1} in the end.

Now, we are ready to provide the definition of all the edit operations we
want to introduce. Its purpose is not only to enumerate which edit operations
we actually define with respect to certain data tree assumptions, but we also
describe the particular effect they have on both the underlying tree and a pair of
label and value functions.

Definition 3.1 (Edit Operations). An edit operation e is a partial function
transforming an original data tree T0 = (D0, lab0, val0) into a new data tree
T1 = (D1, lab1, val1), denoted as T0

e−→ T1. In case the following conditions are
satisfied, we define these edit operations in particular:

• For any p ∈ D0 ∪ InsertPositions(D0) such that p 6= ε, p = u.i, u ∈ N∗0,
i ∈ N0, u /∈ DataNodes(D0) and a ∈ E∪{data} we define an edit operation
e = addLeaf(p, a) such that for T1 = (D1, lab1, val1) then holds:

– D1 = [D0 \ ExpiredNodes(D0, p) ] ∪ {p} ∪
ShiftedRightNodes(D0, p).

– For the unaffected nodes, i.e. ∀w ∈ [D0 \ ExpiredNodes(D0, p) ]:
lab1(w) = lab0(w), and
val1(w) = val0(w) in case val0(w) was defined.

– For the newly inserted node:
lab1(p) = a, and
val1(p) = ⊥ in case of a = data.

– For the shifted nodes, i.e. ∀ (u.(k+1).v) ∈ ShiftedRightNodes(D0, p):
lab1(u.(k + 1).v) = lab0(u.k.v), and
val1(u.(k + 1).v) = val0(u.k.v) in case val0(u.k.v) was defined.

• For an empty tree p = ε, D0 = ∅ and a ∈ E ∪ {data} we define an edit
operation e = addLeaf(p, a) such that:

– D1 = {p}.
– lab1(p) = a, and
val1(p) = ⊥ in case of a = data.

• For any p ∈ LeafNodes(D0) such that p 6= ε, p = u.i, u ∈ N∗0, i ∈ N0 we
define e = removeLeaf(p) as follows:

– D1 = [D0 \ ExpiredNodes(D0, p) ] ∪ ShiftedLeftNodes(D0, p).

– For the unaffected nodes, i.e. ∀w ∈ [D0 \ ExpiredNodes(D0, p) ]:
lab1(w) = lab0(w), and
val1(w) = val0(w) in case val0(w) was defined.

– For the shifted nodes, i.e. ∀ (u.(k−1).v) ∈ ShiftedLeftNodes(D0, p):
lab1(u.(k − 1).v) = lab0(u.k.v), and
val1(u.(k − 1).v) = val0(u.k.v) in case val0(u.k.v) was defined.
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• For the root node p = ε, D0 = {ε} we define e = removeLeaf(p) this way:

– D1 = ∅.
– lab1 = ∅, and
val1 = ∅.

• For any p ∈ D0, a ∈ E∪{data} and a 6= lab0(p) we define an edit operation
e = renameNode(p, a) as follows:

– D1 = D0.

– For the unaffected nodes, i.e. ∀w ∈ [D0 \ {p} ]:
lab1(w) = lab0(w), and
val1(w) = val0(w) in case val0(w) was defined.

– For the modified node:
lab1(p) = a, and
val1(p) = ⊥ in case a = data.

Though the intended meaning of all these edit operations is straightforward,
the definition, however, talks about a partial function – this is because we define
edit operations only on those data trees, where the given transformation makes
sense and is defined correctly. For example, we can only apply removeLeaf(p)
operation, if p is present in a processed data tree and it is really a leaf node.

From now on, we will always implicitly assume that all edit operations we
work with are meaningful and correctly defined in this sense.

Next, since our correction model is only interested in the structural corrections
of data trees, we cannot actually generate data values for newly added data nodes,
so we simply use our already introduced special undefined value ⊥, which in this
case unfolds to an empty string from the value function point of view.

Example 3.2. Once again, let us return to our data tree T = (D, lab, val)
that is presented in Figure 2.3. To illustrate how edit operations work, assume,
for example, we want to add a new leaf node with label c to position 0, i.e. to
perform an edit operation e = addLeaf(0, c). First of all, note that this operation
is defined on T correctly, since 0 ∈ D ∪ InsertPositions(D).

For we have already evaluated all the required auxiliary functions in Exam-
ple 3.1, we can directly focus on a new data tree T ′ = (D′, lab′, val′) that is a
result of the transformation T e−→ T ′.

In particular, D′ = {ε, 0, 1, 1.0, 2, 2.0, 3, 3.0, 3.1}, lab′ = {(ε, a), (0, c),
(1, x), (1.0, c), (2, d), (2.0, c), (3, d), (3.0, c), (3.1, a)}, and, finally, val′ = ∅.
This resulting data tree T ′ is depicted in Figure 3.2.

Finally, let us also emphasize that – despite the definition of all the edit oper-
ations might seem a bit technically complicated from the perspective of auxiliary
node sets and the described and required renumbering of nodes themselves – it
is just a formal aspect and this renumbering happens implicitly and without any
effort at the implementation level, i.e. does not need to be and is really not
evaluated by the correction algorithms we proposed.
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Figure 3.2: Applying edit operation addLeaf(0, c) on data tree T

3.2.2 Edit Sequences

Apparently, edit operations may be composed into more complex operations,
simply when using and applying them in sequences. As a consequence, via ap-
propriate sequences of edit operations, we are capable of inserting entire new
subtrees into data trees, deleting existing ones or recursively repairing them.

Formally, let us provide the following definition.

Definition 3.2 (Sequence of Edit Operations). Given some n ∈ N0, let T0, . . . ,
Tn be data trees and e1, . . . , en edit operations such that ∀ i ∈ N0, 0 ≤ i < n:

Ti
ei+1−−→ Ti+1 are correctly defined.
Then we say that S = 〈e1, . . . , en〉 is a sequence of edit operations (or just

an edit sequence) that transforms data tree T0 into data tree Tn, and instead of

T0
e1−→ T1 . . . Tn−1

en−→ Tn we can shortly write T0
S−→ Tn.

We use angle brackets for sequences in general to make them easily differen-
tiable, and we also assume that standard operations defined over sequences (like
their concatenation) are evaluated in a natural way. Finally, a sequence is empty,
if n = 0, i.e. S = 〈〉.

Example 3.3. Suppose that we have our data tree T and we would like to delete
its entire subtree rooted at position 2. To attain this objective, we could use a se-
quence of edit operations 〈removeLeaf(2.1), removeLeaf(2.0), removeLeaf(2)〉.

On the other hand, we could also use another edit sequence where we would
remove both child nodes starting with the first one and not the second one, i.e.
a sequence 〈removeLeaf(2.0), removeLeaf(2.0), removeLeaf(2)〉. Notice, how
the position parameters of the removeLeaf edit operations have thus changed.

The previous example intentionally suggests that several issues may arise when
finding suitable sequences of edit operations that lead to corrected data trees.

First, we must realize that there always exist many edit sequences having the
same effect, i.e. although different sequences, still producing the same data trees
when applied on the same source data tree. Sometimes we can reorder operations
even without the necessity of changing their position parameters (which was not
the case of the previous example), or we can add pairs of operations that mutually
revoke and compensate the effect each other (e.g. to add a new leaf node and
then, sooner or later, remove it once again).

To be precise, for each edit sequence we would always be able to find infinitely
many other different sequences having the same result. So, our correction algo-
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rithm must inspect the suitable sequences carefully enough and only focus on a
finite number of the meaningful ones.

3.2.3 Costs of Edit Operations

Since we are only interested in finding valid data trees that are as close as possible
to the original data tree to be corrected, we apparently have to introduce a means
how to measure such proximity. The easiest way to achieve this need could be to
introduce costs over the introduced edit operations. So, let us define the following
notion of a cost function.

Definition 3.3 (Cost Function). Let T1 and T2 be data trees, and e an edit
operation such that T1

e−→ T2 is correctly defined.
Then we define cost(e) to be a function assigning to e its positive cost from

R+, i.e. the domain of all the positive real numbers. Though it is formally a
function of its explicitly listed arguments and the source data tree T1 as well,
beside the general dependence on the edit operation type (addLeaf , removeLeaf
and renameNode), only the following dependencies are permitted:

• If e = addLeaf(p, a) with some p ∈ D ∪ InsertPositions(D) and a ∈
E ∪ {data}, then cost(e) may only depend on the node label parameter a.

• If e = removeLeaf(p) with some p ∈ LeafNodes(D), cost(e) may only
depend on the current node label lab(p) and the current data value val(p),
but must not depend on the position p itself, i.e. value of this position as a
word in N∗0.

• If e = renameNode(p, a) with some p ∈ D and a ∈ E∪{data}, then cost(e)
may only depend on the newly requested node label parameter a, the current
node label lab(p) and the current data value val(p), but must not depend on
the position p itself, i.e. value of this position as a word in N∗0.

Intuitively, having a sequence of edit operations E = 〈e1, . . . , ek〉 for some
k ∈ N0, then we define cost(E) =

∑k
i=1 cost(ei).

The lower the cost is, the smaller the transformation impact on a given data
tree is. And since values of the cost function may only be positive (i.e. cannot
be negative, nor equal to zero specifically), the more edit operations in an edit
sequence, the higher the overall cost will be.

Because of the reasons that become obvious once we introduce repairing in-
structions later on, we also had several dependency requirements on the cost
function itself. Not only that it must behave deterministically, but its values
must not be dependent especially on the position parameters of edit operations
(although we have explicitly listed them as arguments), nor any other external
information except predefined constants. On the other hand we can use node
label parameters, or information about nodes from the original data tree (values
of lab and val functions) without limitation.

From the practical perspective, we can assign each edit operation with the
same cost (ignoring all the offered dependency possibilities at all), or we can assign
each edit operation type predefined (and potentially different) constant values,
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or we can even compute more complex costs dynamically, like, for example, when
we would like to consider lexical distances between the original and new node
labels in case of the renameNode edit operation.

Without loss of generality, in all the following examples and also for the pur-
pose of the evaluation of the entire correction framework, we simply decided to
assign each edit operation a unit cost equal to 1, since this approach does not
make any differences between particular operation types, i.e. does not prefer
some operation types to the other ones.

Example 3.4. Suppose that we have three edit operations e1 = renameNode(0, c),
e2 = removeLeaf(0.0) and e3 = renameNode(2.1, c) that together forms an edit
sequence S3 = 〈e1, e2, e3〉.

Applying this sequence to our data tree T from Figure 2.3 we obtain a data

tree T3, i.e. T S3−→ T3. This whole transformation is illustrated in Figure 3.3, and
the resulting data tree T3 (together with its interpretation) was already presented
as well in Figure 2.6 in the previous chapter.

If each used edit operation is assigned a unit cost, then the cost of the entire
transformation is equal to 3, i.e. cost(S3) = 3.

Figure 3.3: Applying an edit sequence S3 on data tree T

All in all, though our restrictions posed on the behavior of the cost func-
tion may seem to be restrictive, we actually believe they have no impact on the
practical usability of the whole framework at all.

3.2.4 Data Tree Distances

Having defined costs of edit operations, we are able to introduce distances between
data trees in general.

Definition 3.4 (Data Tree Distance). Assume that T1 and T2 are two data trees
and S is a set of all sequences of edit operations that are capable of transforming
T1 into T2. We define a data tree distance of T1 and T2 to be dist(T1, T2) =
minE∈S cost(E).

In other words, the distance of two data trees is equal to a minimal cost
required for transforming one data tree into the other one using the set of intro-
duced edit operations. Despite it is not important for our model, note also that
this distance is not generally symmetric, since we do not require that the costs
of complementary edit operations (for example, mutually revoking addLeaf and
removeLeaf operations) are equivalent.
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Definition 3.5 (Data Tree to Grammar Distance). Given a regular tree grammar
G and the corresponding regular tree language L(G) (it means a set of all data
trees that are valid against G), we define a distance between a data tree T1 and
the language L(G) as dist(T1, L(G)) = minT2∈L(G) dist(T1, T2).

Provided a potentially (but not necessarily) invalid data tree T to be corrected
using our algorithm, we would like to examine all data trees that are valid with
respect to a given grammar G, and select those ones that are as close to the
original one as possible – i.e. those having exactly the minimal distance from the
original data tree – i.e. right those having the data tree distance equal to the
value of dist(T , L(G)).

Definition 3.6 (Correction Problem). Given a data tree T and a regular tree
grammar G, we define a correction problem of T with respect to G as a problem
of evaluating correct(T ,G) = argminT2∈L(G) dist(T , T2) = {T2 | T2 ∈ L(G) and
dist(T , T2) = dist(T ,G)}.
Example 3.5. Let us now return to our data tree T and a sequence of edit opera-
tions S3 = 〈renameNode(0, c), removeLeaf(0.0), renameNode(2.1, c)〉 discussed
in the previous example.

Assuming unit costs for all the edit operation, cost(S3) = 3. This is actually
the minimal cost of any edit sequence that is capable to transform the original
data tree T to any data tree that is valid with respect to our grammar G. In other
words and as we will see later on, dist(T , L(G)) = 3.

Unfortunately, it is apparently not possible to inspect all such data trees, nor
all such edit sequences in practice. Thus, the correction algorithm must be able
to directly inspect only the optimal ones, or at most the promising ones.

3.2.5 Repairing Instructions

Since we do not only want to find all of the corrected data trees, but to find them
efficiently and represent them compactly (i.e. to encode them without the need
of explicitly generating or enumerating them as data trees themselves and nor
edit sequences themselves during the correction process), we have to deal with
another problem. Edit operations, as we have introduced them, are explicitly
bound to particular positions to which they are associated and on which they
impose their local transformation impact.

Example 3.6. We can simply illustrate our motivation using Example 3.3. There
were two suitable ways how to remove a node with label a at the original position
2.1. When we decided to remove it before its left sibling, we used an edit oper-
ation removeLeaf(2.1), but when we wanted to remove it after having already
removed its left sibling at first, positions shifted accordingly and we had to use
removeLeaf(2.0) instead.

It is obvious that both these edit operations are formally different operations,
though they not only pose the same data tree transformation, but they represent
the same correction intent as such.

The previous example suggests that it might be useful to inspect and encode
edit operations universally, not with any dependencies on particular positions
that may change having applied other edit operations in the vicinity. To achieve
this goal, we introduce the following notion of repairing instructions.
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Definition 3.7 (Repairing Instructions). Having edit operations addLeaf(p, a),
removeLeaf(p) and renameNode(p, a) with optional node label a ∈ E ∪ {data}
parameters and explicitly bound positions p ∈ N∗0, we define repairing instruc-
tions as addLeaf(a), removeLeaf and renameNode(a) as symbolic names for the
corresponding edit operations with position parameters not yet evaluated, though
still associated implicitly elsewhere.

When searching for the minimal corrections, we will use these repairing in-
structions and not edit operations themselves. In other words, our correction al-
gorithm does not directly produce suitable sequences of edit operations. Instead,
it uses repairing instructions to describe them compactly. All this is enabled
by correction multigraph structures, which we have already mentioned as well,
though not yet explained. Within them, we are able to associate the involved
repairing instructions with particular data tree positions indirectly.

The main reason for using repairing instructions is that we are then able to
inspect all the possible corrections much efficiently, as well as we are able to
represent them in compact intent repair structures once we have found them.

Having the correction of a given data tree finished, i.e. having the intent
repair for the entire data tree constructed, we can recursively unfold it, trans-
late all the included repairing instructions to the corresponding edit operations
with appropriately resolved and assigned positions, to finally obtain all the edit
sequences we were searching for. However, we postpone the description of such
translation until the very end of this chapter.

If the correction algorithm is about to find all the minimal corrections, it
still needs to be aware of the way how this minimality should be measured. So,
we need to transfer the already introduced notion of the cost function defined
over the edit operations to the repairing instructions as well. And we have to do
it carefully, for we must ensure that the correction algorithm still finds all the
corrected data trees exactly as we have defined them before we came with these
repairing instructions.

Definition 3.8 (Cost of Repairing Instructions). Given a repairing instruction
i that is implicitly associated to a data tree position p ∈ N∗0, we define cost(i) to
be a function assigning to i its positive cost from R+ such that:

• if i = addLeaf(a) for some a ∈ E ∪ {data},
then necessarily cost(i) = cost(addLeaf(p, a)),

• if i = removeLeaf,
then necessarily cost(i) = cost(removeLeaf(p)), and, finally,

• if i = renameNode(a) for some a ∈ E ∪ {data},
then necessarily cost(i) = cost(renameNode(p, a)).

In other words, the cost of a given repairing instruction i has to be identical
to the cost of the corresponding edit operation e, i.e. an edit operation to which
this repairing instruction will be translated later on once the position parameters
can be expressed explicitly, i.e. an edit operation that this repairing instruction
symbolically represents.
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Now we can also see the reason of all the dependency restrictions we pose in
the definition of the original cost function over the edit operations. We could
not use any other dependencies, simply because they would not be available or
accessible in case of the repairing instructions we plan to use.

To shortly sum it up before we move forward, the goal of the whole correction
algorithm is to find all the valid data trees that have the minimal distance from
the original data tree T to be corrected. This means we need to find suitable
sequences of edit operations that permit us to transform the original data tree T
to all its corrections, i.e. all valid data trees that are as close as possible to the
original T . And while these sequences are composed of edit operations through
which we are able to perform small and local transformations of data trees in
general, repairing instructions, on the other hand, allow us to search for such edit
sequences more efficiently, and also represent them in a compact way.

3.3 Correction Intents

So far we have described the goal of the correction model and constructs we can
use to achieve it. In other words, we have edit operations capable of transforming
invalid data trees into valid ones – specifically those that are close to the original
trees. Now we focus on a question, how to actually harness the possibilities the
edit operations offer us to actually find the required corrections.

3.3.1 Grammar Contexts

As we have also outlined, the correction algorithm processes a provided data tree
T = (D, lab, val) from its root node ε towards leaves. Suppose now that we are
at a particular node p ∈ D and our task is to correct it with respect to a grammar
G = (N , T , S, P ), i.e. to correct a sequence of its child nodes u = 〈u1, . . . , uk〉
for some k ∈ N0, including their potentially existing subtrees.

From the recursive perspective this means that we must have already decided
which label t ∈ T this node p should have and to which nonterminal n ∈ N this
label should correspond, i.e. we must have already selected right one production
rule Ft,n = [t, r → n] with a regular expression r over N to which the sequence
of sibling nodes u should conform.

In other words we have uniquely determined a grammar context Ct,n that
determines the allowed content of node p.

Definition 3.9 (Grammar Contexts). Let G = (N , T , S, P ) be a regular tree
grammar, t ∈ T a terminal symbol, n ∈ N a nonterminal symbol, and finally
Ft,n = [t, r → n] ∈ P a production rule that matches both t and n (such rule
must exist).

Then we define a grammar context of G for a pair of t and n to be a structure
Ct,n = (r, NA, PA) where:

• r is a regular expression from Ft,n describing the allowed content model,

• NA = {x | x ∈ symbols(r)} ⊆ N is a set of the allowed nonterminals in r,
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• PA = {F ′ | F ′ ∈ P , F ′ = [t′, r′ → n′], n′ ∈ NA} is a set of the active rules.

Next, we define a starting grammar context to be C• = (r, NA, PA), where:

• r = r• is a starting regular expression defined as a choice over all the
starting nonterminals, i.e. r• = n1| . . . |ns, where s = |S| and ∀ i ∈ N,
1 ≤ i ≤ s: ni ∈ S and ∀ i, j ∈ N, 1 ≤ i < j ≤ s: ni 6= nj,

• NA = S equals to the set of the starting nonterminals, and

• PA is defined in the same way as above.

Finally, we define an empty grammar context to be Cε = (r, NA, PA), where:

• r = rε = ε, NA = ∅, and PA = ∅.

Grammar contexts actually do not bring any new idea, they just allow us to
make further definitions a bit easier, since they wrap all the related information
together, and so they really serve as a complete description of a local grammar
context to be applied when dealing with a given node sequence u.

Grammar contexts derived from particular production rules Ft,n are consid-
ered to be standard grammar contexts, and the remaining two the special ones.
Also notice that if there exists a production rule for a given pair of symbols t and
n, then there must be at most one such rule, and so the convention of denoting
standard grammar contexts as Ct,n is therefore justified.

The purpose of the starting grammar context is to initiate the entire correction
process for a provided data tree T (so that we process its root node ε with respect
to all the possibilities the set of the allowed starting nonterminals offers), whilst
the empty grammar context is used to remove existing subtrees.

The introduced notion of grammar contexts also enables us to process data
trees in a universal way, regardless the node we are currently at, and what cor-
rection intent we have decided to follow and inspect. In other words, whatever
the situation may be, grammar contexts are of the same structure, and therefore
even correction intents we are about to introduce shortly can hopefully be defined
in this universal way as well.

Example 3.7. Assume our data tree T from Example 2.2 and grammar G = (N ,
T , S, P ) with a set of the starting nonterminals S = {A, B} from Example 2.8.

Then the starting grammar context for G is equal to C• = (r, NA, PA), where
r = A|B is the allowed content model, NA = {A, B} are the allowed nonterminals,
and PA = {Fa,A, Fb,B} are the active production rules.

Next, suppose we chose, for example, to process the root node ε of T in a way
that we would like to preserve its current label lab(ε) = a. This means we had
assigned it the only available nonterminal symbol A via Fa,A (as this is the only
active production rule from PA that matches the given terminal a).

Having fixed this pair of symbols a and A, i.e. a rule Fa,A, we have hence
determined even the standard grammar context Ca,A we then use for further pro-
cessing of a sequence 〈0, 1, 2〉, i.e. a sequence of the child nodes of the root node
ε together with their subtrees T ∆0, T ∆1 and T ∆2 respectively.

40



It is not a coincidence that the way how we derive grammar contexts and then
how we can recursively use them is in a direct correspondence with the way how
the interpretation trees are constructed, i.e. the validity of data trees as such is
defined. It is because our goal is nothing else than to find data trees that are
valid, and so we must follow the definition of validity.

3.3.2 Horizontal and Vertical Correction

At this point we have introduced edit operations as a mechanism for altering
data trees, and grammar contexts as a description of restrictions on the allowed
content of nodes. In other words, we are provided with a means to pursue our
correction goal, as well as we know what the correction results should satisfy,
unfortunately we still do not know how such results should be acquired at all.

Suppose we are at a particular data tree node p and we have already decided
to correct it with respect to a grammar context Ct,n = (r, NA, PA). This means
we need to correct a sequence of its child nodes u = 〈u1, . . . , uk〉 for some k ∈ N0,
so that this sequence conforms to a regular expression r. Though we still need to
explain a lot, this is actually and precisely a description of an assignment of one
particular correction intent.

The idea of solving this correction intent goal is directly motivated by the
traditional Levensthein metric and correction approach over ordinary strings
(words). Its edit distance is based on a minimal number of operations (allow-
ing to insert, delete or substitute a single symbol in a string) that are required
to transform one string into another one.

We have analogously introduced the same three basic principles and ways of
correction – in our scenario they are represented by the edit operations. The
main difference to the situation with ordinary strings is that we are not facing
just to flat sequences of nodes, but these nodes also (at least usually) have their
own subtrees as well. And so we must focus either on the horizontal aspect of
the whole correction, as well as on the vertical one.

Let us first discuss the horizontal correction. It is based on a traversal of the
state space of the automaton Ar = (Q, Σ, δ, q0, F ) recognizing L(r). At the
beginning, we have the entire sequence u unprocessed and we are at the initial
automaton state q0. The goal is to process u completely and terminate at any of
the accepting states F .

Now, assume that we have already processed the first 0 ≤ s ≤ k nodes of u.
This means that we have considered these nodes into the correction and that we
have also potentially proposed some changes in order to pursue new and valid
sequences. Anyway, we are at some automaton state qs, and there is a node us+1

ahead in the input sequence u (if there is any). All the actions we can consider
now are directly determined by values of the transition function δ defined from
the current state qs.

This means that we consider all the allowed nonterminals x ∈ NA for which
δ(qs, x) is defined, and inspect all the possible actions we can perform at this
position s and state qs – i.e. to insert a new subtree before us+1, remove the
existing subtree rooted at us+1, or recursively repair it with or without an op-
tion of changing its label lab(us+1). Whatever particular action we consider, we
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simply change the current sequence position and/or automaton state depending
on whether we considered us+1, and depending on whether we contributed to the
corrected sequence we are pursuing.

And since we start at the initial state q0, follow the transition function δ,
and terminate at some accepting state qF ∈ F (i.e. we simulate the automaton
Ar traversal), the resulting corrected sequences we are trying to build will then
conform to r.

Note that all the described actions we could consider at this level (i.e. during
the horizontal correction of a sequence u with respect to Ct,n, i.e. during the
processing of the described correction intent) actually represent other recursively
nested correction intents from the vertical perspective, i.e. assignments for easier
subproblems we can process exactly the same way.

An important obstacle is that the regular expression r from the selected gram-
mar context Ct,n is based on the alphabet of nonterminals N , but labels of da-
ta tree nodes are from the alphabet of terminals T (to be more precise, from
E ∪ {data}, because data trees may generally have nodes with labels that are
not permitted by the grammar at all). So, we must be aware of the mutual
relationship between both these sets of symbols.

For a given terminal t (label we come across in the node sequence u) there can
generally exist more different active production rules in PA, and thus different
allowed nonterminals to which it can be mapped (since the class of regular tree
grammars permits competing nonterminals within the regular expression r).

On the other hand and analogously, for a given nonterminal n ∈ NA (we come
across in r) there can exist more terminals to which it can unfold (which is a
possibility for all the classes of regular tree grammars anyway).

3.3.3 Correction Intents

The purpose of the following notion of correction intents is to encapsulate all the
so far discussed ideas of the horizontal and vertical correction.

Roughly speaking, they describe an intended horizontal action at one level,
and a vertical assignment and impact of this action on further recursive processing
at the nested level.

Definition 3.10 (Correction Intents). Given a set of names for particular intent
types Ω = {correct, insert, delete, repair, rename}, we define a correction
intent to be a tuple I = (id, type, A, L) with the following general structure:

• id ∈ N∗0 is an intent identifier.

• type ∈ Ω is an intent type.

• A = (p, e, vI , vE) is an intent action:

– p is a base node,

– e is a repairing instruction,
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– vI = (sI , qI): sI ∈ N0 is an initial stratum and qI is an initial state,
both together the initial position,

– vE = (sE, qE): sE ∈ N0 is an ending stratum and qE is an ending
state both together the ending position.

• L = (u, C, H, Y ) is an intent assignment:

– u = 〈u1, . . . , uk〉, k ∈ N0 is a sequence of nodes to be processed,

– C is a grammar context to which u should conform,

– H as a sequence of grammar contexts is an optional context chain that
plays a special role in case of the insert intents,

– Y ⊆ Ω is a set of the allowed types for nested correction intents.

Intent action components describe the processing of the current sequence of
sibling nodes. In particular, p is an optional reference to an existing data tree node
(really as an existing node and not just a position) to which the given intent is
associated, e is an optional repairing instruction implementing an intended action
within the sequence (i.e. describing the intended edit operation), and, finally, vI
and vE together represent the current progress of the node sequence processing
and simulation of the automaton traversal.

Intent assignment components describe an impact and restrictions of the in-
tent action on further recursive processing at the nested level. In particular, u is
a sequence of nodes to be processed (usually child nodes of the node p, but not
always), and C a grammar context to be used for this purpose. The remaining
items have rather a technical meaning (but still important), so we will reveal
them a bit later.

Last but not least, intent identifier id enables us to distinguish particular
instances of correction intents among each other. Technically, these identifiers are
implemented as words in N∗0 and characterize the recursive nesting of correction
intents themselves. However, do not confuse these identifiers with positions or
nodes of underlying trees, since they have nothing in common.

The definition itself, however, only provides us with a general structure that
correction intents should in principle follow. In other words, we have just de-
scribe a universal interface of correction intents, which allows us to treat all the
considered horizontal correction actions in a unified way, regardless we are about
to insert a new subtree, remove and existing one, or repair it.

Given a particular data tree T to be corrected with respect to a grammar G,
we now provide a description of all the correction intents that we in particular
(and not any other) derive in order to fulfill this correction goal.

A special position between all the correction intents has the starting correction
intent, the only one of type correct. Its purpose is to initiate the entire correction
of a provided data tree – i.e. to initiate the correction of the root node ε with
respect to the starting grammar context C•.
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Definition 3.11 (Starting Correction Intent). Having a data tree T = (D, lab,
val) and a regular tree grammar G = (N , T , S, P ), we define I• = (id, type, A,
L) to be a starting correction intent, where:

• id = ε.

• type = correct.

• A = ⊥, i.e. is not defined.

• L = (u, C, H, Y ) is an intent assignment:

– u = 〈ε〉 if D is not empty, else u = 〈〉,
– C = C• = (r, NA, PA) is the starting grammar context for G with a

content model r = r• and automaton Ar•,
– H = ⊥,

– Y = Ycorrect = Ω \ {correct}.

Example 3.8. Let us continue with our sample data tree T , grammar G and
already resolved starting grammar context C• from Example 3.7.

Then the starting correction intent is equal to I• = (ε, correct, ⊥, L), where
L = (〈ε〉, C•, ⊥, Ω \ {correct}).

Now we are able to continue and introduce all the remaining types of correc-
tion intents. For a given and already defined correction intent I, the following
definition describes all the recursively nested correction intents which we require
to invoke from I in order to be able to evaluate I itself.

Definition 3.12 (Nesting of Correction Intents). Let T = (D, lab, val) be a data
tree and G = (N , T , S, P ) a regular tree grammar. Next, assume that I = (id,
type, A, L) is an already defined correction intent with an assignment L = (u,
C, H, Y ), node sequence u = 〈u1, . . . uk〉 for some k ∈ N0, grammar context
C = (r, NA, PA), finite automaton Ar = (Q, NA, δ, q0, F ) for r, and, finally,
context chain H = 〈Ct1,n1, . . . , Ctj ,nj〉 for some j ∈ N0.

Given any traversal position v′I = (s′I , q
′
I) with s′I ∈ N0, s′I ≤ k, q′I ∈ Q (i.e.

we are now at an automaton state q′I of Ar and at a position number s′I inside the
processed sequence u), we now define right all the following recursive correction
intents I ′ = (id′, type′, A′, L′) having an intent identifier id′ described at the
very end of this definition, and an intent type type′, action A′ = (p′, e′, v′I , v

′
E)

and assignment L′ = (u′, C ′, H ′, Y ′) defined as follows:

• If insert ∈ Y is allowed, then we define a new nested I ′ for each individual
nonterminal x ∈ NA such that x is permitted right here (i.e. δ(q′I , x) is
defined) and for each active production rule F ′ matching x (i.e. F ′ = [t′, r′

→ n′] ∈ PA where n′ = x) and its terminal t′, but only if the context chain
H does not already contain Ct′,n′ (i.e. ¬∃ i ∈ N, 1 ≤ i ≤ j such that Cti,ni

= Ct′,n′) as follows:

– type′ = insert.

– p′ = ⊥,
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– e′ = addLeaf(t′), and

– v′E = (s′I , δ(q
′
I , x)).

– u′ = 〈〉,
– C ′ = Ct′,n′,
– H ′ = 〈Ct1,n1, . . . , Ctj ,nj , Ct′,n′〉 = H.〈Ct′,n′〉, i.e. H is appended by Ct′,n′,
– Y ′ = Yinsert = {insert}.

• If delete ∈ Y is allowed and we have not already processed the entire
sequence u (i.e. s′I < k), then we define right one new I ′ as follows:

– type′ = delete.

– p′ = us′I+1,

– e′ = removeLeaf, and

– v′E = (s′I + 1, q′I).

– u′ = 〈us′I+1.0, . . . , us′I+1.(fanOut(us′I+1)− 1)〉,
– C ′ = Cε,
– H = ⊥, and

– Y ′ = Ydelete = {delete}.

• If repair ∈ Y is allowed and we have not already processed the entire
sequence u (i.e. s′I < k), then we define a new nested I ′ for each individual
nonterminal x ∈ NA such that x is permitted right here (i.e. δ(q′I , x) is
defined) and for each active production rule F ′ matching x (i.e. F ′ = [t′,
r′ → n′] ∈ PA where n′ = x) and its terminal t′, but only if the label of the
following node us′I+1 is to be preserved (i.e. t′ = lab(us′I+1)) as follows:

– type′ = repair.

– p′ = us′I+1,

– e′ = ⊥, and

– v′E = (s′I + 1, δ(q′I , x)).

– u′ = 〈us′I+1.0, . . . , us′I+1.(fanOut(us′I+1)− 1)〉,
– C ′ = Ct′,n′,
– H = ⊥, and

– Y ′ = Yrepair = Ω \ {correct}.

• If rename ∈ Y is allowed and we have not already processed the entire
sequence u (i.e. s′I < k), then we define a new nested I ′ for each individual
nonterminal x ∈ NA such that x is permitted right here (i.e. δ(q′I , x) is
defined) and for each active production rule F ′ matching x (i.e. F ′ = [t′,
r′ → n′] ∈ PA where n′ = x) and its terminal t′, but only if a new intended
label t′ for the following node us′I+1 is not the same as its current one (i.e.
t′ 6= lab(us′I+1)) as follows:

– type′ = rename.
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– p′ = us′I+1,

– e′ = renameNode(t′), and

– v′E = (s′I + 1, δ(q′I , x)).

– u′ = 〈us′I+1.0, . . . , us′I+1.(fanOut(us′I+1)− 1)〉,
– C ′ = Ct′,n′,
– H = ⊥, and

– Y ′ = Yrename = Ω \ {correct}.

Next, for each of the above considered traversal positions v′I = (s′I , q
′
I), s′I ∈

N0, s′I ≤ k, q′I ∈ Q we define NestedIntents(I, v′I) as a set of all the nested
correction intents invoked by I from v′I , i.e. all I ′ introduced above for v′I .

Then we define NestedIntents(I) as a set of all the nested correction intents
invoked by I regardless a particular position v′I .

Finally, intent identifier id′ of each of the previously introduced nested correc-
tion intent I ′ is defined as id′ = id.a, where a ∈ N0 is a uniquely assigned number
capable of distinguishing all the intents in NestedIntents(I) between each other.

Though having described the allowed nesting of correction intents formally in
the just finished definition, it may be useful to look at correction intents of all
the individual intent types a bit closer and recall or discuss their main features
and consequences right now.

In particular, we first try to describe the objective of such correction intent (i.e.
describe corrections it should produce), then we discuss features and restrictions
of the assignment on the further recursive processing, as well as we discuss changes
of the traversal position the given action causes.

So, suppose we are processing a node sequence u with respect to a grammar
context C, all that within a correction intent I. Being at a traversal position
v′I = (s′I , q

′
I), i.e. having already processed s′I nodes of u and being at an au-

tomaton state q′I , we can derive the following nested correction intents.

We start with intents of the type delete, since their explanation is probably
the most straightforward one. First of all, for a given node us′I+1, there exists
right one such delete correction intent. Its purpose is to completely remove

T ∆us′
I
+1 , i.e. the whole subtree rooted at us′I+1. Since we have processed node

us′I+1 from the sequence u, but we have not decided to use it in the corrected
node sequence we are pursuing to build, the sequence position increases from s′I
by 1, whilst the automaton state remains untouched and equal to q′I .

The final question is, how we actually attain the outlined removal of the whole

subtree T ∆us′
I
+1 . We simply request processing of a sequence u′ of the child nodes

of us′I+1 with respect to the empty grammar context Cε. This ensures that all these
child nodes will be removed recursively, since only other nested delete correction
intents can be invoked according to Y ′ = {delete}. Having removed them, the
last thing to do is to remove us′I+1 itself. This action can now be performed safely,
for us′I+1 certainly must be a leaf node at this moment. For this purpose, the
repairing instruction removeLeaf is prepared, being implicitly bound to us′I+1 as
a particular node from the original data tree T .
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Now we focus on correction intents of types repair and rename. They are very
similar and analogous to each other, so we can discuss both of them together.
Their purpose is to take the existing node us′I+1, preserve it, and recursively

process its subtree T ∆us′
I
+1 using any intent types except the create one.

Being at the traversal position v′I = (s′I , q
′
I), for each possible pair of a non-

terminal x (such that x ∈ NA is allowed here and δ(q′I , x) is defined as well) and
terminal t′ (such that there is an active production rule F ′ = [t′, r′ → x] ∈ PA
that matches the given nonterminal x) we create right one nested correction in-
tent I ′. If t′ equals to the current label of us′I+1, we choose the repair type and
we simply preserve this label. Otherwise we choose the rename type and via a
prepared repairing instruction renameNode(t′) we change the label of us′I+1 to t′.

For we have considered the node us′I+1 from the processed sequence u and we
have decided to preserve it, the sequence position increases from s′I by 1, and the
automaton state is changed accordingly to δ(q′I , x).

Also note that each of the nested intents I ′ may generally represent more
corrected data trees, so there is not just one possible solution as there was in case
of the delete intents.

Finally, let us discuss the insert intent type. Its purpose is to insert a new
subtree right at the current sequence position. Similarly to the both previous
intent types, we once again create one nested correction intent I ′ for each of the
allowed pairs of a nonterminal x and terminal t′ symbols.

Before the insertion of such data tree can happen, we first must insert its root
node, i.e. to apply the prepared addLeaf(t′) repairing instruction. Only then its
child nodes (if any) can recursively be added as well. For this purpose we request
processing of an empty sequence u′ with respect to a given grammar context Ct′,x,
and allow the usage of additional nested intents only of the insert type. As a
consequence, this approach ensures that all the minimal data trees are found.

At the base level, since we have not processed any node from u, but we have
considered a newly inserted node into a corrected sequence we are building, the
sequence u traversal position does not change at all, whereas the automaton state
is changed accordingly to δ(q′I , x).

The only difficulty with insert correction intents is that they generate entirely
new nodes, while all the other types of correction intents only work with the
existing ones (either by deleting them, renaming or leaving them untouched). So,
we must further discuss how the recursive processing is terminated at the bottom
in order to avoid generation of potentially infinite data trees.

Although nonterminal symbols (or more complicated subexpressions) that are
wrapped by the iteration operator ∗ in content models r can unfold to any number
of repetitions, they do not cause any difficulties at this moment. On the other
hand, recursive grammars (i.e. grammars with recursive production rules like the
one in Example 2.8 because of an allowed nesting via a nonterminal B) calls for
an attention now.

Fortunately enough we consider only grammars that are consistent, and so
the recursive nesting of rules has to always be just an optional alternative (via
the mentioned iteration operator ∗, or via the choice operator | as well), not
something that is forced. Otherwise we would not be able to stop and generate
a finite data tree at all. And since our cost functions require costs to be positive,
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it is always cheaper to avoid such optional recursion at all.
Precisely in this sense we have introduced the last component of correction

intents, that is a context chain. Once we decide to insert a new node with a
given grammar context, we forbid this context to be used once again anywhere
within the further processing of the nested correction intents. As a consequence,
we ensure that the algorithm can never fall into an infinite loop, though we do
not affect which corrected data trees we are able to find at all.

Finishing the description of all the recursive types of correction intents, we
shortly explain the purpose of intent identifiers as well.

Having a particular correction intent I, then all its nested correction intents
are different structures – and they are different even when we ignore values of
their intent identifiers. It means that NestedIntents(I) as a set really contains
all the nested intents we introduced, and it would also contain them even if the
intent structure itself did not involve such intent identifiers. Unfortunately, this
natural distinguishing ability works only locally – not among correction intents
that do not share the same parental intent.

Assume now we are given a data tree T to be corrected with respect to a
grammar G. Then let I0 = {I•} be a set containing the starting correction intent
only, and inductively for each i ∈ N let Ii =

⋃
I∈Ii−1

NestedIntents(I) be a set
of all the correction intents invoked at the recursion depth i.

Then we can define CreatedIntents(T ,G) =
⋃
i∈N0

Ii to be a set of all the
correction intents created during the whole process of the correction of data tree
T according to grammar G.

Note that without the artificially added intent identifiers (or another similar
mechanism), such definition would not be possible at all. And so this is the
reason, why we had to use them.

Just to illustrate at least a bit how the nested correction intents are derived
in practice, let us continue with the following example.

Example 3.9. Assume we want to process child nodes of the root node from our
data tree T . Suppose also that we have previously decided to preserve its label a,
so the associated nonterminal is equal to A – and so we now want to process a
sequence u = 〈0, 1, 2〉 under the grammar context Ca,A, i.e. we want this sequence
to match a regular expression r = C.DA

∗ recognized by Ar.
Let I denote this correction intent. Then, the assignment of I is illustrated

in Figure 3.4.
Now, assume we want to inspect all the possibilities at a traversal position

(0, 0) when processing I. There we have the following three options to consider.
We can attempt to insert a new node with label c via I1, delete node 0 with label
x via I2 or rename it to c via I3:

I1 = (0, insert, A1, L1) where
A1 = (⊥, addLeaf(c), (0, 0), (0, 1)) and
L1 = (〈〉, Cc,C, 〈Cc,C〉, {insert}).

I2 = (1, delete, A2, L2) where
A2 = (0, removeLeaf, (0, 0), (1, 0)) and
L2 = (〈0.0〉, Cε, ⊥, {delete}).
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I3 = (2, rename, A3, L3) where
A3 = (0, renameNode(c), (0, 0), (1, 1)) and
L3 = (〈0.0〉, Cc,C, ⊥, Ω \ {correct}).

All these three correction intents form a set NestedIntents(I, (0, 0)).

Figure 3.4: Assignment of correction intent I for Ca,A and ε from T

Before we finally end this section and move toward other components of our
correction model, it might be useful to summarize several features and important
observations about correction intents as such.

From the logical point of view, correction intents allows us to split the problem
of a data tree T correction into a set of subproblems, i.e. recursively nested
correction intents dealing with problems that are easier to figure out. It means
that when we are about to evaluate a particular correction intent I, we only need
to invoke all NestedIntents(I) and appropriately use results we acquire from
their evaluation in order to figure out solution for the intent I itself.

The first important feature of correction intents, as we have designed them, is
that they allow us to conduct the correction of an entire data tree in a unified way,
i.e. regardless we are processing the existing data tree nodes or generating new
ones, the interface, behavior and internal principles of correction intents remain
exactly the same.

When we recall the definition of correction intents, being at a particular
traversal position v′I = (s′I , q

′
I), we always derive the nested correction intents

NestedIntents(I, v′I) exactly according to the transition function δ of the corre-
sponding automaton Ar for a regular expression r – it means δ(q′I , x) in particular
for any of the allowed nonterminal symbols x ∈ NA. Note that we do not use
any specific features that would be guaranteed only by the Glushkov automata
and the way they are constructed. As a consequence, we could use any other
finite automaton capable of recognizing r, and the correction model would still
be working without any modification required.

Moreover, we could also extend the model in a way that it would support
nondeterministic finite automata as well. If the transition function δ of the de-
terministic automata is defined as a partial function Q × Σ → Q, in case of the
nondeterministic ones it would be defined as Q × Σ → P(Q). This means that
for a given traversal position v′I = (s′I , q

′
I) and an allowed nonterminal symbol

x ∈ NA, the transition δ(q′I , x) can lead to an arbitrary number of states – none
in case δ(q′I , x) = ∅, right one when |δ(q′I , x)| = 1, but even more than just 1 on
the contrary to deterministic automata.
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When we take these states into account and consider creating the nested
intents for each and every one of them separately, the model immediately allows
us to work even with nondeterministic finite automata. And as a consequence,
with all regular expressions, not just those that are 1-unambiguous.

It is also worth of noting that we handle all nodes of the original data tree
in the same way, regardless they are locally valid or not. In other words, the
correction algorithm does not check the validity at first – and only if it was
violated, it would invoke the correction procedures – instead, we traverse and
correct the data tree directly and uniformly in all circumstances.

Next, we also do not modify original data trees in any way during the phase
of processing of the correction intents – the algorithm just reads them, and so
all the implicit bindings of repairing instructions to the existing data tree nodes
remain untouched as well. Once the entire correction is completed, the corrected
data trees can be obtained by unfolding the intent repair structure resulting from
the starting correction intent I•, as we have also already sketched.

Last but not least, though the definition of the allowed nesting of correction
intents intrinsically determines how the provided edit operations are harnessed,
and so how the resulting corrected data trees will look like, it is another question
how the nested correction intents are actually explored, invoked and combined to-
gether. And yet another question would be, how to conduct this intent evaluation
process efficiently enough.

3.4 Correction Multigraphs

The correction of a provided data tree T starts with the starting correction intent
I• and recursively continues towards leaves by invoking other nested correction
intents. However, we have still not yet described how to actually turn all these
correction intents into life.

3.4.1 Correction Multigraphs

Assume that we now want to evaluate a particular correction intent I, i.e. to
create its intent repair structure RI that should represent all the minimal correc-
tions of a node sequence u = 〈u1, . . . , uk〉 from the assignment of I with respect
to a grammar context C.

Since the recursive nesting of intents must always reach its bottom, we can
also suppose that all intents I ′ invoked both directly and indirectly from I are
at this moment already evaluated and we are provided with the corresponding
intent repair structures RI′ for each such nested I ′, despite we still cannot fully
reveal their definition. In other words, we can assume that we are provided with
solutions of all the subproblems we identified in order to figure out the problem
itself, i.e. to evaluate I.

The only thing we need to know about these nested repairs RI′ is that each
of them is associated with an overall correction cost – the cost of acquiring all
the corrected data trees it represents, i.e. the cost of all the edit sequences it
encodes, even though expressed by repairing instructions.
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The basic way of finding corrections of sequence u would be to dynamically
traverse and inspect the state space of the corresponding automaton Ar – dy-
namically generating new suitable corrected sequences one by one, step by step,
both to the width and depth.

In terms of our correction intents, we would only need to compose and mu-
tually connect the nested correction intents into sequences via the corresponding
traversal positions – starting at the automaton initial state and before u, then
considering all the possibilities at each particular traversal position – and simply
moving there and back again, while node by node generating and revealing all
the possible corrected sequences one by one.

However, this approach would not be efficient enough. Therefore, we decided
to implement another idea instead. That is to put all the nested correction intents
together into a structure we call a correction multigraph, bind them to each other
by the corresponding traversal positions once again, but represent all the sequence
u correction possibilities statically this way.

So, let us provide a formal definition of this correction multigraph structure.

Definition 3.13 (Correction Multigraph). Let T be a data tree, G a grammar,
and I = (id, type, A, L) a correction intent with an assignment L = (u, C, H,
Y ), node sequence u = 〈u1, . . . , uk〉 and finite automaton Ar = (Q, NA, δ, q0,
F ) for r from grammar context C.

We define a correction multigraph to be a tupleMI = (V , E, vS, VT ), where:

• (V , E) is a directed multigraph:

– V = {(s, q) | s ∈ N0, 0 ≤ s ≤ k and q ∈ Q} is a set of vertices, where:

· s is a stratum number, and

· q is an automaton state within stratum s.

– E = {(v1, v2, I ′, RI′) | both v1 and v2 ∈ V , I ′ ∈ NestedIntents(I),
I ′ = (id′, type′, A′, L′), A′ = (p′, e′, v′I , v

′
E) such that v1 = v′I , v2 = v′E

and RI′ is an intent repair for I ′} is a set of edges, where:

· v1 is an initial vertex,

· v2 is a ending vertex,

· I ′ is the associated nested correction intent, and

· RI′ is the intent repair for I ′.

• vS = (0, q0) is the source vertex, vS ∈ V .

• VT = {vT | vT = (k, qT ), qT ∈ F} is a set of the target vertices.

Finally, for each vertex v ∈ V we define Ein
v = {e | e ∈ E, e = (v1, v2, I ′,

RI′) and v2 = v} as a set of ingoing edges to v, and analogously Eout
v = {e |

e ∈ E, e = (v1, v2, I ′, RI′) and v1 = v} as a set of outgoing edges from v.

We first shortly describe the structure of a correction multigraph. It is worth
noting that it is really a multigraph and not just an ordinary graph – because
there can be loops (edges that are starting and ending at the same vertex) as well
as multiple edges between the same pair of vertices.
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Multigraph vertices as such directly correspond to traversal positions. We can
easily divide them into strata – disjoint sets of vertices according to a number of
already considered nodes from u, i.e. a sequence u traversing position. Vertices
inside each stratum cover all the automaton Ar states. Edges, on the other hand,
directly correspond to all the invoked nested correction intents.

Suppose now that we have a particular multigraph edge (v1, v2, I ′, RI′) with
v1 = (s1, q1), v2 = (s2, q2), and that I ′ = (id′, type′, A′, L′) is its associated nested
correction intent with an assignment L′ = (u′, C ′, H ′, Y ′). Then we can reference
this particular edge in a more convenient way by adopting the following naming
convention.

In case type′ = delete we can write edeletes1,q1→s2,q2 , and in case of all the remaining

recursive intent types etype
′:t,n

s1,q1→s2,q2 where t and n correspond to C ′ = Ct,n. Note that
we do not need to treat the correct intent type, as it can never appear as an edge
in any correction multigraph. Also note that this naming convention is defined
correctly, i.e. these names are capable of identifying all the edges within MI
without conflicts.

Figure 3.5: Correction multigraph MI

Example 3.10. Let us continue with Example 3.9, i.e. we want to correct a
sequence u = 〈0, 1, 2〉 of our data tree T with respect to Ca,A with r = C.DA

∗.
In that example we have also described all the nested correction intents I1, I2

and I3 invoked at a traversal position (0, 0). These and all the other remaining
intents invoked by I are the subject of this example, though we are not going to
enumerate all of them.

The corresponding correction multigraph MI for I is depicted in Figure 3.5.
It has 4 strata (numbered from 0 to 3, exactly according to the length of u), each
of which is formed by all the states of automaton Ar, i.e. {0, 1, 2}.
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To reference edges, we could afford to use even a more simplified convention
in this case, since our grammar G is just a single type tree grammar, and so using
of only a terminal symbol is sufficient for the identification too. Edges themselves
are accompanied by their costs in square tags, i.e. correction costs of the intent
repairs they are associated with.

Finally, the correction multigraph MI = (V , E, vS, VT ) as such:

• V = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), . . . , (3, 1), (3, 2)} is a set of vertices,

• E = {((0, 0), (0, 1), I1, RI1), ((0, 0), (1, 0), I2, RI2), ((0, 0), (1, 1), I3,
RI3), . . . } = {einsert:c,C

0,0→0,1 , edelete0,0→1,0, erename:c,C
0,0→1,1 , . . . } is a set of edges,

• vS = (0, 0) is the source vertex, and

• VT = {(3, 1), (3, 2)} a set of the target vertices.

Apparently, a correction multigraph MI for a correction intent I is just an-
other representation of all the nested intents in NestedIntents(I).

In the following example, we shortly outline how the situation looks like in
case of the sample data tree root node correction.

Figure 3.6: Correction multigraph MI•

Example 3.11. Analogously to the previous example, correction multigraphMI•
for the starting correction intent I• is depicted in Figure 3.6.

3.4.2 Correction Paths

The purpose of the correction multigraph is to represent all the possible cor-
rections for a given sequence u of sibling nodes. However, how can we obtain
these corrections? The answer is simple – we just need to focus on paths in this
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multigraph – paths starting at the source vertex vS and ending at any of the
target vertices VT – i.e. paths starting at stratum 0 (before the entire u) at the
automaton initial state q0 and ending at the last stratum (having the entire u pro-
cessed) at any of the automaton accepting states F (thus producing a sequence
conforming to a given regular expression r).

So, let us now describe these paths formally. We start with paths in correction
multigraphs in general. Then we define, which of these paths are the correction
paths. Finally, which correction paths are the shortest correction paths – for we
are interested in finding right the minimal corrections only.

Definition 3.14 (Correction Paths). Let MI = (V , E, vS, VT ) be a correction
multigraph. Given x, y ∈ V , we define a path from x to y to be a sequence px,y
= 〈e1, . . . , en〉 of edges with length n ∈ N0 such that:

• Let first ∀ k ∈ N, 1 ≤ k ≤ n: ek = (vk1 , vk2 , Ik, Rk
Ik), ek ∈ E and ck is an

overall cost of Rk
Ik .

• If n > 0, then we require that v1
1 = x and vn2 = y; if n = 0, then x = y.

Next, ∀ k ∈ N, 1 ≤ k < n: vk2 = vk+1
1 , i.e. edges are incident to each other.

• ¬∃ j, k ∈ N, 1 ≤ j < k ≤ n: vj1 = vk1 or vj2 = vk2 or vj1 = vj2, i.e. vertices
do not repeat within a path.

Given a vertex v ∈ V , we say that v ∈ px,y, if ∃ k ∈ N, 1 ≤ k ≤ n such that
v = vk1 or v = vk2 . If px,y = 〈〉, then we put both x, y ∈ px,y. Analogously, given
an edge e ∈ E, we say that e ∈ px,y, if ∃ k ∈ N, 1 ≤ k ≤ n such that e = ek.

We say that path px,y is a correction path, if is starts at the source vertex (i.e.
x = vS) and ends at any of the target vertices (i.e. y ∈ VT ).

Finally, the cost of path px,y is defined as cost(px,y) =
∑n

k=1 c
k, i.e. as a sum

of the costs of associated intent repairs on all the edges involved in the path.

Note that the requirement on multigraph paths to be simple (i.e. that their
vertices and, therefore, neither edges) might seem to be too strong. After all,
certain multigraph walks from the source vertex to the target vertices could also
potentially represent suitable corrections. However, we are searching for the
minimal corrections only. And since we assumed that costs of edit operations
are positive, we can focus on simple paths only without loss of any potential
corrections.

The purpose of the following definition is to introduce the shortest paths
within our correction multigraphs.

Definition 3.15 (Shortest Paths). Let MI = (V , E, vS, VT ) be a correction
multigraph, and px,y = 〈e1, . . . , en〉 a path of length n ∈ N0 from a vertex x ∈ V
to a vertex y ∈ V .

We say that px,y is the shortest path, if and only if ¬∃ p′x,y such that it would
have a lower cost, i.e. such that cost(p′x,y) < cost(px,y).

Next, by Px,y we denote a set of all the paths from x to y, by Pmin
x,y a set of all

the shortest paths from x to y, and by cost(Pmin
x,y ) a cost of some (any) path in

Pmin
x,y .

Finally, given a nonempty set of vertices Z ⊆ V , let m = minz∈Z cost(P
min
x,z )

be a minimal cost over all the shortest paths to all vertices from Z. Then we define
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Pmin
x,Z = {p | ∃ z ∈ Z, p ∈ Pmin

x,z and cost(p) = m} as a set of all the shortest
paths from x ending somewhere in Z and having this minimal cost. Without any
surprise, cost(Pmin

x,Z ) = m.

As an apparent consequence of our definition, there may generally exist more
shortest paths between the given pair of vertices and not just one, yet we decided
to use a term shortest and not minimal.

Figure 3.7: Shortest correction paths Pmin
vS ,VT

in multigraph MI

Example 3.12. The shortest paths in correction multigraph MI = (V , E, vS,
VT ) from Example 3.10 are highlighted in Figure 3.7. They are:

p1 = 〈einsert:c,C
0,0→0,1 , erename:d,DA

0,1→1,2 , erepair:d,DA

1,2→2,2 , erepair:d,DA

2,2→3,2 〉, and

p2 = 〈erename:c,C
0,0→1,1 , erepair:d,DA

1,1→2,2 , erepair:d,DA

2,2→3,2 〉.

In other words, Pmin
vS ,VT

= {p1, p2}. The cost of each of these paths is equal to 3.
Last but not least, notice that both these paths end at the accepting state 2 at the
last stratum, none of them at state 1.

In the previous example we have just highlighted that we did not use all the
target vertices VT . Notice that it is correct, for we are really interested only in
the minimal cost minvT∈VT cost(P

min
vS ,vT

) over all the target vertices, and so Pmin
vS ,VT

,
not the shortest paths to each and every one of them separately.

Example 3.13. Analogously, the shortest paths in the correction multigraphMI•
for the starting correction intent I• are depicted in Figure 3.8.

On the contrary to the previous example and the multigraph MI, here, all the
target vertices of MI• are involved in the shortest correction paths.

One of the fundamental questions we could ask is whether there always exists
at least one shortest correction path in Pmin

vS ,VT
. The answer is yes because we

assumed only consistent grammars where all the reachable production rules are
not useless. In case of grammars that are inconsistent or contain useless reachable
rules, there may exist correction multigraphs with no shortest correction paths.
And though it is generally possible to detect such types of grammars as explained
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Figure 3.8: Shortest correction paths Pmin
vS ,VT

in multigraph MI•

by Lu et al. [54], it is not necessary to do so explicitly, because our model can
be extended in a way that it becomes capable of detecting and handling such
grammars inherently as well.

First, whenever none of the target vertices is reachable in a correction multi-
graph MI′ for a particular correction intent I ′, it means whenever Pmin

vS ,VT
= ∅,

then the intent repair for such I ′ becomes undefined, i.e. RI′ = ⊥. Second,
whenever a correction intent I requests a nested intent I ′ ∈ NestedIntents(I)
such that RI′ = ⊥, then the corresponding edge for I ′ in a correction multigraph
MI is not considered when searching for the shortest correction paths.

When these two measures are adopted, i.e. when the nonexistence of the
shortest correction paths is detected on one hand and edges for nested intents
with undefined repairs are ignored, the model starts to support even inconsistent
grammars or grammars with reachable useless production rules, i.e. all the regular
tree grammars without any additional assumptions.

However, in order to make the definitions and algorithms easier to describe,
we decided to preserve our original assumption in the further text, yet only for
technical reasons as explained.

Now we focus on another, more practical problem. First of all, having a given
correction multigraph constructed and its nested intents evaluated, we need to
be able to find such shortest correction paths. And once we have them, we would
also appreciate if we were able to represent them efficiently as well. It means on
top of a correction multigraph structure, and not as a set of enumerated paths
with unfolded edges as we have defined Pmin

vS ,VT
.

Fortunately enough, the following pair of tracing functions enables us to deal
with both these tasks.

Definition 3.16 (Path Tracing Functions). Let MI = (V , E, vS, VT ) be a
correction multigraph for a correction intent I. We define the following two
tracing functions for MI:

• pDistance is a function V → R+
0 ∪ {⊥} that assigns to each v ∈ V its

distance from the source vertex vS, i.e. pDistance(v) = cost(Pmin
vS ,v

). In
case there is no path between the source vertex vS and v, i.e. Pmin

vS ,v
= ∅, we

put pDistance(v) = ⊥.
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• pPredecessors is a function V → P(E) that assigns to each v ∈ V a set
of all edges ingoing to v that are involved in the shortest paths Pmin

vS ,v
to this

v, i.e. pPredecessors(v) =
⋃
p∈Pmin

vS,v , p=〈e1,...,en〉, n∈N0, n>0{en}.

How to use these two tracing functions to actually obtain Pmin
vS ,VT

? First, let
unfold(vS) = {〈〉} for the source vertex vS. Then for any other v ∈ V , v 6= vS
inductively unfold(v) =

⋃
e∈pPredecessors(v), e=(v1,v,I,RI){p.〈e〉 | p ∈ unfold(v1)}, for

which we introduce a shorter notation
⋃
e∈pPredecessors(v), e=(v1,v,I,RI) unfold(v1).〈e〉

with the equivalent meaning. As a consequence, unfold(v) = Pmin
vS ,v

.
Assuming that V A

T = {vT | vT ∈ VT such that cost(Pmin
vS ,vT

) = cost(Pmin
vS ,VT

)} is
a set of all the target vertices that are involved in the shortest correction paths
to VT , and paths = (pDistance, pPredecessors) encapsulates both the tracing
functions, we define unfold(paths) =

⋃
vT∈V A

T
unfold(vT ). As a consequence,

unfold(paths) = Pmin
vS ,VT

, which was exactly our goal.

Example 3.14. To illustrate how unfolding of the tracing functions pDistance
and pPredecessors work in practice, let us return to the shortest correction paths
Pmin
vS ,VT

= {p1, p2} for MI we identified in the previous example.
However, to make this example shorter, we only focus on those vertices of

MI, about which we already know that they are involved in Pmin
vS ,VT

. So, we have:

pDistance((0, 0)) = 0, pPredecessors((0, 0)) = {}.
pDistance((0, 1)) = 1, pPredecessors((0, 1)) = {einsert:c,C

0,0→0,1 }.
pDistance((1, 1)) = 2, pPredecessors((1, 1)) = {erename:c,C

0,0→1,1 }.
pDistance((1, 2)) = 2, pPredecessors((1, 2)) = {erename:d,DA

0,1→1,2 }.
pDistance((2, 2)) = 2, pPredecessors((2, 2)) = {erepair:d,DA

1,2→2,2 , erepair:d,DA

1,1→2,2 }.
pDistance((3, 2)) = 3, pPredecessors((3, 2)) = {erepair:d,DA

2,2→3,2 }.
Then for all the considered vertices we evaluate the unfold function as follows:

unfold((0, 0)) = {〈〉}.
unfold((0, 1)) = unfold((0, 0)).〈einsert:c,C

0,0→0,1 〉 = {〈〉}.〈einsert:c,C
0,0→0,1 〉 =

{〈einsert:c,C
0,0→0,1 〉}.

unfold((1, 1)) = unfold((0, 0)).〈erename:c,C
0,0→1,1 〉 = {〈〉}.〈erename:c,C

0,0→1,1 〉 =

{〈erename:c,C
0,0→1,1 〉}.

unfold((1, 2)) = unfold((0, 1)).〈erename:d,DA
0,1→1,2 〉 = {〈einsert:c,C

0,0→0,1 〉}.〈e
rename:d,DA
0,1→1,2 〉 =

{〈einsert:c,C
0,0→0,1 , erename:d,DA

0,1→1,2 〉}.

unfold((2, 2)) = unfold((1, 2)).〈erepair:d,DA

1,2→2,2 〉 ∪ unfold((1, 1)).〈erepair:d,DA

1,1→2,2 〉 =

{〈einsert:c,C
0,0→0,1 , erename:d,DA

0,1→1,2 〉}.〈erepair:d,DA

1,2→2,2 〉 ∪ {〈erename:c,C
0,0→1,1 〉}.〈e

repair:d,DA

1,1→2,2 〉 =

{〈einsert:c,C
0,0→0,1 , erename:d,DA

0,1→1,2 , erepair:d,DA

1,2→2,2 〉} ∪ {〈erename:c,C
0,0→1,1 , erepair:d,DA

1,1→2,2 〉} =

{〈einsert:c,C
0,0→0,1 , erename:d,DA

0,1→1,2 , erepair:d,DA

1,2→2,2 〉, 〈erename:c,C
0,0→1,1 , erepair:d,DA

1,1→2,2 〉}.

unfold((3, 2)) = unfold((2, 2)).〈erepair:d,DA

2,2→3,2 〉 = . . . = {p1, p2} for:

p1 = 〈einsert:c,C
0,0→0,1 , erename:d,DA

0,1→1,2 , erepair:d,DA

1,2→2,2 , erepair:d,DA

2,2→3,2 〉, and

p2 = 〈erename:c,C
0,0→1,1 , erepair:d,DA

1,1→2,2 , erepair:d,DA

2,2→3,2 〉.
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Finally, since we know that V A
T = {(3, 2)} is a set of all the involved target

vertices, we can finally write that:

unfold(paths) = unfold((3, 2)) = {p1, p2} = Pmin
vS ,VT

.

At this moment we have successfully introduced correction multigraphs as
well as shortest correction paths within them, hence we are provided with all
the notions we need to be able to transform the problem of evaluating correction
intents into the problem of finding shortest paths.

In particular, given a correction intent I together with its correction multi-
graphMI = (V , E, vS, VT ), we only need to find all the shortest correction paths
from the source vertex vS to any of the target vertices VT , i.e. to acquire Pmin

vS ,VT
.

And though this problem of searching for the shortest paths might seem to be
a simple one, we actually need to dedicate the whole following chapter to discuss,
how the traditional path searching algorithms can in particular be utilized in our
correction model to really be able to search for the correction paths efficiently
enough.

Therefore, we first finish the description of the model itself, and return to the
correction algorithms themselves later on.

3.5 Intent Repairs

In this section we describe the last fundamental notion of the correction model
we proposed. In particular, we first provide a definition of an intent repair struc-
ture and components it comprises of, and then we demonstrate how this intent
repair structure can be unfolded to obtain the sequences of edit operations we
are searching for.

3.5.1 Repair Structures

After the correction multigraphMI for intent I is constructed, its nested correc-
tion intents evaluated and all the shortest correction paths Pmin

vS ,VT
explored, we

can compactly store them in a structure we call a sequence repair.

Definition 3.17 (Sequence Repair). Given an intent I and its correction multi-
graph MI = (V , E, vS, VT ) with a set Pmin

vS ,VT
of all the shortest correction paths

represented by pDistance and pPredecessors functions, we define a sequence
repair for I to be a tuple NI = (V ′, E ′, vS, VT , paths, c), where:

• (V ′, E ′) is a subgraph of (V , E) such that:

– V ′ = {v | v ∈ V , ∃ p ∈ Pmin
vS ,VT

, v ∈ p},
– E ′ = {e | e ∈ E, ∃ p ∈ Pmin

vS ,VT
, e ∈ p};

• paths = (pDistance, pPredecessors) such that unfold(paths) = Pmin
vS ,VT

;

• c = cost(Pmin
vS ,VT

).

The idea behind a sequence repair NI is simple. We need to preserve relevant
parts of the correction multigraphMI , i.e. those parts (vertices and edges) that
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are directly involved in the shortest correction paths Pmin
vS ,VT

. Other parts of the
multigraph can be (but may not be) pruned and thrown away.

Note that we actually only need to have a reasonably efficient access to the
shortest correction paths – as sequences of edges as they were defined – and not
because of the intent evaluation itself, but because of the intent repair translation
that does not need to happen at all.

Example 3.15. Continuing with Example 3.12 and the correction mutligraph
MI for I with the already resolved shortest correction paths Pmin

vS ,VT
= {p1, p2},

we can derive the sequence repair NI = (V ′, E ′, vS, VT , paths, c) as follows:

• V ′ = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (3, 2)} is a set of involved vertices,

• E ′ = {einsert:c,C
0,0→0,1 , erename:d,DA

0,1→1,2 , erepair:d,DA

1,2→2,2 , erepair:d,DA

2,2→3,2 , erename:c,C
0,0→1,1 , erepair:d,DA

1,1→2,2 }
a set of involved edges, and

• c = 3 as the correction cost.

Both the tracing functions pDistance and pPredecessors were discussed as
well in Example 3.14 – even though just partly right there, actually right in the
extent covered by the shortest correction paths themselves.

Having constructed a sequence repair NI to represent all the possible correc-
tions of a node sequence u from I, we are finally able to define an intent repair
structure.

Its purpose is to encapsulate the discussed sequence repair (that results from
the evaluation of the intent assignment of I) together with an optional repairing
instruction (that is prepared in the intent action of I from the very beginning) –
to represent all the possible corrections of the entire correction intent I.

Definition 3.18 (Intent Repair). Let NI = (V , E, vS, VT , paths, c) be a se-
quence repair for a correction intent I = (id, type, A, L) with an intent action
A = (p, e, vI , vE). An intent repair for I is a tuple RI = (e, NI, cost), where:

• e is an optional repairing instruction,

• NI is the sequence repair for I,

• cost = cost(e) + c is the overall correction cost; in case the repairing in-
struction e is not defined, we assume that cost(e) = 0.

A correction multigraph at the bottom of the recursive nesting of correction
intents has no edges outgoing from its source vertex and this source vertex is
also one of the target vertices at the same time, so there exists right one shortest
path, i.e. a path with no edges and of a cost equal to 0.

Such empty path can easily be encapsulated to a given sequence repair and
then also to an intent repair. Therefore, the recursive nesting of intent repair
structures as such is defined correctly.

Example 3.16. Having the correction intent I from Example 3.9 and its sequence
repair NI from Example 3.15, we can now derive the intent repair RI for I and
obtain RI = (⊥, NI, 3).
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Now we are finally ready to clarify the mutual relationship of the most essential
notions we have so far discussed in this chapter.

Whereas correction intents describe problems to be figured out using other
nested correction intents as easier subproblems. Correction multigraphs, on the
other hand, are structures that allow us to evaluate assignments of such correc-
tion intents effectively by transforming the problem of finding all the minimal
corrected data trees to the problem of finding the shortest correction paths. In-
tent repairs, finally, represent recursively nested structures that allow us to store
results of the entire intent evaluation process in a compact way.

However, we still have not yet answered one final question. That is, how
to actually obtain the required sequences of edit operations from the evaluated
intent repairs.

3.5.2 Translation of Repairs

The correction model is based on edit operations through which we are able to
transform invalid data trees into valid ones. On the other hand, intent repairs
are complex recursively nested structures that are based on pruned correction
multigraphs and repairing instructions with not yet explicitly resolved bindings
to data tree nodes.

The aim of the following text is to describe, how these intent repairs can be
translated into particular sequences of edit operations, so that we obtain all the
valid corrected data trees we are searching for from the very beginning.

The idea of this translation process is straightforward. And if we realize that
correction intents, correction multigraphs and intent repairs are all recursively
nested, there should be nothing strange on introducing this translation inductively
as well.

So, we first describe how to translate a repairing instruction into a standalone
edit operation. Then we discuss how to unfold a sequence repair into sequences of
edit operations. Finally we need to discuss the translation of a whole intent repair
itself. For this purpose we only need to learn how to combine the translation of
a repairing instruction from the intent action together with a translation of a
sequence repair resulting from the evaluation of the intent assignment.

We start with the translation of repairing instructions.

Definition 3.19 (Repairing Instruction Translation). Given a repairing instruc-
tion e, we define its translation to an edit operation fix(e) as follows:

• If e = addLeaf(a) for some a ∈ E ∪ {data}, then fix(e) = addLeaf(0, a).

• If e = removeLeaf, then fix(e) = removeLeaf(0).

• If e = renameNode(a), then fix(e) = renameNode(0, a).

Note that the position parameters assigned during the translation of repair-
ing instructions are just tentative – their final values will be fully resolved and
adjusted later on.
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For this purpose we need three auxiliary functions using which we can achieve
such modifications. So, let us now introduce them.

Given a node u ∈ N∗0 and a constant c ∈ N0, we define modPrepend(u, c) =
c.u as a function that prepends a new first symbol c to u. If u 6= ε, u = i.v for
some i ∈ N0 and v ∈ N∗0, then we define modShiftRight(i.v, c) = (i + c).v as
a function that shifts u at its first symbol by c to the right. Finally we define
modCut(i.v) = v as a function that truncates the first symbol from u.

All these functions have just been defined over node positions, but we can
easily extend their definition on edit operations (we apply the given function on
a position parameter of a given edit operation), sequences of edit operations (we
apply the given function on all edit operations contained in a given sequence),
and sets of sequences of edit operations as well (we apply the given function on
all sequences in a given set).

Example 3.17. First of all, let us look at a few simple examples of behavior of
these auxiliary functions on node positions:

modPrepend(2.1, 0) = 0.2.1,
modShiftRight(2.1, 1) = 3.1 and
modCut(2.1) = 1.

Next, using the introduced extensions of these basic functions, we can, for
example, write that:

modPrepend({〈removeLeaf(3.1)〉}, 0)
= {modPrepend(〈removeLeaf(3.1)〉, 0)}
= {〈modPrepend(removeLeaf(3.1), 0)〉}
= {〈removeLeaf(modPrepend(3.1, 0))〉}
= {〈removeLeaf(0.3.1)〉}.

Now, we focus on the translation of sequence repairs. For this purpose we have
to process each shortest path separately by fetching, adjusting and combining
edit sequences representing corrections of the nested intent repairs on their edges
(though we do not know how to construct them yet).

Definition 3.20 (Correction Path Translation). Let p = 〈e1, . . . , em〉 for some
m ∈ N0 be a path in a correction multigraph MI = (V , E, vS, VT ) or a sequence
repair NI = (V ′, E ′, vS, VT , paths, c) for a correction intent I.

Let furthermore ∀ i ∈ N, 1 ≤ i ≤ m, ei = (vi1, vi2, I i, RIi), ci be the correction
cost of RIi, ti ∈ Ω be a type of I i, and last but not least fix(RIi) be the already
resolved translation of the intent repair RIi.

Then starting with a0
p = 0, we successively process all the edges of p and put

for each corresponding i ∈ {1, . . . ,m}:

• X i
p = modShiftRight(fix(RIi), ai−1),

• aip = ai−1
p + 1 for ti ∈ {insert, repair, rename}, and

aip = ai−1
p + 0 for ti ∈ {delete}.

Having evaluated all X i
p, we define a correction path translation for p as

fix(p) = {〈x1
p, x

2
p, . . . , x

m
p 〉 | ∀ i ∈ N, 1 ≤ i ≤ m, xip ∈ X i

p}.
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The idea of the translation of correction paths is straightforward. We iterate
over its edges, fetch the translations fix(RIi) of the nested intent repairsRIi , and
adjust the position parameters of all the edit operations they contain accordingly,
while putting them into X i

p. To perform these adjustments correctly, we only
need to be aware of the overall number of nodes we involved in the corrected
node sequence we are producing at this level, i.e. to increment aip appropriately
depending on types ti of the nested intents.

Once all X i
p are resolved, we just consider all the possible combinations of edit

sequences they contain to finally form the required path translation fix(p). This
is necessary, since each edge may generally represent more possible corrections, i.e.
each fix(RIi) may contain more possible edit sequences, and we must consider
all of them independently with respect to all the remaining edges.

Note that the path translation process is the very place where the involved re-
pairing instructions become associated to particular node positions, i.e. right here
the implicit bindings hidden within the correction paths themselves are turned
into the explicit bindings (though final only from the perspective of this level of
recursive nesting, i.e. relatively to sibling nodes only).

Now we finish the translation of the whole sequence repair structure. To fulfill
this objective, we look at all the involved shortest correction paths ant put their
translations together.

Definition 3.21 (Sequence Repair Translation). Let NI = (V , E, vS, VT , paths,
c) be a sequence repair for a correction intent I, and unfold(paths) = Pmin

vS ,VT
all

the shortest correction paths. Then we define fix(NI) =
⋃
p∈Pmin

vS,VT

fix(p) to be

a sequence repair translation for NI.

Example 3.18. Suppose we want to translate our sequence repair NI from Ex-
ample 3.15. This means that we first need to translate both the shortest correction
paths p1 and p2 from Example 3.12.

For the first path p1 we can successively derive:

X1
p1

= {〈addLeaf(0, c)〉}, a1
p1

= 1,
X2
p1

= {〈renameNode(1, d)〉}, a2
p1

= 2,
X3
p1

= {〈〉}, a3
p1

= 3, and
X4
p1

= {〈renameNode(3.1, c)〉, 〈removeLeaf(3.1)〉} and a4
p1

= 4.

So, path p1 translates to fix(p1) = {S1, S2}, where:

S1 = 〈addLeaf(0, c), renameNode(1, d), renameNode(3.1, c)〉, and
S2 = 〈addLeaf(0, c), renameNode(1, d), removeLeaf(3.1)〉.

Analogously for the second path p2 we can write:

X1
p2

= {〈renameNode(0, c), removeLeaf(0.0)〉}, a1
p2

= 1,
X2
p2

= {〈〉}, a2
p2

= 2, and
X3
p2

= {〈renameNode(2.1, c)〉, 〈removeLeaf(2.1)〉} and a3
p2

= 3.

Hence, path p2 translates to fix(p2) = {S3, S4}, where:

S3 = 〈renameNode(0, c), removeLeaf(0.0), renameNode(2.1, c)〉 and
S4 = 〈renameNode(0, c), removeLeaf(0.0), removeLeaf(2.1)〉.
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Note that both X4
p1

and X3
p2

were derived from the same edge erepair:d,DA

2,2→3,2 ,
and, so, the same translation of the corresponding nested intent repair, but their
position shift was not the same. Also note that S3 equals to an edit sequence we
already studied in Example 3.4.

Finally, having resolved translations of both the shortest correction paths p1

and p2, we can wrap them into the translation of the entire sequence repair NI
and formally write that fix(NI) = fix(p1) ∪ fix(p2) = {S1, S2, S3, S4}.

Now, only the translation of intent repairs themselves remains to be discussed.

Definition 3.22 (Intent Repair Translation). Having an intent repair RI = (e,
NI, cost) for a correction intent I of type t, we define an intent repair translation
of RI as fix(RI) this way:

• If t = correct, then fix(RI) = {modCut(r) | r ∈ fix(NI)}.

• If t = insert, then fix(RI) = {〈fix(e)〉.modPrepend(r, 0) | r ∈ fix(NI)}.

• If t = delete, then fix(RI) = {modPrepend(r, 0).〈fix(e)〉 | r ∈ fix(NI)}.

• If t = repair, then fix(RI) = {modPrepend(r, 0) | r ∈ fix(NI)}.

• If t = rename, then fix(RI) = {〈fix(e)〉.modPrepend(r, 0) | r ∈ fix(NI)}.

Beside the proper adjustment of position parameters, the only other thing
we had to consider was the proper order in which the translations of optional
repairing instructions and sequence repairs should be mutually combined. This
order depends on a type of a correction intent for which the translation is being
constructed.

In case of the insert correction intent type, we always need to first use the
repairing instruction (to add a new leaf node as a root node for the new subtree),
and only then we can use the sequence repair itself (to generate this subtree, if
any is to be generated). Similarly, we need to remove an entire existing subtree
(if any) before its root node can be removed in case of the delete intents. Note
that the wrong order for both these types of intents would lead to sequences that
would not be correctly defined, and so the appropriate order is essential.

Correction intents of types correct and repair are not assigned any repair-
ing instruction, so, we just alter the involved position parameters accordingly.
Finally, in case of the rename intent type, we are free to choose the order – we
decided to use the repairing instruction first, for we think this option is probably
a more natural one.

Example 3.19. Let us now construct the translation of the entire intent repair
RI = (⊥, NI, 3) from Example 3.16 for the correction intent I of type repair

from Example 3.9.
According to the previous definition, we can simply write that fix(RI) =

modPrepend(fix(NI), 0) = {S ′1, S ′2, S ′3, S ′4} such that:

S ′1 = 〈addLeaf(0.0, c), renameNode(0.1, d), renameNode(0.3.1, c)〉,
S ′2 = 〈addLeaf(0.0, c), renameNode(0.1, d), removeLeaf(0.3.1)〉,
S ′3 = 〈renameNode(0.0, c), removeLeaf(0.0.0), renameNode(0.2.1, c)〉, and
S ′4 = 〈renameNode(0.0, c), removeLeaf(0.0.0), removeLeaf(0.2.1)〉.
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It is also interesting to focus on intent repairs and their translation from the
practical point of view. One thing is to obtain all the sequences of edit operations
and then all the corresponding valid data trees – another thing is to choose the
right one such offered corrected data tree according to our decision – one data tree
we think really should represent the most appropriate correction from our point
of view. It can be shown that we actually can let the user to choose such one
correction directly, without the need of having the starting intent repair structure
translated completely at all.

(a) Original data tree T (b) Correction using S1

(c) Correction using S2 (d) Correction using S3

(e) Correction using S4 (f) Correction using S5

Figure 3.9: Data tree T and all its corrections with respect to grammar G

Example 3.20. Finally, we can conclude the entire correction process of the
invalid data tree T from Example 2.2 with respect to the single type tree grammar
G from Example 2.8.

There exist five possible minimal corrections with the cost equal to 3. All of
them are depicted in Figure 3.9. They can be acquired from the original data T
tree by applying the following final sequences of edit operations.

S1 = 〈addLeaf(0, c), renameNode(1, d), renameNode(3.1, c)〉,
S2 = 〈addLeaf(0, c), renameNode(1, d), removeLeaf(3.1)〉,
S3 = 〈renameNode(0, c), removeLeaf(0.0), renameNode(2.1, c)〉,
S4 = 〈renameNode(0, c), removeLeaf(0.0), removeLeaf(2.1)〉, and
S5 = 〈renameNode(ε, b), renameNode(0, d), removeLeaf(2.1)〉.

64



Formally, dist(T , L(G)) = 3 and the translation of the starting correction
intent I• is equal to fix(RI•) = {S1, S2, S3, S4, S5}.

Having described the intent repair structures and their translation into re-
quired sequences of edit operations, we have also finished the description of our
entire correction model.
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4. Algorithms

To recall the main idea of the correction algorithm, having a potentially (but
not necessarily) invalid data tree T to be corrected with respect to a regular
tree grammar G, we process such data tree in a top-down manner by recursively
nesting and evaluating correction intents.

In particular, we begin with the starting correction intent I• that represents
the whole correction of the root node ε of T , including its subtree. To evaluate a
particular correction intent I with an action A = (p, e, vI , vE) and an assignment
L = (u, C, H, Y ), we first split such I into easier subproblems, i.e. we create all
the nested correction intents I ′ ∈ NestedIntents(I).

Then we compose and mutually bind all of them within a correction multi-
graph MI , request their evaluation, and so we obtain their intent repairs R′I
together with their overall correction costs as well. Therefore all the multigraph
edges are now assigned with costs, which in turn enables us to search for the
shortest correction paths Pmin

vS ,VT
that directly represent all the possible minimal

corrections of a sequence of nodes u from the assignment L of I.
Once we have found them, we simply encapsulate them into a sequence repair

NI , and then we consider the optional repairing instruction e from I as well to
finally acquire the intent repair RI for I itself.

Having backtracked to the very beginning, i.e. having found the intent repair
RI• for the starting correction intent I•, we have successfully corrected the entire
data tree T . In case we are really interested in all the corrected data trees, i.e.
valid data trees argminT2∈L(G) dist(T , T2) that have the minimal possible distance
from T , we only need to obtain all the sequences of edit operations resulting from
the translation fix(RI•) and apply them separately on T .

Thus we have figured out the entire correction problem correct(T ,G) of a
data tree T with respect to a regular tree grammar G as we have defined it.

This chapter is dedicated to the postponed question how the search for the
shortest correction paths should actually be conducted. Though the first glimpse
might suggest otherwise, it is actually not straightforward to perform this search
with desired efficiency.

This means that we are going to describe how the correction multigraphs
should be constructed, whether all their vertices and edges really have to be
explored and considered, how to search for the shortest paths themselves, as well
as how to request processing of the nested correction intents, and whether to
request such evaluation at all.

Beginning with correction tasks and other basic notions we will need through-
out this chapter to describe our correction algorithms formally, we especially pay
attention to intent signatures at first, since they allow us to significantly prune
the space of all the created correction intents CreatedIntents(T ,G), and so to
reduce the amount of work that is required to be done.

Next, we introduce three correction strategies representing different ways and
extents of correction multigraph construction and exploration – hopefully find-
ing optimizations that can help us to improve the overall efficiency once again.
Last but not least, we describe several execution approaches – different ways of
implementation of correction strategies from the technical point of view.
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4.1 Algorithm Essentials

Before we are able to present and discuss details of all the correction strategies
and execution approaches, we first introduce correction tasks as encapsulations
of correction intents, and then explain how the correction of a provided data tree
is initiated as a whole from the algorithmic perspective.

4.1.1 Correction Tasks

Although correction intents, as we have introduced them, fully define the cor-
rection problem and subproblems we are dealing with, and so could be used as
the only argument for the recursive correction routine (except the data tree and
grammar, of course), we decided to wrap them into a structure we call a correction
task, and to use this structure instead.

This means that whenever there is a correction intent I to be evaluated, we
first create its correction task KI , and then we use this task and its internal
components during the whole further recursive processing instead of I itself.

Definition 4.1 (Correction Task). Given a correction intent I, a correction task
KI = (I, R, phase, vars, quota, deps) for I is a structure, where:

• R is a reference to the intent repair for I,

• phase ∈ {initialization, exploration, termination, evaluated} is a
current evaluation phase,

• vars is a container of working variables:

– M is a reference to the correction multigraph for I,

– Vreached is a set of reached vertices,

– creached is a currently reached cost,

– cfixed is a fixed cost,

– pDistance and pPredecessors are tracing functions,

– Edelayed is a set of delayed edges,

• quota is an assigned quota limiting the extent of evaluation, and

• deps is a container of request dependencies:

– Krequesting is a set of references to requesting tasks,

– Krequested is a set of references to requested tasks.

Technically, correction tasks comprise of several components that enable us
to preserve all the required internal evaluation variables altogether within only
one structure. In case of the default correction strategy and a straightforward
implementation, they would not be needed at all. However, in case of more ex-
tended correction strategies and execution approaches we are going to introduce,
they become necessary. Therefore we have decided to introduce them right now
at the very beginning, so we can explain all the following algorithms in a unified
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way, building on the same basis, and so highlighting their mutual differences in
a more convenient and comprehensive way.

The purpose of the provided definition of correction tasks was just to describe
their general structure and internal components. When a new correction task for
a particular correction intent is created, nearly all its components are undefined
at the beginning. Once its evaluation is requested and commenced, all its compo-
nents are arbitrarily utilized, accessed and modified to fulfill the intent evaluation
goal. Once this goal is attained and the intent repair produced, a reference to this
repair is finally stored within the task itself, and all the remaining components
can be cleared, since they will no longer be needed.

Now we at least shortly describe the intended meaning of some of the task
components. First, a container of working variables vars is used during the explo-
ration and construction of the corresponding correction multigraph M in order
to find all the shortest correction paths. An assigned quota is used to restrain
the extent of requested and allowed evaluation in case of the most optimized
correction strategy, the refinement one. Finally, a container of request dependen-
cies only plays its role in case of the forwarding execution approaches, where the
management of used system threads and their mutual relationships have to be
recorded manually.

All in all, whether all the individual components will really be used, depends
on a particular correction strategy and an execution approach – and so we will
reveal their details later on. To conclude, all the components except the intent
reference I are optional and may not be defined, i.e. may be equal to ⊥.

Before we move forward to the main correction algorithm, we introduce yet
another one notion. If we had defined CreatedIntents(T ,G) as a set of all the dis-
tinct correction intents that need to be created and evaluated in order to process
the correction of a data tree T with respect to a grammar G, we can analogously
derive CreatedTasks(T ,G) = {KI | KI is a task for I ∈ CreatedIntents(T ,G)}
as a set of all the created tasks.

4.1.2 Correction Routine

Let us now shortly look at the main correction procedure in Algorithm 4.1, where
we describe how the whole correction of a data tree T with respect to a grammar
G is initiated, performed and terminated from a high-level perspective.

Algorithm 4.1: Correction algorithm: correct(T ,G)

Input: Data tree T and regular tree grammar G
1 I• ← create the starting correction intent for T and G;
2 KI• ← create a task for I• via createCorrectionTask(I•);

3 initiate the recursive correction by calling correct(KI•);

4 fetch a reference to the intent repair RI• for I• from KI• ;
5 return set of corrected data trees {T ′ | T S−→ T ′, S ∈ fix(RI•)};
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The provided code directly corresponds to all the model definitions we have
introduced so far, and so we believe that no further explanation is needed at this
moment. We only assume that both the data tree T and regular tree grammar G
are already provided, i.e. have already been parsed from their source files prior
this correction procedure has been invoked.

Even though the theoretical objective is to really return the set of all the
corrected data trees correct(T ,G) as we have described it in Definition 3.6, we
have also explained that the final translation step can be omitted in case the user
is only interested in just one particular correction (which actually would be the
most common case in practice).

The remaining parts of this chapter will discuss, how to actually implement
the recursive correction routine correct(KI) with respect to different correction
strategies we have yet only shortly listed.

Given a particular correction intent I wrapped by a correction task KI , its
purpose is to construct the corresponding correction multigraph MI , find the
shortest correction paths, and encapsulate them in the resulting intent repair
structure RI .

Though we want to make the code of all the following algorithms as accurate
and formal as possible, we will omit some minor technical details and only focus
on the main logic to make the code more readable in general. However, all
the following aspects will always be described completely and correctly: how
correction multigraphs are constructed, which of their vertices and edges are
explored, how and when the evaluation of nested correction intents is requested
(if ever), and how the searching for the shortest correction paths proceeds and is
terminated once we have found them.

We will also follow several simple conventions in the code of our algorithms.
First, we will use ← as an assignment operator instead of the standard =. We
will also use a symbol ◦ in names of variables (like, for example, M◦

I) to denote
that a given structure (in this case the correction multigraph for an intent I) is
currently being constructed, and so may not yet be completely defined and may
not fully correspond to formal definitions we provided. Once they become, we
explicitly mark them as finalized and start using the standard names (like MI)
from that moment on.

4.2 Intent Signatures

Since we have intentionally split the internal structure of a correction intent
I = (id, type, A, L) into its action A and assignment L components, it should
not be surprising that the action component A has absolutely no effect on the
intent repair RI we construct.

However, it might be interesting that we can describe the general dependency
of intent repairs on correction intents even more thoroughly and in finer terms.
And even more challenging could be the finding that without such discussion the
correction algorithm would probably not be efficient enough to be successfully
used in practice.

So, let us have a look at a short example. Assume that we are processing a
particular correction intent I and we are about to consider a new nested correction
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intent I ′ of type delete – an intent which should cause that a particular existing
data tree node p will be removed, including its subtree (if there is any). It is
apparent that the resulting intent repair R′I not only does not depend on the
action A of intent I – it actually only depends on the given data tree node p and
nothing else. Therefore, whichever correction intent I decides to consider the
removal of this particular node p, though distinct nested correction intents will
always have to be created, the resulting intent repair structure R′I will always be
the same – exactly the same.

As a consequence, it might become useful to find a way how to detect these
(and similar) situations in general. Because if we are able to accomplish this call,
we simply do not need to compute the same intent repairs repeatedly, over and
over again. The answer lies in the following definition of intent signatures.

Definition 4.2 (Intent Signatures). Let I = (id, type, A, L) be a correction
intent with an action A = (p, e, vI , vE) and an assignment L = (u, C, H, Y )
such that C = Ct,n in case type /∈ {correct, delete} in particular.

Then we define an intent signature for I as a tuple sig(I), where:

• If type = correct, then sig(I) = (correct).

• If type = insert, then sig(I) = (insert, H).

• If type = delete, then sig(I) = (delete, p).

• If type = repair, then sig(I) = (repair, p, t, n).

• If type = rename, then sig(I) = (rename, p, t, n).

We say that two correction intents I1 = (id1, type1, A1, L1) and I2 = (id2,
type2, A2, L2) have identical signatures, i.e. sig(I1) = sig(I2), if and only if
type1 = type2 and all the other corresponding pairs of components of sig(I1) and
sig(I2) are identical as well.

The meaning of intent signatures is straightforward – whenever we have two
correction intents I1 and I2 with identical signatures, then the resulting intent
repair structures RI1 and RI2 will also be exactly the same. Hence, we only need
to compute them once.

Example 4.1. Let us now return to our sample correction intent I with its
correction multigraphM that we already presented in Example 3.10 and illustrated
in Figure 3.5.

In this example we split all the intents I ′ from NestedIntents(I) into disjoint
sets, exactly according to their intent signatures sig(I ′). To make the following
listing more readable, we used multigraph edges as references to these nested cor-
rection intents instead.

sig(I ′) = (insert, 〈Cc,C〉) in case of

edges einsert:c,C
s,0→s,1 for all strata s ∈ {0, 1, 2, 3}.

sig(I ′) = (insert, 〈Cd,DA
〉) in case of

edges einsert:d,DA
s,1→s,2 and loops einsert:d,DA

s,2→s,2 for all strata s ∈ {0, 1, 2, 3}.
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sig(I ′) = (delete, 0) in case of edges edelete0,q→1,q for all states q ∈ {0, 1, 2}.
sig(I ′) = (delete, 1) in case of edges edelete1,q→2,q for all states q ∈ {0, 1, 2}.
sig(I ′) = (delete, 2) in case of edges edelete2,q→3,q for all states q ∈ {0, 1, 2}.

sig(I ′) = (rename, 0, c, C) in case of edge erename:c,C
0,0→1,1 .

sig(I ′) = (rename, 1, c, C) in case of edge erename:c,C
1,0→2,1 .

sig(I ′) = (rename, 2, c, C) in case of edge erename:c,C
2,0→3,1 .

sig(I ′) = (rename, 0, d, DA) in case of edges erename:d,DA
0,1→1,2 and erename:d,DA

0,2→1,2 .

sig(I ′) = (repair, 1, d, DA) in case of edges erepair:d,DA

1,1→2,2 and erepair:d,DA

1,2→2,2 .

sig(I ′) = (repair, 2, d, DA) in case of edges erepair:d,DA

2,1→3,2 and erepair:d,DA

2,2→3,2 .

Apparently, the most notable impact of intent signatures in this example is on
nested intents of types insert and delete (which is not a coincidence).

Each time we have fully evaluated a particular correction intent I, we simply
put the resulting intent repair structure RI into a store we call a task cache using
its signature sig(I) as an indexing key. Then, whenever we are about to request
evaluation of a nested correction intent I ′ – we first try to fetch the equivalent
intent repair from the tasks cache using sig(I ′) as a key – and only in case we are
not successful we actually proceed to the evaluation request and really commence
its execution.

Notice, however, that although we may not need to request the evaluation of
the given nested correction intent I ′, we still have to create it as a structure I ′
itself, and integrate it within a correction multigraph MI for I. Therefore, one
thing is to create a nested correction intent and a corresponding multigraph edge
to which it is associated, another thing is whether we have already computed the
intent repair of a given signature, or not yet.

The task cache is formally modeled as an ordinary set of pairs (key, K),
allowing us to store references to correction tasks (and so the associated intent
repairs as a consequence) under values of provided indexing keys. In our case,
these indexing key are simply the values of intent signatures, exactly as we have
introduced them. However, we will need to use the task cache even for other
purposes, and so we based it on tasks (and not directly on intent repairs), as well
as we allowed a more robust indexing schema (and talk about indexing keys in
general, not restraining them to intent signatures in particular).

It is also worth of noting that if the recursive nesting of correction intents
as such could so far be modeled within boundaries of a tree structure, now we
need to switch to a directed acyclic graph structure. This observation does not
pose any notable complications except that execution approaches that are based
on multiple threads must be aware of this fact and so must ensure necessary
synchronization whenever needed.

From another point of view, both the sets CreatedIntents(T ,G) of all the
created correction intents and CreatedTasks(T ,G) of all the created tasks now
significantly reduce their sizes – simply because all the created tasks now have
intents of distinct signatures. As a consequence, both these sets no longer must
be of identical sizes. Instead, the number of the created tasks will always be at
most as high as the number of created intents. In practice, the number of tasks
will actually tend to be sharply lower.

71



In general, there are several situations when intent signatures can play their
role – more different situations than we might conclude just from the first glimpse.
First, we can find identical signatures between different nested correction intents
within one particular correction multigraph (as we have shown in the previous
example). Next, we can also find them between different correction intents from
different multigraphs (i.e. when evaluating different correction intents). And,
last but not least, there can be identical signatures even between the same or
at least nearly the same correction intents from different multigraphs – it means
intents that are equivalent in their assignment components, or even both action
and assignment components – though they will always differ in their identifiers
from apparent reasons.

Anyway, since the evaluation of correction intents is now no longer bound to
particular intents, as it is bound to intent signatures, we should also change our
naming convention accordingly for correction multigraphs MI , sequence repairs
NI and intent repairs RI to Msig(I), Nsig(I) and Rsig(I) respectively. However,
to make the following text easier to read, we will simply use just M, N and R
respectively when it is not clear from the context whether intent signatures are
applied, or they are not.

Putting all the previous observations together, despite both the idea and im-
plementation of intent signatures is easy, the impact on the correction efficiency
is crucial. And although we believe that our correction algorithms could not be
usable in practice without having this handling of signatures enabled, all the al-
gorithms we are going to discuss will work even when these signatures would be
disabled – exactly in a form they will be presented.

4.3 Correction Strategies

The purpose of this section is to introduce three different correction strategies
we proposed. It means particular techniques how correction multigraphs can be
constructed, their vertices and edges explored, and the shortest correction paths
they contain revealed in the end.

We start with a straightforward means we call a default strategy, and then we
discuss its two improvements – optimizations that allow us to reduce the overall
number of multigraph edges that need to be explored in order to find all the
shortest correction paths we are searching for, and so to reduce the number of
nested correction intents that need to be evaluated, and so improving the overall
algorithm efficiency. And whereas an exploring strategy as the first optimization is
a step in the right direction, a refinement strategy enables us to achieve pruning
even vertically to the depth of the recursive nesting, and not just horizontally
within correction multigraphs themselves.

4.3.1 Default Strategy

The default strategy exactly follows the correction model as we have introduced
it – whenever a particular correction intent I is about to be evaluated, we always
and without exceptions construct its entire correction multigraph M, with all
its vertices and edges being explored. Having acquired intent repairs for all the

72



nested correction intents, we straightforwardly find the shortest correction paths
and produce the intent repair structure R for I in the very end.

The formal and overall description for this first correction strategy is presented
in Algorithm 4.2.

Algorithm 4.2: Default strategy: correctDEF(K)

Input: Correction task K = (I, R = ⊥, phase = ⊥, vars = ⊥, quota = ⊥,
deps = ⊥) for a correction intent I = (id, type, A, L) with an
action A = (p, e, vI , vE) and an assignment L = (u, C, H, Y )

Global: Data tree T and regular tree grammar G
// Initialization phase

1 vars ← initialize working variables (M◦ = ⊥, Vreached = ∅, creached = ⊥,
cfixed = ⊥, pDistance = ∅, pPredecessors = ∅, Edelayed = ⊥) for task K;

2 M◦ ← create a new empty correction multigraph (V ◦ = ∅, E◦ = ∅, vS, VT )
with standard vS and VT according to intent assignment L;

// Construction phase

3 foreach I ′ ∈ NestedIntents(I) do

4 Let I ′ = (id′, type′, A′, L′) and A′ = (p′, e′, v′I , v
′
E);

5 R′ ← requestIntentRepairDEF(I ′);

6 if (v′I /∈ V ◦) then V ◦ ← V ◦ ∪ {v′I};
7 if (v′E /∈ V ◦) then V ◦ ← V ◦ ∪ {v′E};
8 E◦ ← E◦ ∪ {(v′I , v′E, I ′, R′)};
9 mark multigraph M◦ as final and use M = (V , E, vS, VT ) instead;

// Exploration phase

10 pDistance(vS) ← 0; pPredecessors(vS) ← ∅;
11 Vreached ← {vS};
12 performExplorationLoopDEF(K);

// Termination phase

13 N ← create a sequence repair for I based on multigraph M, tracing
functions (pDistance, pPredecessors) and cost(Pmin

vS ,VT
) = cfixed;

14 R ← create an intent repair using N and a repairing instruction e;
15 finally put phase ← evaluated and clear working variables vars ← ⊥;

Having prepared the container of working variables (line 1) with all its com-
ponents except for the set of delayed edges (since it will not be required by this
strategy), and also initialized the correction multigraph M◦ itself (line 2), we
simply iterate over all the nested correction intents I ′ in a multigraph construc-
tion loop (lines 3 – 8), where we insert into the multigraph all the vertices and
edges for such I ′ we come across.

Once the multigraph M◦ is constructed completely (line 9) and marked as
M, we initialize both tracing functions (line 10) and the set of reached vertices

73



(line 11), so we are able to perform the entire search for the shortest correction
paths withinM (line 12). Before we describe how this shortest paths exploration
loop actually works, we first finish the overview of the whole strategy.

So, having found all the paths, the only thing to be accomplished is to en-
capsulate them into a corresponding sequence repair N at first (line 13), and to
the final intent repair R in the very end (line 14), while disposing of all the no
longer needed working variables and marking the intent repair as fully evaluated
for technical reasons (line 15).

Thus we have attained the goal of the entire evaluation of the correction intent
I with respect to the default correction strategy.

Now we proceed to Algorithm 4.3, where we describe how the evaluation of
nested correction intents is really requested – all that in accordance to intent
signatures and caching of evaluated intent repairs.

In case the handling of signatures is enabled (lines 1 – 7), we first always try
to fetch the equivalent intent repair R′ according to the signature of I ′ (line 2),
and only when such repair has not yet been evaluated, we prepare a new empty
task K′ to wrap I ′ (line 4), put it into the tasks cache (line 5), and then proceed
to its recursive evaluation (line 7).

Just note that we technically do not directly store references to intent repairs
at the moment they really become fully evaluated. Instead we preserve references
to all the created correction tasks within the tasks cache – from the very moment
they were created and requested to be evaluated. This means that the required
intent repairs themselves are then available indirectly right through correction
tasks – whenever we need to access them later on, once they are evaluated.

In case intent signatures are not considered (lines 8 – 10), a new task is created,
as well as its recursive evaluation is invoked in all circumstances.

Algorithm 4.3: Default strategy: requestIntentRepairDEF(I ′)

Input: Nested correction intent I ′ = (id′, type′, A′, L′)
Output: Intent repair R′ for I ′
Use: TasksCache if signatures are enabled

1 if (signatures are enabled) then

2 if (∃ t′ such that (sig(I ′), t′) ∈ TasksCache) then K′ ← t′;
3 else
4 K′ ← createEmptyTaskDEF(I ′);
5 TasksCache ← TasksCache ∪ {(sig(I ′),K′)};

6 Let K′ = (I ′, R′, phase′, vars′, quota′, deps′);
7 if (phase′ 6= evaluated) then correctDEF(K′);

8 else
9 K′ ← createEmptyTaskDEF(I ′);

10 correctDEF(K′);

11 return R′;
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The creation of a new correction task is described in Algorithm 4.4, where
simply a new and completely empty task structure is prepared for I ′ and returned.

Algorithm 4.4: Default strategy: createEmptyTaskDEF(I ′)

Input: Nested correction intent I ′
Output: Newly created correction task K′ for I ′

1 return K′ ← (I ′, R′ = ⊥, phase′ = ⊥, vars′ = ⊥, quota′ = ⊥, deps′ = ⊥);

The only thing that still remains to be described from the default correction
strategy is actually one of the most important parts – that is how the search for
the shortest correction paths really works. And though this search is based on
the traditional Dijkstra’s algorithm, the proper description turns out to be useful
later on as a comparison basis when introducing both the improved correction
strategies.

Algorithm 4.5: Default strategy: performExplorationLoopDEF(K)

Input: Correcton task K for an intent I
1 Let vars = (M = (V , E, vS, VT ), Vreached, creached, cfixed, pDistance,
pPredecessors, Edelayed = ⊥) be working variables for task K;

2 while (Vreached 6= ∅) do

3 v ← select any vertex from argminv′∈Vreached pDistance(v
′);

4 Vreached ← Vreached \ {v};
5 creached ← pDistance(v);

6 if (v ∈ VT ) ∧ (cfixed = ⊥) then cfixed ← creached;
7 if (cfixed 6= ⊥) ∧ (cfixed < creached) then break;

8 foreach g ← (v1 = v, v2, I ′, R′) ∈ Eout
v do

9 if (pDistance(v2) = ⊥) then Vreached ← Vreached ∪ {v2};
10 Let R′ = (e′, N ′, cost′);
11 c ← creached + cost′;
12 if (pDistance(v2) = ⊥) ∨ (pDistance(v2) > c) then
13 pDistance(v2) ← c; pPredecessors(v2) ← {g};
14 else if (pDistance(v2) = c) then
15 pPredecessors(v2) ← pPredecessors(v2) ∪ {g};

So, let us now focus on Algorithm 4.5. Its only purpose is to iterate over the set
of reached vertices, while discovering the shortest correction paths step by step.
Before the procedure is invoked, only the source vertex vS of the multigraphM is
in this set of reached vertices. Then the involved vertices are gradually removed
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one by one (once they become selected and processed), and new ones added (once
they become discovered on the contrary).

At the beginning of each iteration of the exploration loop (lines 2 – 15) we
select one vertex v from the set of currently reached vertices that has the lowest
distance pDistance(v) from the source vertex vS (line 3). If there are more such
minimal vertices, we are free to choose any of them. Anyway, since its current
tracing distance is minimal among all the reached and not yet processed vertices,
it cannot be improved in any way later on (line 5).

Therefore we can declare this vertex v as processed, remove it from the set of
the reached vertices (line 4), and inspect all its outgoing edges Eout

v (lines 8 – 15).
When we come across a new edge ending vertex v2 (that was not yet processed,
nor is currently reached), we add it into the set of reached vertices (line 9).
Then we set, replace or update values of pDistance and pPredecessors tracing
functions accordingly for this vertex v2 (lines 11 – 15).

When the loop over the reached vertices selects some target vertex from VT
for the first time (line 6), the cost of the shortest correction paths cost(Pmin

vS ,VT
)

has just been resolved. However, we cannot terminate the exploration loop at
this moment, since there can still exist other shortest correction paths – either
to this first discovered target vertex, or to any other from the remaining ones.
And so the exploration loop must continue until the reached cost rises even more
(line 7). Only then it is finally safe to end.

At this moment we have described the default correction strategy completely.
Despite it is able to achieve the set correction goal, its main problem is that it
forces the correction multigraphs to be always discovered completely. And so it
might be useful to come with another strategy – an improved one – a strategy
that would be able to avoid exploration of those multigraph vertices and edges
that are not necessarily required for finding the shortest correction paths.

4.3.2 Exploring Strategy

And this is exactly the idea hidden behind the exploring strategy, where we inte-
grated both the multigraph construction and exploration phases together. This
means that vertices and edges of correction multigraphs are discovered and con-
structed on demand – exactly as the exploring loop over the reached vertices
requires in order to search for the shortest correction paths accurately.

The main correction routine is presented in Algorithm 4.6. There are actually
no big differences to the default strategy – only the correction phase has been
completely removed, and the exploration phase begins with an insertion of the
source vertex vS not only into the set of the reached vertices (line 5), but also
into the set of multigraph vertices as such (line 3).

And since the purpose of this strategy is to horizontally prune the correction
multigraphM◦, we are no longer able to declare it as final at the end. However,
this has no impact on the encapsulation of a sequence repair N (line 7), nor the
intent repair R (line 8), for they are both provided with everything they require
to be constructed correctly.

Now the question is how the exploration loop (line 6) needs to be changed.
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Algorithm 4.6: Exploring strategy: correctEXP(K)

Input: Correction task K = (I, R = ⊥, phase = ⊥, vars = ⊥, quota = ⊥,
deps = ⊥) for a correction intent I = (id, type, A, L) with an
action A = (p, e, vI , vE) and an assignment L = (u, C, H, Y )

Global: Data tree T and regular tree grammar G
// Initialization phase

1 vars ← initialize working variables (M◦ = ⊥, Vreached = ∅, creached = ⊥,
cfixed = ⊥, pDistance = ∅, pPredecessors = ∅, Edelayed = ⊥) for task K;

2 M◦ ← create a new empty correction multigraph (V ◦ = ∅, E◦ = ∅, vS, VT )
with standard vS and VT according to intent assignment L;

// Exploration phase

3 V ◦ ← V ◦ ∪ {vS};
4 pDistance(vS) ← 0; pPredecessors(vS) ← ∅;
5 Vreached ← {vS};
6 performExplorationLoopEXP(K);

// Termination phase

7 N ← create a sequence repair for I based on multigraph M◦, tracing
functions (pDistance, pPredecessors) and cost(Pmin

vS ,VT
) = cfixed;

8 R ← create an intent repair using N and a repairing instruction e;
9 finally put phase ← evaluated and clear working variables vars ← ⊥;

The formal description of the exploration loop enabling the search for all
the shortest correction paths in case of the exploring strategy is provided in
Algorithm 4.7.

The outer iteration loop over the set of reached vertices (lines 2 – 18) remains
exactly the same as in case of the default strategy. This means we still always
select one of the reached vertices currently having the minimal tracing distance
from the source vertex (line 3), as well as both the termination conditions are
preserved too (lines 6 and 7).

However, instead of iterating over the outgoing edges Eout
v from the currently

processed vertex v, we have to directly iterate over all the nested correction
intents NestedIntents(I, v) defined at v (lines 8 – 18), since these edges are not
yet constructed. To do it, we first recursively acquire the corresponding intent
repairR′ for each such nested I ′ (line 10), create a newly discovered ending vertex
v′E (line 11) and the edge e itself (line 12), and finally set, replace or update values
of the tracing functions accordingly once again (lines 14 – 18).

Finally, both the procedures for acquiring the nested intent repairs (either
by really evaluating them, or fetching them from the tasks cache using their
signatures in case they are enabled) and creation of new correction tasks remain
exactly the same as for the default strategy (as presented in Algorithm 4.3 and
Algorithm 4.4 respectively), and so we decided not to describe them once again.
The only difference is that we switch from DEF to EXP alternatives of all the
involved functions accordingly.
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Algorithm 4.7: Exploring strategy: performExplorationLoopEXP(K)

Input: Correction task K for an intent I
Global: Data tree T and regular tree grammar G
Use: TasksCache if signatures are enabled

1 Let vars = (M◦ = (V ◦, E◦, vS, VT ), Vreached, creached, cfixed, pDistance,
pPredecessors, Edelayed = ⊥) be working variables for task K;

2 while (Vreached 6= ∅) do

3 v ← select any vertex from argminv′∈Vreached pDistance(v
′);

4 Vreached ← Vreached \ {v};
5 creached ← pDistance(v);

6 if (v ∈ VT ) ∧ (cfixed = ⊥) then cfixed ← creached;
7 if (cfixed 6= ⊥) ∧ (cfixed < creached) then break;

8 foreach I ′ ∈ NestedIntents(I, v) do

9 Let I ′ = (id′, type′, A′, L′) and A′ = (p′, e′, v′I = v, v′E);

10 R′ ← requestIntentRepairEXP(I ′);

11 if (v′E /∈ V ◦) then V ◦ ← V ◦ ∪ {v′E}; Vreached ← Vreached ∪ {v′E};
12 g ← (v, v′E, I ′, R′); E◦ ← E◦ ∪ {g};
13 Let R′ = (e′, N ′, cost′);
14 c ← creached + cost′;
15 if (pDistance(v′E) = ⊥) ∨ (pDistance(v′E) > c) then
16 pDistance(v′E) ← c; pPredecessors(v′E) ← {g};
17 else if (pDistance(v′E) = c) then
18 pPredecessors(v′E) ← pPredecessors(v′E) ∪ {g};

The overall impact of the exploring strategy is that there emerges a reasonably
high chance that some parts of correction multigraphs (some of their edges and
vertices) might not be explored at all. Hence some nested correction intents might
not be requested for their evaluation at all, and so the overall correction efficiency
will most likely be improved.

4.3.3 Refinement Strategy

Both the already introduced correction strategies have one important common
feature – whenever we request any nested correction intent to be evaluated, we
always acquire its completely evaluated intent repair structure, and so its overall
correction cost – a fully resolved cost which we then in turn use to search for the
shortest correction paths.

But what about considering another optimization strategy – a strategy that
would not force the nested correction intents to be evaluated completely, and, at
the same time and as a consequence, that would be able to rely just on estimates
of their correction costs?
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Our response to this idea is the refinement strategy. In order to explain
its main principles, we try to describe the situation from the perspective of a
correction intent I at first, and then from the perspective of nested correction
intents I ′ it requests.

So, when an intent I is currently being processed and we are about to request
some nested intent I ′ to be evaluated, we no longer want this evaluation to be
complete. Instead, we only would like to achieve a small and limited progress in its
evaluation in order to obtain refined estimate of its overall correction cost. This
will hopefully permit us to make decisions on further processing and exploration
of the multigraph M for I more consciously and efficiently.

In other words, we have just described what the intent I would like to expect
from the refinement and partial evaluation of a particular nested intent I ′. And
how to fulfill such expectation from the perspective of this nested intent?

The way how to do it lies directly in the loop over the reached vertices during
the integrated phase of the correction multigraph exploration and the shortest
correction paths searching (we use the same horizontal pruning idea as in the
exploring strategy). Whenever the evaluation of I ′ is requested, we only perform
a limited number of iterations of this loop and stop immediately after we have
achieved the progress that was requested, i.e. when we are able to provide the
parent intent I with a new and refined estimate.

The result of this estimation always describes the lower bound of the final
overall correction cost of the intent repair R′ to which we are step by step ap-
proaching. Since we begin with an empty correction multigraph M′ and then
we only successively append it by newly explored edges, the cost estimate itself
is monotonic. In particular, nondecreasing. And because the parent intent I
always wants to achieve at least some progress of the nested intent I ′ evaluation
from apparent reasons, we actually implement the refinement in a way that this
estimate will even be increasing.

Notice that despite each individual refinement request of a particular intent
I ′ only aims at a partial evaluation progress, we are still heading towards its
complete evaluation. The only difference now is that this effort might be stopped
earlier – when a given nested correction intent I ′ becomes no longer perspective
enough from the point of view its parent I has.

There are actually only two significant impacts on the correction algorithm we
have to appropriately deal with. First, the evaluation of any correction task has
to become interruptible and then also allow resuming – in other words, we must
be able to scatter the whole evaluation into smaller pieces. Second, the usage
of only estimates of the nested correction costs has to be incorporated into the
exploration loop – and integrated in a way that it still guarantees to find exactly
all the shortest correction paths we are searching for.

Fortunately enough, the solution of the first issue is actually simple. When a
nested intent I ′ is requested for the refinement evaluation, we then have achieved
the expected progress, and so we are about to interrupt our work – we only need
to preserve everything we have so far computed, including even all the working
and temporary variables. So, when the refinement evaluation of I ′ is requested
once again sometime later on, we can resume our work exactly at the same point
where we left it the last time.
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There should be no surprise in realizing that the already introduced con-
tainer of working variables within correction tasks was designed perfectly in a
way to reflect this need. However and contrary to both the previous correction
strategies, we now need to use the tasks cache to store the created tasks in all
the circumstances, not just when the signatures would be enabled – though we
will still need to distinguish between these two signature modes in order to use
appropriate indexing keys.

And how the loop over the reached vertices needs to be changed to still guar-
antee that all the shortest correction paths will be unexceptionally found? We
still always select one of the reached vertices v that has currently the minimal
possible distance from the source vertex vS. However, all the edges ingoing to
such vertex v may have a different extent of their evaluation – and so the further
processing of v will vary depending on whether the tracing distance to v can be
declared as final, or whether it still needs to be refined.

In the following text we provide a description of all the individual procedures
from which the whole refinement strategy comprises of, as well as we explain all
the involved notions and assumptions formally.

Let us therefore begin with the main recursive correction routine that is pre-
sented in Algorithm 4.8.

The first apparent change we need to be aware of is the explicit need of split-
ting the entire procedure into individual evaluation phases. When a particular
correction task K is requested for the evaluation for the first time, nearly all its
components are undefined. So is undefined especially its phase attribute (line 1),
which allow us to correctly recognize a situation when such task has to be appro-
priately initialized at first (lines 2 – 8).

During this initialization, standard steps are performed. In particular, the
container of working variables is prepared (this time including the set of delayed
edges), an empty correction multigraph M is prepared, the source vertex vS is
inserted into it, and both the tracing functions are initialized as well for this
source vertex vS.

The exploration phase may then immediately begin (lines 11 – 17). We first
visit the exploration loop over the reached vertices (lines 12), and then we always
update costs of the constructed sequence N ◦ and intent repair R◦ structures
accordingly (lines 13 and 14). Exactly this way the current value of the correction
cost estimate becomes available for the requesting correction intent.

However, we must now start distinguishing between two different ways how
the execution of this block of code may come to its end (lines 15 – 17). Either it
can be the case of only an interrupted evaluation, or it can mean that the whole
evaluation should completely be terminated.

The first means of reaching the end of the exploration block emerges in situ-
ations, when the expected and requested refinement progress has been achieved,
but the exploration as such can still not be terminated yet (line 17). In this case
we do not change the current evaluation phase, and so the following termination
block of code is completely bypassed, and the very end of the whole procedure is
immediately reached.

In other words, the evaluation has just only been interrupted – and may be
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Algorithm 4.8: Refinement strategy: correctRFN(K)

Input: Task K = (I, R◦, phase, vars, quota, deps = ⊥) for a correction
intent I = (id, type, A, L) with an action A = (p, e, vI , vE) and
an assignment L = (u, C, H, Y )

Global: Data tree T and regular tree grammar G
// Initialization phase

1 if (phase = ⊥) then phase ← initialization;
2 if (phase = initialization) then

3 vars ← initialize working variables (M◦ = ⊥, Vreached = ∅, creached = ⊥,
cfixed = ⊥, pDistance = ∅, pPredecessors = ∅, Edelayed = ∅) for K;

4 M◦ ← create a new empty correction multigraph (V ◦ = ∅, E◦ = ∅, vS,
VT ) with standard vS and VT according to intent assignment L;

5 V ◦ ← V ◦ ∪ {vS};
6 pDistance(vS) ← 0; pPredecessors(vS) ← ∅;
7 Vreached ← {vS};
8 phase ← exploration;

9 Let vars = (M◦ = (V ◦, E◦, vS, VT ), Vreached, creached, cfixed, pDistance,
pPredecessors, Edelayed) be working variables for task K;

10 Let R◦ = (e, N ◦, cost◦) be the currently constructed intent repair and N ◦
= (V ′ = ⊥, E ′ = ⊥, vS = ⊥, vT = ⊥, paths = ⊥, c◦) its sequence repair;

// Exploration phase

11 if (phase = exploration) then

12 performExplorationLoopRFN(K);

13 if (cfixed 6= ⊥) then c◦ ← cfixed; else c◦ ← creached;
14 cost◦ ← cost(e) + c◦;

15 if (cfixed 6= ⊥) ∧ (cfixed < creached) then phase ← termination;
16 else if (Vreached = ∅) then phase ← termination;
17 else if (quota 6= ⊥) ∧ (creached ≥ quota) then return;

// Termination phase

18 if (phase = termination) then

19 if (Edelayed 6= ∅) then processDelayedEdgesRFN(K);

20 update subgraph (V ′, E ′), vS, vT , and paths components of sequence
repair N ◦ usingM◦ and tracing functions (pDistance, pPredecessors);

21 mark N ◦ as final and use N = (V ′, E ′, vS, vT , paths, c) instead;
22 mark intent repair R◦ as final and use R = (e, N , cost) instead;
23 finally put phase ← evaluated and clear working variables vars ← ⊥;
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resumed later on once again – simply jumping right into the exploration block
and continuing with the exploration loop over the reached vertices, resuming it
at the same state as it was abandoned the last time.

The second way of reaching the end of the exploration block happens when the
searching for the shortest correction paths has successfully been finished inside
the exploration loop. Unfortunately, there is not just the standard reason for this
conclusion – that the reached cost exceeded the fixed cost (line 15) – but we must
newly detect even situations when there is nothing else to be further explored
and processed in the set of the reached vertices (line 16).

This is actually not a new circumstance – only in case of both the previous
correction strategies we did not need to deal with it explicitly, because it simply
happened by leaving the loop, having finished its last iteration.

Anyway, we then move to the termination phase (lines 18 – 23), where we first
finalize processing of all the delayed edges as we explain at the very end of this
section (line 19), so we are then able to compose the complete and final sequence
repair N and intent repair R as well. Since both these structures did exist
during the whole (though scattered) evaluation, only the explicitly enumerated
components have to be updated at this moment (especially note that costs of
both N and R were updated continuously).

Having done these updates, the entire evaluation of a given correction intent
I finally terminates and its intent repair R is now complete and available.

Now we move toward Algorithm 4.9 and discuss how the loop over the reached
vertices has to be adjusted in order to support the refinement idea and the scat-
tered evaluation. However, before we can provide its description, we need to
introduce a few definitions.

We say that an edge g = (v1, v2, I ′, R′) is a closed edge, if the associated
intent repair R′ is already completely evaluated, i.e. there exists a corresponding
task K′ = (I ′, R′, phase′, vars′, quota′, deps′) for I ′ in the tasks cache such that
phase′ = evaluated. Otherwise g is an open edge. The difference and impact is
obvious – whereas costs associated to closed edges are final, costs of open edges
are only estimates of such final values.

Having a reached vertex v, its extent of refinement depends on its ingoing
edges Ein,◦

v (actually only those that are currently explored). For each of these
edges g ∈ Ein,◦

v , g = (v1, v, I ′, R′) with R′ = (e′, N ′, cost′) we define an exploring
distance eDistance(g) = pDistance(v1) + cost′ as a distance to v from the source
vertex vS using an edge g.

Let now din,◦v = ming∈Ein,◦
v

eDistance(g) be the minimal exploring distance to

v among all the ingoing edges Ein,◦
v . Since v is a reached vertex, Ein,◦

v must contain
at least one edge, and so din,◦v may never be undefined. Next, let Ein,closed,◦

v be a set
of all the closed ingoing edges to v, and analogously Ein,open,◦

v = {g | g ∈ Ein,◦
v and

g is open} a set of all the open ingoing edges to v. Then we also define din,closed,◦v

= ming∈Ein,closed,◦
v

eDistance(g) as the minimal distance to v when only its closed

ingoing edges are considered, and din,open,◦v = ming∈Ein,open,◦
v

eDistance(g) in case
of the open ingoing edges respectively.

Finally, we say that v is a complete vertex, if there exists at least one closed
ingoing edge (Ein,closed,◦

v 6= ∅), and, at the same time, there are no open ingoing
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edges at all (Ein,open,◦
v = ∅) or the distance to v using any of them would never be

better than using the best closed ingoing edge (din,open,◦v ≥ din,closed,◦v ). Otherwise
we say that v is an incomplete vertex.

When a vertex v is incomplete, it means that there is no closed ingoing edge
at all (Ein,closed,◦

v = ∅) or there exists at least one open ingoing edge that is
still perspective and requires further refinement (din,open,◦v < din,closed,◦v ). When v
becomes complete, it means that its final tracing distance from the source vertex
vS has already been correctly detected. Also notice that a vertex may become
complete, even when there still may exist open edges, though at most with the
same or even worse exploring distances.

Algorithm 4.9: Refinement strategy: performExplorationLoopRFN(K)

Input: Task K = (I, R◦, phase, vars, quota, deps = ⊥) for an intent I
1 Let vars = (M◦ = (V ◦, E◦, vS, VT ), Vreached, creached, cfixed, pDistance,
pPredecessors, Edelayed) be working variables for task K;

2 while (Vreached 6= ∅) do

3 v ← select any vertex from argminv′∈Vreached d
in,◦
v′ ;

4 creached ← din,◦v ;

5 if (cfixed 6= ⊥) ∧ (cfixed < creached) then break;
6 if (quota 6= ⊥) ∧ (creached ≥ quota) then break;

7 if (vertex v is complete) then processCompleteV ertexRFN(K, v);
8 else processIncompleteV ertexRFN(K, v);

Now we finally have all the details we need to approach the description of the
exploration loop itself in Algorithm 4.9.

Although this loop (lines 2 – 8) once again selects the most promising reached
vertex v to be processed (line 3), we must be aware of one important difference
to the previous correction strategies. Whereas until now we could always rely
on values of the pDistance tracing function for all the reached vertices (since we
kept all its values accurate and up-to-date for all of them) – now we set values
for both the tracing functions no sooner than a given vertex becomes complete
and is marked processed.

In other words, we have to look at the exploring distances over all the ingoing
edges to all the individual reached vertices directly. In particular, we always
select a vertex v that has this distance din,◦v minimal, regardless such distance is
achieved by an open edge, or an already closed one. This exploring distance for
v then becomes the currently reached cost (line 4).

The termination condition (line 5) once again ensures that when the reached
cost exceeds the fixed one, all the shortest correction paths must have already
been found, and so the multigraph exploration may come to its end. On the other
hand, a completely exhausted quota suggests that the expected and requested
refinement progress has been just attained, and so the evaluation is about to be
interrupted (line 6).
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The further processing of vertex v depends on whether it is already complete
(line 7), or not yet (line 8) – i.e. whether it can be finalized, or not.

Algorithm 4.10: Refinement strategy: processCompleteV ertexRFN(K, v)

Input: Task K = (I, R◦, phase, vars, quota, deps = ⊥) for an intent I,
and a complete vertex v

Global: Data tree T and regular tree grammar G
1 Let vars = (M◦ = (V ◦, E◦, vS, VT ), Vreached, creached, cfixed, pDistance,
pPredecessors, Edelayed) be working variables for task K;

2 Vreached ← Vreached \ {v};
3 if (v ∈ VT ) ∧ (cfixed = ⊥) then cfixed ← creached;

4 pDistance(v) ← din,closed,◦v ;
5 pPredecessors(v) ← {g | g ∈ Ein,closed,◦

v , eDistance(g) = din,closed,◦v };
6 Edelayed ← Edelayed ∪ {g | g ∈ Ein,open,◦

v , eDistance(g) = din,closed,◦v };
7 foreach I ′ ∈ NestedIntents(I, v) do

8 Let I ′ = (id′, type′, A′, L′) and A′ = (p′, e′, v′I = v, v′E);

9 R′◦ ← requestIntentRepairRFN(I ′);

10 if (v′E /∈ V ◦) then V ◦ ← V ◦ ∪ {v′E}; Vreached ← Vreached ∪ {v′E};
11 g ← (v, v′E, I ′, R′◦); E◦ ← E◦ ∪ {g};
12 Let R′◦ = (e′, N ′◦, cost′◦);
13 if (v′E /∈ Vreached) ∧ (cost′◦ = 0) then Edelayed ← Edelayed ∪ {g};

We first discuss a situation when the given selected reached vertex v is com-
plete. Its further processing is then depicted in Algorithm 4.10.

Since no additional refinement of this vertex v is required, we finalize it by
removing it from the set of reached vertices (line 2), setting values of both the
tracing functions appropriately (lines 4 – 6), and exploring all the outgoing edges
from v, i.e. all the nested correction intents defined at v (lines 7 – 13).

We also verify the terminating condition on reaching the first target vertex in
a standard way, i.e. by anchoring the currently reached cost (line 3).

However, before we move forward, we stay with the mentioned tracing func-
tions for a while. Since v is complete, we know that din,closed,◦v = din,◦v , and so
pDistance(v) cannot be improved later on, and so can be finalized right at this
moment (line 4). To derive the pPredecessors(v), we only focus on the ingoing
edges that are closed and that have this minimal exploration distance (line 5).
However, even now there might exist some edges that are open, but still perspec-
tive enough (line 6).

Though they no longer can influence the tracing distances themselves in any
way, they can still be involved in the shortest correction paths we are searching
for, and so we cannot simply ignore them. On the other hand, they are not needed
to be completely evaluated at this moment, so we decided to put all of them in
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to a special container of delayed edges, i.e. edges that might still be perspective
enough, but detecting whether they really are or not can be postponed until the
very end of the intent I evaluation.

Next, let us focus on the loop over the newly discovered nested correction
intents (lines 7 – 13). When comparing it to the equivalent loop of the exploring
strategy, we once again request the nested intent repair R′◦ (line 9), create a new
ending vertex v′E in case it was not yet explored (line 10), always create a new
edge g for I ′ (line 11), but we do not alter the tracing functions for v′E here as
already outlined.

On the other hand, we must not forget to deal with newly discovered edges in
case they lead to some of the already processed complete vertices, but still have
a perspective cost (line 13). In particular, we put all such edges to the container
of delayed edges once again. Notice that we must treat those edges explicitly
here – simply because the already referenced delaying code (line 6) would not be
reachable for them, since their ending vertex v′E has already been processed as
we assumed.

The question now is, how the nested intent repair R′◦ is actually requested
(line 9). The answer lies in Algorithm 4.11.

Algorithm 4.11: Refinement strategy: requestIntentRepairRFN(I ′)

Input: Nested correction intent I ′ = (id′, type′, A′, L′)
Output: Intent repair R′◦ for I ′
Use: TasksCache regardless the mode of signatures

1 if (signatures are enabled) then

2 if (∃ t′ such that (sig(I ′), t′) ∈ TasksCache) then K′ ← t′;
3 else
4 K′ ← createPreparedTaskRFN(I ′);
5 TasksCache ← TasksCache ∪ {(sig(I ′),K′)};

6 else
7 K′ ← createPreparedTaskRFN(I ′);
8 TasksCache ← TasksCache ∪ {(id′,K′)};

9 return R′◦;

Its basic structure brings nothing strange, because we only need to distinguish
between enabled (lines 1 – 5) and disabled (lines 6 – 8) handling of signatures and
caching of evaluated intent repairs. However, there are two important differences
to the previous strategies.

First, we have to cache tasks even when signatures are disabled, otherwise
we would not be able to preserve them and their content between individual
refinement evaluation requests. In this case, an intent identifier id′ is used as a
key when accessing the tasks cache (line 8).
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The second difference – and even more fundamental one in its consequences
and advantages it brings – is that we never invoke the recursive correction routine
for the nested task K′ right here. It means that the only purpose of this procedure
is to fetch the already existing task, or create a new one, but never proceed to
requesting its evaluation as such.

The reason for omitting this evaluation is simple – it is because the first cost
estimate of the nested intent repair R′◦ can be based only on the associated
repairing instruction e′ (if any) for this nested intent I ′. In other words, we are
able to acquire the first estimate even without any recursive refinement actually
requested and nor executed.

Even though it might not be apparent here, this observation causes the overall
correction efficiency to improve significantly.

Arm in arm, when creating a new correction task for the nested intent I ′ this
time, we do not just create a completely empty task structure K′, but we initialize
all its components that allow us to publish this first and kind of a free of charge
estimation, as well as permit its further refinement later on.

Algorithm 4.12: Refinement strategy: createPreparedTaskRFN(I ′)

Input: Nested correction intent I ′ = (id′, type′, A′, L′) and its intent
action A′ = (p′, e′, v′I , v

′
E)

Output: Newly created correction task K′ for I ′

1 N ◦ ← create a new partly initialized sequence repair (V ′ = ⊥, E ′ = ⊥,
v′S = ⊥, v′T = ⊥, paths′ = ⊥, c′◦ = 0);

2 R′◦ ← create a new partly initialized intent repair (e′, N ′◦, cost′◦ = c′◦ +
cost(e′) = cost(e′));

3 return K′ ← (I ′, R′◦, phase′ = ⊥, vars′ = ⊥, quota′ = ⊥, deps′ = ⊥);

In particular and as we can see in Algorithm 4.12, we first initialize a sequence
repair N ′◦ with all its components undefined except for its cost c′◦ (line 1). Then
we prepare an intent repair R′◦ with the repairing instruction e′ and the overall
correction cost set accordingly (line 2), so that we can finally encapsulate it into
a newly created task K′ and return it in the end (line 3).

When the loop over the reached vertices selects an incomplete vertex v to be
processed (line 8 of Algorithm 4.9), then we have to refine its open ingoing edges
by requesting their further evaluation. So, let us have a look at Algorithm 4.13,
where this processing is illustrated.

The refinement expectations posed on the nested correction intent I ′ are de-
termined directly by the requesting parent intent I. Since it requires its further
evaluation, it certainly presumes that at least some progress in the cost estimate
of R′◦ will be achieved – otherwise no new information would be available to I.
On the other hand, the allowed partial evaluation of I ′ should be limited as much
as possible in order to avoid any unnecessary work.

For the purpose of limiting the extent of such permitted and expected nest-
ed refinement we use the assigned quota, an argument forwarded via a quota
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component within a structure of the given task K′. The meaning of this quota is
straightforward – it contains a boundary of a sequence repair N ′ cost to which the
nested evaluation of I ′ should approach, but not exceed. This indirectly means
that we restrain the extent of the allowed nested evaluation by a permitted growth
of the cost estimate we are step by step pursuing to refine.

Just notice that for technical reasons, assigned quotas are really based on the
cost of a sequence repair N ′ only, and do not involve the impact of a repairing
instruction e′ from R′. As a consequence, quotas can be directly matched to the
reached costs valid within the exploration loop.

Although the value of the assigned quota is a matter of a suitable heuristic,
we decided to always expect the cost increase of 1, since we also assumed the cost
of all the edit operations to be equal to 1. Having a different cost function in use,
quotas to be assigned would need to be treated carefully. Anyway, the assigned
quota always has to be sharply greater than the current sequence cost estimate.
Otherwise no nested progress would be possible to achieve.

From the nested intent I ′ point of view, its exploration loop over the reached
vertices (see Algorithm 4.9) iterates until the assigned quota is exhausted, as
already explained. At that moment its exploration is interrupted. But in case
I ′ can be evaluated completely and its final intent repair R′ acquired within the
allowed assigned quota, it is always done so.

Algorithm 4.13: Refinement strategy: processIncompleteV ertexRFN(K, v)

Input: Task K = (I, R◦, phase, vars, quota, deps = ⊥) for an intent I,
and an incomplete vertex v

Use: TasksCache regardless the mode of signatures

1 Let vars = (M◦ = (V ◦, E◦, vS, VT ), Vreached, creached, cfixed, pDistance,
pPredecessors, Edelayed) be working variables for task K;

2 oEdges ← {g | g ∈ Ein,open,◦
v , eDistance(g) = din,open,◦v };

3 foreach g = (v1, v2 = v, I ′, R′◦) ∈ oEdges do

4 Let I ′ = (id′, type′, A′, L′) and A′ = (p′, e′, v′I = v1, v′E = v2);

5 if (signatures are enabled) then key′ ← sig(I ′); else key′ ← id′;
6 Let K′ be a task such that (key′,K′) ∈ TasksCache;
7 Let then K′ = (I ′, R′◦, phase′, vars′, quota′, deps′) and
8 R′◦ = (e′, N ′◦, cost′◦);
9 quota′ ← cost′◦ − cost(e′) + 1;

10 correctRFN(K′);

To make the insight into the mechanism of assigned quotas complete, let us
also shortly look at the processing of the starting correction intent I•. Contrary to
all the other correction intents, this one is assigned an unlimited quota (technically
quota = ⊥). More precisely, it must be assigned this unlimited quota, since
this starting correction intent is responsible for conducting the entire data tree
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correction, and so cannot interrupt its work somewhere in the middle – not having
finished it completely.

Finally, how the assigned quotas are turned into practice during the processing
of an incomplete vertex v (Algorithm 4.13)? First of all, we always consider only
the most perspective open edges, i.e. those open edges g ingoing to v such that
they have the exploring distance minimal (line 2). We could, of course, consider
even other open edges to be refined as well, but our selection avoids any necessary
work completely.

Then we process these most perspective edges in a loop (lines 3 – 10), one
after another, always accessing the associated correction task K′ from the tasks
cache (line 6), assigning the allowed quota (line 9), and finally requesting the
nested partial evaluation of I ′ as such (line 10).

The very last thing we need to discuss before we can conclude the whole
refinement correction strategy is the way how all the delayed edges are processed
before the given intent evaluation can be finally terminated. The code of this
procedure is available in Algorithm 4.14.

Algorithm 4.14: Refinement strategy: processDelayedEdgesRFN(K)

Input: Task K = (I, R◦, phase, vars, quota, deps = ⊥) for an intent I
Use: TasksCache regardless the mode of signatures

1 Let vars = (M◦, Vreached, creached, cfixed, pDistance, pPredecessors,
Edelayed) be working variables for task K;

2 foreach g ← (v1, v2, I ′, R′◦) ∈ Edelayed do

3 Let I ′ = (id′, type′, A′, L′) and A′ = (p′, e′, v′I = v1, v′E = v2);

4 if (signatures are enabled) then key′ ← sig(I ′);
5 key′ ← id′; Let K′ be a task such that (key′,K′) ∈ TasksCache;
6 Let then K′ = (I ′, R′◦, phase′, vars′, quota′, deps′) and
7 R′◦ = (e′, N ′◦, cost′◦);
8 if (eDistance(g) > pDistance(v2)) then break;

9 if (phase′ 6= evaluated) then
10 quota′ ← cost′◦ − cost(e′) + 1;
11 correctRFN(K′);

12 if (eDistance(g) = pDistance(v2)) then
13 pPredecessors(v2) ← pPredecessors(v2) ∪ {g};

14 clear the set of delayed edges Edelayed ← ∅;

We simply iterate over all the delayed edges g (lines 2 – 13), always accessing
the corresponding correction task K′ at first (line 5). Though all the edges were
still open and perspective at the moment they were put into this set of delayed
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edges, further flow of events could cause that they are no longer perspective right
now (line 8).

If a given edge g is still perspective (eDistance(g) = pDistance(v2)), and it is
not yet completely evaluated at the same time (lines 9 – 11), we request its one
final refinement evaluation (line 11) by assigning a quota that is high just enough
to give a chance for such I ′ to terminate its evaluation completely right at this
cost (and so a chance this edge g to become closed), or to disqualify itself from
being perspective at all (line 10).

If this final refinement (if required) caused this edge g to become closed and
its exploring distance is still equivalent to the tracing distance of its ending vertex
v2 (line 12), we can add this edge between the already found predecessors defined
for such vertex v2 (line 13).

Having explained how the postponed evaluation attempt of the delayed edges
works, we have also completed the description of the whole refinement strategy.

Its core idea is actually based just on one important change – when searching
for the shortest correction paths, we do no longer rely on completely evaluated
nested intents and overall correction costs of their fully resolved intent repairs,
but instead we work only with estimates of such nested costs.

As a consequence, we are not only able to optimize the horizontal multigraph
exploration – by integrating the construction and exploration phases together
once again as in case of the exploring strategy – but we are also able to achieve
the vertical optimization – by pruning less perspective nesting of correction intents
even to the depth of the recursion.

As a whole, there is a high chance that this strategy will be the most efficient
one, yet this conclusion cannot be accepted without a thorough experimental
evaluation, because although the number all the created tasks will most likely
be reduced significantly, the overhead brought by shattering the evaluation into
small pieces may not be suppressed sufficiently.

4.4 Execution Approaches

While correction strategies represent different answers to the question how cor-
rection multigraphs should be explored, the purpose of execution approaches is
to find ways how the recursive evaluation requests of correction intents should
actually be performed from the technical point of view. In other words, which
programming constructs or system resources could be used to implement correc-
tion strategies in practice.

We proposed five particular execution approaches – nesting single, invoking
single, invoking multiple, forwarding single, and, finally, forwarding multiple. The
purpose of the following text is to discuss their basics, differences, and shared
characteristics as well.

4.4.1 Nesting Single Approach

The first execution approach we focus on is the nesting single. Though it is
probably the most simple and straightforward one, it is still the most efficient
single-threaded one on the other hand.
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Assume that we are evaluating a particular correction task K for a correction
intent I. When a task K′ for a nested correction intent I ′ is about to be requested
for the execution, we simply and directly call the recursive correction routine
correct(K′) (its particular alternative according to a chosen correction strategy),
exactly as we have done it in all the algorithms we have presented so far.

The context is switched, and the nested execution of K′ starts immediately.
When the requested evaluation goal is achieved (i.e. when the intent repair R′ is
fully constructed in case of the complete evaluation of the default and exploring
strategies, or when we the expected and requested refinement progress is achieved
in case of the partial evaluation of the refinement strategy), the very end of the
nested correction routine is simply reached, and so the context is automatically
returned back to the execution of K. As a consequence, the evaluation of K
resumes at exactly the same point where it was abandoned before, and so it may
smoothly and immediately go on.

All the particular algorithms we presented in the previous section for all the
introduced correction strategies were designed perfectly in a way to comply with
this nesting single approach.

4.4.2 Invoking Single and Multiple Approaches

Let us now present two additional execution approaches we call invoking single
and invoking multiple. They both enable us to explicitly utilize system threads
to perform the evaluation of correction tasks, but whereas the former one only
allows us to request right one such evaluation at a time, the latter one can request
even multiple task at once.

We begin with the invoking single approach first. So, let the correction task
K for an intent I be currently executed in a thread W . When a nested task K′
for some I ′ is requested to be executed, a new thread W ′ is created, associated
with K′, and its execution is commenced, i.e. W ′ starts executing the correction
routine correct(K′). The parent thread W becomes blocked on K′ and starts
waiting until it can be woken up once again.

When the nested thread W ′ achieves the requested evaluation goal posed on
K′, it notifies the parent thread W on behalf of the task K′ in order to wake it
up. Then the nested thread W ′ simply reaches the end of the correction routine,
it terminates its execution and is released. When the parent thread W is woken
up, its execution resumes exactly at the point where it was abandoned, and the
evaluation of K may continue.

As a consequence, at each moment there exists a chain of nested threads,
since we always only request right one the nested task to be executed. So, we are
obviously not able to exploit the potential which multi-threaded processing can
generally offer.

The purpose of the invoking multiple approach is to deal right with this draw-
back. In other words, we would like to be able to emit more evaluation requests
at a time, each to be executed by a separate thread. However, two questions
immediately arise. First, how many such requests should be considered at once.
And second, how to actually identify and select requests that should be executed
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together – all that with respect to the correction strategies we have introduced
and their specifics.

Despite plenty of different mechanisms could generally be adopted, we decided
for the following solution. In case of the default and exploring strategies, when
a particular vertex v is being processed within the exploration loop over the
reached vertices during the evaluation of a correction intent I (Algorithm 4.5
and Algorithm 4.7 respectively), we take as a basis for this purpose the whole set
of the nested correction intents defined at v, i.e. NestedIntents(I, v) (line 8 and
line 8 respectively in these algorithms).

In case of the exploration phase of the refinement strategy and processing
of a reached vertex v that is incomplete (Algorithm 4.13), we take into account
all the most perspective open edges ingoing to v, i.e. a set {g | g ∈ Ein,open,◦

v ,
eDistance(g) = din,open,◦v } (line 3). Finally, in case of the processing of the delayed
edges (Algorithm 4.14), all those that are still perspective and not yet refined
enough at the same moment are right those that are considered here (line 9).

So, assume that we have identified a set of correction intents {I ′1, . . . , I ′n}
for some n ∈ N0, and requests right for all these intents are about to be invoked
together. Unfortunately, we now need to start distinguishing between both the
intent signature modes, since they bring different levels of complexity and issues
to be figured out.

First, let intent signature handling be disabled. Then assume we are currently
evaluating a correction task K in a thread W , and we are about to request
evaluation of nested tasks {K′1, . . . , K′n} for the identified set of correction intents
{I ′1, . . . , I ′n}. So for each and every one of them, i.e. for each i ∈ {1, . . . , n}, we
create a new thread W ′

i , associate it with K′i, and commence its execution. Then
the parent thread W itself becomes blocked on all K′i and starts waiting until it
can be woken up once again.

When each particular nested thread W ′
i achieves its evaluation goal posed

on the given task K′i, and the notification to W is sent on behalf of such K′i, the
nested thread W ′

i terminates its execution and is released. Once the parent thread
W receives notifications from all the nested threads W ′

i , i.e. is no longer blocked
on any requested K′i, it is woken up, its execution resumes, and the evaluation of
K may continue.

In case intent signatures are enabled, the situation becomes a little bit more
complicated because of the following reason. Not only that each particular task K
may request the evaluation of multiple nested tasks K′ at once, but also – and as
a consequence – each particular task K′ may then be requested for the evaluation
by several different parental tasks K at once. This means that we must ensure
that each particular task is being executed at most once at each moment, i.e. that
its execution cannot be accidentally commenced for several times concurrently.

Assume therefore that we are currently evaluating a correction task K in a
thread W , and we are about to request the evaluation of nested correction tasks
{K′1, . . . , K′n} for some n ∈ N0, such that all these nested tasks have mutually
different intent signatures.

Then for each and every one of them, i.e. for each i ∈ {1, . . . , n}, we first
find out whether there already exists a thread W ′

i that is currently running and
executing K′i. If and only if not, we create a new thread W ′

i , associate it with
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K′i, and commence its execution. Once all the requests are managed, the parent
thread W itself becomes blocked on all K′i (really all, regardless we newly created
W ′
i or just sort of joined an already existing one), and starts waiting until it can

be woken up once again.
When each particular nested thread W ′

i achieves its evaluation goal posed on
the given task K′i, it sends notifications to all parent threads W ′′ (one of them
must be W , but there can be even others) on behalf of such K′i, the nested thread
W ′
i itself terminates its execution and is released. Once the parent thread W

receives notifications from all the nested threads W ′
i , i.e. is no longer blocked on

any requested K′i, it is woken up, its execution resumes, and the evaluation of K
may continue.

Note also that there is still one technical aspect we need to be aware of.
Because of the multi-threaded environment, usage and access to the task cache
as well as the management of threads itself have to be correctly synchronized
in order to prevent race conditions potentially leading to unexpected failures or
unwanted behavior.

To finally summarize the invoking multiple execution approach, at each mo-
ment there exists a whole hierarchy of nested threads, and so the correction is
performed in parallel. On the other hand, the number of threads that need to be
concurrently maintained by the system might be only too high, and hence such
execution approach may generally represent an efficiency bottleneck.

4.4.3 Forwarding Single and Multiple Approaches

The last pair of execution approaches we are going to introduce right now is a pair
of forwarding single and forwarding multiple approaches. Whereas their objective
is to deal right with the previously identified issue, our solution is actually not
difficult to grasp.

Whenever the nested execution is requested, the requesting thread does not
become blocked, and so does not start waiting for the notifications – instead it
immediately terminates its own execution and is released. However, losing the
reference to this parent thread brings two questions that need to be figured out
properly. First, how to resume the execution when backtracking, and, second, how
to actually manage all the request relationships among tasks when the implicit
blocking and notification mechanism can no longer be used.

The response to the former question is simple – we only need to create a
new thread that commits itself to the responsibility of resuming the parent task
evaluation. The solution of the latter question is brought by a container of request
dependencies, i.e. the last component of a task structure we have not yet talked
about. Using them, we are able to straightforwardly record and maintain all the
task requests in a convenient way.

Technically, looking at a particular task K, this container comprises of two
sets: a set of requesting tasks Krequesting (all the tasks that have currently re-
quested the evaluation of K), and a set of requested tasks Krequested (all the tasks
that K have currently requested for the evaluation).

Last but not least, there is actually yet another important consequence of the
new forwarding execution approaches: regardless the correction strategy we use,
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the execution now needs to become scattered – similarly as we had to scatter the
evaluation in case of the refinement strategy as such.

At this moment we are ready to illustrate how the forwarding single approach
in particular works. Suppose therefore that we are evaluating a correction task K
in a thread W , and we want to request evaluation of a nested task K′. We first add
K′ into the set of requested tasks of K. Then we create a new thread W ′, associate
it with K′, add K into the set of requesting tasks of K′, and, finally, commence
the execution of W ′. Then the parent thread W terminates its execution and is
released.

When the nested thread W ′ achieves the requested evaluation goal posed on
the task K′, we first remove K from the set of requesting tasks of K′, and also
K′ from the set of requested tasks of K analogously. Then a new thread W is
created, associated with K, and its execution commenced, so that the evaluation
of K may continue. Finally, the nested thread W ′ terminates its execution and
is released.

Let us now move to the forwarding multiple execution approach. Though
we could once again discuss both the cases depending on intent signatures sepa-
rately, we rather describe only the most complicated case, the one with enabled
signatures.

So, assume we are currently evaluating a correction task K in a thread W ,
and we are about to request evaluation of nested tasks {K′1, . . . , K′n} for some
n ∈ N0, such that all these nested tasks have mutually different intent signatures.
First, we add all these K′i into the set of requested tasks of K.

Then for each and every one of them, i.e. for each i ∈ {1, . . . , n}, we first
find out whether there already exists a thread W ′

i that is currently running and
executing K′i. If and only if not, we create a new thread W ′

i , associate it with
K′i, and commence its execution. Regardless we newly created such W ′

i or just
sort of joined an existing one, we always add K into the set of requesting tasks
of K′i. Finally, when all the K′i are requested this way, the parent thread W itself
terminates its execution and is released.

When each particular nested thread W ′
i achieves its evaluation goal posed on

the given task K′i, we first iterate over all the tasks K′′ that are stored in the set of
requesting tasks such K′i (one of them must be K, but there can be even others),
remove itself (i.e. K′i) from the set of requested tasks of such K′′, and in case this
set becomes empty (i.e. K′′ no longer symbolically waits for any requested task),
we create a new thread W ′′, associate it with K′′, and commence its execution.

Having iterated over all such requesting K′′, the set of requesting tasks of K′i
is emptied, the nested thread W ′

i itself terminates its execution and is released.
As a consequence, once all K ′i originally requested by K achieve their evaluation
goals, the evaluation of K is thus resumed.

In case of the forwarding multiple approach with signatures disabled, the sit-
uation becomes easier. First, we can always straightforwardly create new threads
for the nested requested tasks without any concurrency checks. Second, there is
always right one requesting parent to be symbolically notified when terminating
the nested execution.

Anyway and similarly to the invoking multiple approach, we must once again
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be aware of the consequences of the multi-threaded environment. So, not only
the usage and access to the tasks cache, but also all the containers of request
dependencies of individual tasks have to be correctly synchronized here.

Moreover, this synchronization must be implemented in a way that is does
not become a bottleneck. We must also avoid the possibility of causing deadlocks
if we realize that these dependency containers may be mutually modified either
by requesting, as well as by requested tasks at the same moment.

Fortunately enough, though with certain technical difficulties, this issue can
be figured out by breaching one of the Coffman conditions [29] – the circular wait
condition in particular. So, we always synchronize first on the requesting task,
and only then on the requested one.

Last but not least, there is also one final aspect of the forwarding approaches
that deserves attention. Although we have so far always talked about creation
of new threads, it is apparent that a pool of prepared worker threads could be
used as well. Thus we not only reduce the required overhead related to the
management of threads in general, but we also gain the possibility to get in
charge and manually or automatically control the overall number of tasks that
can really be executed right at each particular moment.

To conclude, while there was always a chain of nested threads in case of
the invoking single approach, there is just one thread in case of the forwarding
single approach (or at least nearly one). Similarly, whereas there could be a whole
hierarchy of threads in case of the invoking multiple approach, there is always just
a set of threads in case of the forwarding multiple approach. However, although
we were able to reduce the number of threads in general, this does not necessarily
mean that the forwarding approaches will perform better than the invoking ones
in practice.

4.5 Algorithm Configurations

Having introduced all the correction strategies, execution approaches and signa-
ture modes, we have finished with the description of all the correction algorithms
we have proposed on top of our correction model. At the very end, we try to
summarize all of them, discuss their most important characteristics as well as
differences, and prepare a background for the experimental evaluation.

First, let us have a look at the proposed correction strategies. Their purpose
is to provide different ways how the correction multigraphs can be explored and
the shortest correction paths searched. In particular, which vertices and edges of
correction multigraphs need to be explored, in order such paths are found, and
found correctly.

• DEF – Default strategy. This first and most straightforward strategy directly
follows all the definitions of the correction model as we have introduced
them. This means that an entire correction multigraph with all its edges and
vertices is always constructed, and so intent repairs for all the corresponding
nested correction intents are always evaluated.

• EXP – Exploring strategy. In order to reduce the overall number of created
correction intents, and so the number of the nested intents that need to
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be evaluated, this strategy involves a horizontal pruning optimization. In
particular, it always starts with an empty correction multigraph, and only
explores those vertices and edges that are really required to be considered
in order to still guarantee that all the shortest correction paths are found.

• RFN – Refinement strategy. Instead of assuming that all the nested correc-
tion intents always have to be evaluated completely, this strategy is able
to rely only on partially evaluated nested intent repairs and estimates of
their costs. As a consequence, the overall number of created intents is not
only reduced because of the horizontal pruning applied, but because of the
vertical pruning as well. In other words, this strategy is able to leave un-
promising ways of the correction even to the depth of the recursive nesting
of correction intents.

Table 4.1: Comparison of correction strategies

Strategy Intent Multigraph Nested Edge
code evaluation exploration repairs costs

DEF Complete Entire Full Final
EXP Complete Pruned Full Final
RFN Limited Pruned Partial Estimated

Strategy Processed Requested Execution
code vertices edges style

DEF Any All outgoing Continuous
EXP Any All outgoing Continuous
RFN Incomplete Minimal open ingoing Scattered

In Table 4.1 we list all the important characteristics in which the individual
correction strategies mutually differ, or behave the same on the contrary.

The evaluation goal of both the default and exploring strategies is to always
evaluate the given correction intent completely. It means to produce its fully
evaluated intent repair with a final overall correction cost, and so the execution
of these strategies does not need to be scattered. When processing a particular
reached vertex, the recursive evaluation of all the nested intents on the outgoing
edges is requested. However, whereas the default strategy always constructs the
entire correction multigraphs with all their vertices and edges, the exploring one
only needs to discover multigraphs on demand.

On the other hand, the refinement strategy builds on top of the evaluation
limited by assigned quotas, and so leading only to partially evaluated intent
repairs with overall correction costs just being estimated. As a consequence, the
execution must be scattered. In the loop over the reached vertices, only the
incomplete ones are involved in requesting the nested evaluation, in particular
the evaluation of only the most perspective open ingoing edges.

Next, let us also have a look at the execution approaches. They represent
different means how correction strategies can be implemented in practice from the
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technical point of view, i.e. they discuss which particular programming constructs
and system resources can be used to fulfill this implementation goal.

• N1 – Nesting single. When a nested correction task is about to be requested
for the evaluation, the recursive correction routine is simply called. When
the expected evaluation goal is achieved, the context is returned back, and
the execution immediately continues. All that in one thread.

• I1 – Invoking single. When a nested task is about to be requested for
the evaluation, a new thread is created and its execution commenced. The
parent thread becomes blocked and starts to sleep. When the expected
evaluation goal is achieved, the parent thread is notified, and the nested
one terminates and is released. Then the parent thread is woken up and its
execution is resumed.

• IN – Invoking multiple. The basic idea is the same, only there can be more
nested tasks to be requested at a time. As a consequence, the parent thread
becomes blocked on all of them, and so is woken up no sooner than the last
nested evaluation goal is achieved. When signatures are enabled, new nested
threads must be created carefully to avoid competing executions, and when
the nested goals are achieved, there can be more parents as well.

• F1 – Forwarding single. When a nested task is about to be requested for
the evaluation, a new thread is created and the request dependencies are
mutually recorded. Then the execution of the nested thread is commenced,
the parent thread terminates its execution and is released. When the ex-
pected evaluation goal is achieved, a new thread is created for the parent
and the request dependencies are mutually removed. Then the execution of
the parent thread is commenced, the nested thread terminates its execution
and is released.

• FN – Forwarding multiple. Once again, the basic idea is the same as in case of
the forwarding single approach, except that there can be more nested tasks
to be requested at a time. Similarly to the invoking multiple approach,
competing executions have to be avoided, as well as there can be more
parents that need to be treated accordingly.

Finally, we summarize both the intent signature modes.

• D – Disabled signatures. When a nested correction intent is explored, its
evaluation is always requested.

• E – Enabled signatures. When a nested intent is about to be requested,
we first try to fetch an already computed equivalent intent repair from the
tasks cache using the corresponding intent signature, and we only proceed
to the evaluation if and only if such repair is not yet available.

Putting it all together, we have introduced three different correction strategies
ΨStg = {DEF, EXP, RFN}, five execution approaches ΨApp = {N1, I1, IN, F1, FN},
and also two signature handling modes ΨSig = {D, E}.
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We are absolutely free to combine them in order to obtain particular im-
plementations of the correction algorithm – different algorithm configurations
Q ∈ (ΨStg ×ΨApp×ΨSig). It is obvious that neither all of them make sense from
the practical point of view, nor that all of them would be interesting even from the
theoretical perspective. However, at least several of them have reasonably good
chances to be efficient enough, some of them even very efficient and scalable.

All the abbreviated codes of the introduced correction strategies, execution
approaches and signature modes were not presented without purpose. They en-
able us to give names to particular algorithm configurations in a convenient way.
So, we either can use the already suggested system of triples Q, or we will also,
and actually more frequently, use a more practical naming schema ?-?-? with
components for a chosen strategy, approach and mode, all that exactly in this
order. For example, DEF-N1-D represents the configuration involving the default
strategy with nesting single approach and disabled signatures.

At this moment it makes sense to recall our older correction algorithms [83,
86, 85] and describe them in terms of the algorithm configurations as we have just
introduced them in this text and as they were also published in [84]. First, the
naive algorithm corresponds to DEF-N1-D, the dynamic algorithm to EXP-N1-D,
and the caching algorithm to EXP-N1-E.

Classifying the incremental algorithm, however, is not as straightforward as in
case of the previous ones. Though it can be said that it corresponds to RFN-F1-E

because it is in principle based on the refinement correction strategy with enabled
signatures, there are important differences. First of all, it lacks several optimiza-
tions and improvements. To name the most significant one, the described mech-
anism of the first cost estimation was not applied there. And second, it was not
based on the forwarding execution approach, but rather on yet another one that
was controlled by our proprietary scheduler responsible for assigning prepared
tasks to available worker threads. All in all, despite it followed the refinement
strategy, it did not perform efficiently enough.

To conclude, though we have certain expectations that are not difficult to
track according to all the observations we have discussed throughout this entire
chapter, studying which particular configuration is really up to outperform all
the remaining ones is the subject of the experimental evaluation.

However, before we finish, it is worth of highlighting one final, but fundamental
fact – whichever particular algorithm configuration we chose, the results will
always be the same, i.e. each configuration provides a solution to our data tree
correction problem exactly as we have defined it in Definition 3.6.
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5. Experiments

We managed to integrate the whole proposed correction model together with all
the described correction strategies, execution approaches and signature handling
modes into right one universal Corrector implementation in Java programming
language [66].

Binding all the introduced correction configurations together into one piece
was necessary to keep the required work in reasonable boundaries, though it is
true that when a dedicated implementation would be created from scratch for a
given particular configuration, slightly better design and efficiency could be most
likely achieved. On the other hand, our solution does not involve any notable
drawbacks and serves the desired evaluation objectives without any difficulties.

At this time our implementation works as a command line utility that accepts
standard XML documents and regular tree grammars as input arguments, while
the found corrections in a form of sequences of edit operations obtained from the
translated and unfolded repair structures are presented to the user as an output.

In this chapter we focus on the experimental evaluation of our entire correction
model and algorithms. We first describe parameters of data trees we used for the
experiments, then we discuss our goals and hypotheses we would like to confirm,
and most importantly we also provide description of characteristics we actually
want to measure, study and compare. The main part of the following text, though,
provides a wide set of tables and figures on which we illustrate our observations
and conclusions we could afford to embrace.

Before we start, we should also mention that we made the whole Corrector
implementation publicly available [82], including the fully integrated framework
for conducting the experiments presented in this thesis. The mentioned profiling
framework not only allows us to obtain more accurate measurements that are less
influenced by the outer environment, but also allows us to focus on a wide range
of different and very specific internal features and indicators, as well as to easily
perform extensive experiments in an automated way.

5.1 Settings of Experiment

The main purpose of all the experiments we are about to present is to show
capabilities of the model and algorithms we proposed. Although there are also
other existing approaches like the most related one by Bouchou et al. [18, 19,
5], they pose different assumptions, consider different expressiveness of schemata,
and may also produce different results. As a consequence, no direct comparison
with our solution would make a sense. Moreover, even if we mutually flattened
the considered assumptions, our approach would outperform simply according to
features and expected time complexities at the theoretical level.

Therefore, our objective is to demonstrate practical usability of our solution,
as well as to confirm or refuse behavior expectations we have from the theoretical
point of view. However, the core part of our work lies in a mutual comparison of all
the introduced correction strategies, execution approaches and signature handling
modes. We not only want to study their features, but we would especially like to
find right one correction configuration that performs the best.
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In particular, though the impact of enabled signatures is apparently crucial,
it is not obvious whether multi-threaded execution approaches may be more effi-
cient, nor it is easy to conclude for the refinement strategy, whether the required
overhead related to the scattered intent evaluation can still be overwhelmed by
savings gained because of the more extensive pruning. These are just some of the
questions we would like to answer.

5.1.1 Datasets

Data trees we used in all our experiments are based on the grammar we used
throughout the entire thesis in examples. Although we have provided its definition
in Example 2.8, we recall it right here once again.

Hence, let G0 = (N , T , S, P ) be a regular tree grammar such that N =
{A, B, C, DA, DB} is a set of nonterminal symbols, T = {a, b, c, d} a set of
terminal symbols, and S = {A, B} are the starting nonterminal symbols. The
set P contains the following production rules:

F1 = Fa,A = [ a, C.DA
∗ → A ],

F2 = Fb,B = [ b, DB
∗ → B ],

F3 = Fc,C = [ c, ε → C ],
F4 = Fd,DA

= [ d, C∗ → DA ] and
F5 = Fd,DB

= [ d, A|B|C → DB ].

As we have also already shown, G0 is a single type tree grammar, but not a
local tree grammar because of the presence of competing nonterminal symbols
DA and DB.

Despite one might say that this grammar is a bit simple (and yes, it was
our intention), it actually contains all the constructs we can encounter with –
not only the involved regular expressions contain all the introduced operators
(including the iteration ∗ as the most tricky one because of the possibility of
generating data trees of unlimited sizes to the width), but the grammar itself is
also recursive (which once again can lead to data trees of unlimited sizes, this time
to the depth). In other words, this grammar perfectly fulfills are requirements
and still allows us to perform more than just meaningful experiments.

Unless otherwise stated, all the data trees were generated are valid with re-
spect to G0. For this purpose we used our proprietary generator, which is also a
part of the Corrector implementation. It enabled us to have the complete con-
trol over the process of data trees generation, especially to generate data trees of
exactly the required sizes.

Before we move forward, let us now describe a few characteristics of data
trees. They will become useful later on in order to provide at least some basic
insight into the structure and nature of the data trees we used.

Definition 5.1 (Data Tree Characteristics). We define the following character-
istics for a data tree T = (D, lab, val):

• fanOutmin(T ) = minu∈(D\LeafNodes(D)) fanOut(u) as the minimal fan-out
of internal nodes of T ; in case D = {ε} we put fanOutmin(T ) = 0 and
when D = ∅ we put fanOutmin(T ) = ⊥.

99



• fanOutmax(T ) = maxu∈(D\LeafNodes(D)) fanOut(u) as the maximal fan-out
of internal nodes of T ; in case D = {ε} we put fanOutmax(T ) = 0 and
when D = ∅ we put fanOutmax(T ) = ⊥.

• depthmin(T ) = minu∈LeafNodes(D) depth(u) as the minimal depth of leaf nodes
of T .

• depthmax(T ) = maxu∈LeafNodes(D) depth(u) as the maximal depth of leaf
nodes of T .

Given a non-empty set of data trees T = {T1, . . . , Tn} for some n ∈ N, we
derive average values of the previous characteristics over T as follows:

• fanOutminavg (T ) = (
∑
T ∈T fanOut

min(T )) / |T | as an average minimal fan-
out of data trees in T ,

• fanOutmaxavg (T ) = (
∑
T ∈T fanOut

max(T )) / |T | as an average maximal fan-
out of data trees in T ,

• depthminavg (T ) = (
∑
T ∈T depth

min(T )) / |T | as an average minimal depth of
data trees in T ,

• depthmaxavg (T ) = (
∑
T ∈T depth

max(T )) / |T | as an average maximal depth of
data trees in T .

Example 5.1. Let us now return to our sample data tree T from Example 2.2
and Figure 2.3. To recall, T = (D, lab, val) with underlying nodes D = {ε, 0,
0.0, 1, 1.0, 2, 2.0, 2.1}, label function lab = {(ε, a), (0, x), (0.0, c), (1, d), (1.0, c),
(2, d), (2.0, c), (2.1, a)}, and value function val = ∅.

For this data tree T we can derive the following characteristics: fanOutmin(T )
= min{fanOut(ε), fanOut(0), fanOut(1), fanOut(2)} = min{3, 1, 1, 2} = 1
is the minimal fan-out of T , and analogously fanOutmax(T ) = 3 is the maxi-
mal fan-out of T . Next, depthmin(T ) = min{depth(0.0), depth(1.0), depth(2.0),
depth(2.1)} = min{3, 3, 3, 3} = 3 is the minimal depth of T , and finally
depthmax(T ) = 3 the maximal depth.

5.1.2 Measured Characteristics

In our experiments, we focused on four main groups of characteristics that we
believe are able to appropriately fulfill our evaluation expectations. First of all, we
measured the number of created tasks (and hence of correction intents requested
for the evaluation), since they represent a basic computation unit of the entire
correction process, and so they are important with respect to the anticipated
time complexity. To make the insight into the creation and evaluation of tasks
complete, we decided to study numbers of created tasks of different intent types
separately too.

The second group deals with characteristics of correction multigraphs; in par-
ticular, numbers of vertices and edges they comprise of, it means sizes of such
multigraphs in other words. It is worth noticing that the overall number of creat-
ed edges corresponds to the overall number of created correction intents, though
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some of them may not be requested for the evaluation at all when the handling
of signatures is enabled.

In fact, these intent evaluation requests deserve thorough attention as well.
This is true especially with respect to the refinement correction strategy, for
it increases the number of the required task calls on one hand because of the
evaluation scattered into refinement steps, but it also decreases this number at
the same time because of the applied vertical pruning.

Last but not least, execution times belong beyond doubt to standard charac-
teristics we certainly cannot omit. In the following definition we introduce all the
outlined characteristics more formally.

Definition 5.2 (Correction Characteristics). Assuming that T is a data tree to
be corrected with respect to a regular tree grammar G using a particular correc-
tion configuration Q ∈ (ΨStg ×ΨApp ×ΨSig) and that CreatedTasks(T ,G,Q) =
CreatedTasks(T ,G) for the configuration Q, we define the following correction
characteristics:

• tasks(T ,G,Q) = |CreatedTasks(T ,G,Q) | as the overall number of cre-
ated tasks regardless their intent types.

• taskst(T ,G,Q) = |CreatedTaskst(T ,G,Q) | as the number of created tasks
of a given intent type t ∈ Ω, where CreatedTaskst(T ,G,Q) is a set of all
the created tasks of a particular intent type t, i.e. CreatedTaskst(T ,G,Q)
= {K | K ∈ CreatedTasks(T ,G,Q), K = (R◦, phase, vars, quota, deps),
I = (id, type, A, L) and type = t}.

• vertices(T ,G,Q) =
∑
K∈CreatedTasks(T ,G,Q) |V ◦ | as the overall number of

explored vertices among all the created tasks, where V ◦ denotes a set of
vertices of a correction multigraph M◦ being constructed during the pro-
cessing of a task K ∈ CreatedTasks(T ,G,Q).

• verticesavg(T ,G,Q) = vertices(T ,G,Q) / |CreatedTasks(T ,G,Q) | as the
average number of explored vertices per correction multigraph.

• edges(T ,G,Q) =
∑
K∈CreatedTasks(T ,G,Q) |E◦ | as the overall number of ex-

plored edges among all the created tasks.

• edgesavg(T ,G,Q) = edges(T ,G,Q) / |CreatedTasks(T ,G,Q) | as the av-
erage number of explored edges per correction multigraph.

• calls(T ,G,Q) as the overall number of task calls, i.e. how many times exe-
cution of the corresponding correction routine correct(T ,G) (Algorithms 4.2,
4.6 and 4.8) has been requested for tasks from CreatedTasks(T ,G,Q).

• time(T ,G,Q) as the overall execution time required for processing KI•, i.e.
evaluating an intent repair RI• for the starting correction intent I•.

Given a non-empty set of data trees T = {T1, . . . , Tn} for some n ∈ N, we
derive average values of the previous characteristics over T as follows: for any
characteristic φ ∈ {tasks, taskstype, vertices, verticesavg, edges, edgesavg, calls,
time} we define φavg(T,G,Q) = (

∑
T ∈T φ(T ,G,Q)) / |T | as an average value of

φ over data trees from T .
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At this point let us note that not all of the described characteristics behave as
functions, i.e. their values are not always deterministic with respect to all the enu-
merated arguments, and so may return different values each time the correction
is involved. This is most obvious in case of the execution time time(T ,G,Q).
However and more surprisingly, though in very scarce circumstances and with
very limited impact, the number of task calls calls(T ,G,Q) may also slightly
vary in case of the multi-threaded execution approaches.

Anyway, to overcome these contingencies, and especially and more important-
ly to cope with the randomness hidden in the generated data trees themselves, we
always performed all the proposed analyses on a larger set of data trees, and then
computed average values of such characteristics to obtain more accurate results.

Furthermore, when execution times were measured, we always performed sev-
eral let us say warming-up executions at first, and also thrown away a small
number of the lowest as well as highest measured times to suppress the possibly
impact of anomalies.

Finally, it is worth of emphasizing that the execution times do not contain
the phase of input documents and grammars parsing, nor they involve the phase
of repair translation to edit sequences; in other words, only the correction phase
itself is measured to really underpin algorithms we deal with.

5.2 Results of Experiments

In the remaining parts of this chapter we discuss background and results of the
experiments we conducted. We first try to demonstrate how important impact
enabled signatures represent, and then we describe and compare pruning capa-
bilities of all the considered correction strategies. Once we understand the basic
principles, we look more deeply on the behavior of task, multigraph and execution
characteristics over a sequence of larger data trees. We also look at execution
times of all the promising correction configurations, and conclude with a view
into the scaling possibilities of the most efficient one.

5.2.1 Signature Modes

The first area we focus on is the importance of having signature handling en-
abled. In particular, we look at numbers of created tasks depending on different
correction strategies, always with disabled signatures on one hand, and enabled
on the other. We do not need to consider different execution approaches now,
since all of them would produce the same results.

For the purpose of answering the first outlined question, we created a dataset
DFA = 〈T FA100 〉 of 25 randomly generated data tree instances, all of them having
the size equal exactly to 100 nodes. Their average maximal fan-out is equal to
fanOutmaxavg (T FA100 ) = 4, average minimal depth depthminavg (T FA100 ) = 6, and average
maximal depth depthmaxavg (T FA100 ) = 11.

The results are presented in Table 5.1. Although the numbers of created tasks
in case of the refinement strategy seem to be very close to each other regardless the
signatures, there are much notable differences in case of the remaining correction
strategies. Especially in case of the default strategy with a difference of roughly
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Table 5.1: Created tasks for data trees of 100 nodes

Algorithm All Created tasks depending on intent types
configuration tasks Correct Insert Delete Repair Rename

DEF

D 84 720 1 62 441 18 200 1 867 2 210
E 421 1 21 100 147 151

0.5% 100.0% 0.0% 0.5% 7.9% 6.8%

EXP

D 6 716 1 2 265 3 981 204 263
E 400 1 21 100 147 130

6.0% 100.0% 0.9% 2.5% 72.1% 49.4%

RFN

D 507 1 223 100 100 83
E 289 1 5 100 100 83

57.0% 100.0% 2.2% 100.0% 100.0% 100.0%

two orders of magnitude. In other words, even for data trees of such very low
sizes, the impact of the enabled signatures might apparently be fundamental.

This observation becomes straightforward when looking at results of the sec-
ond experiment presented in Table 5.2, this time based on a dataset DSA =
〈T SA10 , T SA20 , . . . , T SA100 〉 of data trees of 10 different sizes ranging from 10 nodes
to 100 nodes. For each size we once again generated 25 random data tree in-
stances. Whereas we started with fanOutmaxavg (T SA10 ) = 3, depthminavg (T SA10 ) = 3 and
depthmaxavg (T SA10 ) = 4, we ended with data trees T SA100 of the same characteristics in
case of the already mentioned T FA100 .

As we can see in Figure 5.1, tasksavg(T SAi , G0, DEF-?-D) grows so fast for
i ∈ {10, 20, . . . , 100}, that even for a bit larger data trees we would not able to
obtain results in reasonable times at all. On the other hand, when signatures are
enabled, the number of created tasks seems to be reasonably low and linear with
respect to the size of processed data trees. Yet the best results are obtained in
case of the refinement strategy, as Figure 5.2 suggests.

Table 5.2: Created tasks for data trees of 10 to 100 nodes

DEF EXP RFN
Nodes

D E D E D E

10 1 694 61 384 58 51 34
20 5 514 101 940 95 100 61
30 11 125 141 1 581 133 151 89
40 18 358 181 2 214 172 203 119
50 26 856 221 2 931 210 254 147
60 35 441 261 3 624 247 303 175
70 42 198 301 4 279 285 354 203
80 54 540 341 5 120 322 403 230
90 76 916 381 6 001 363 458 261

100 84 720 421 6 716 400 507 289
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Figure 5.1: Created tasks for disabled signatures and trees of 10 to 100 nodes

Figure 5.2: Created tasks for enabled signatures and trees of 10 to 100 nodes
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Table 5.3: Created tasks for data trees of 1 000 nodes

Algorithm All Created tasks depending on intent types
configuration tasks Correct Insert Delete Repair Rename

DEF E 4 021 1 21 1 000 1 494 1 504

EXP E
3 737 1 21 1 000 1 494 1 221
93% 100% 100% 100% 100% 81%

RFN E
2 779 1 5 1 000 1 000 773
69% 100% 24% 100% 67% 51%

To conclude, having signature handling enabled, i.e. caching of computed
repairs and their reusing according to matching correction intent signatures is
definitely a must. Because of this observation, we will no longer work with dis-
abled signatures in the remaining tests, simply because we would not be able to
compute any results except for the refinement strategy.

5.2.2 Pruning Effect of Strategies

Now we switch to another dataset DFB = 〈T FB1k 〉 with 1 000 data trees instances,
all with right 1 000 nodes. Their average maximal fan-out is fanOutmaxavg (T FB1k )
= 5, average minimal depth depthminavg (T FB1k ) = 8, and average maximal depth
depthmaxavg (T FB1k ) = 15.

Our general goal for the following two tests is to study both horizontal and
vertical pruning capabilities of the correction strategies we introduced, i.e. their
different ability to reduce the number of created tasks, and therefore to increase
efficiency of the correction as a whole.

In Table 5.3 we have numbers of task for DFB, once again with a more fine
task counts of the particular intent types. According to our expectations, the
exploring strategy performs a bit better than the default one (the overall number
of created tasks tasksavg(T FB1k , G0, EXP-?-E) is reduced just to approximately
93% of the base tasksavg(T FB1k , G0, DEF-?-E)), and the refinement strategy even
better (only roughly 69% of tasksavg(T FB1k , G0, DEF-?-E) in case of tasksavg(T FB1k ,
G0, RFN-?-E)).

Without further details, these overall differences clearly have their inter-
pretable roots in tasks of distinct intent types; and so whereas for example the
number of delete tasks tasksdeleteavg (T FB1k , G0, ?-?-E) is the same for all the strate-
gies (and that is not a coincidence as we already know), notable pruning yields
can be attained especially in case of the repair and rename types (in case we
are interested in the absolute changes).

Table 5.4 works with data trees from DFB as well, but provides different
characteristics that also confirms the pruning capabilities of both the improved
strategies – this time with respect to average sizes of correction multigraphs.

As we might already expect at this moment, the refinement strategy out-
performs both the other strategies even from this point of view. Not only the
overall number of explored vertices verticesavg(T FB1k , G0, RFN-?-E) and edges
(i.e. correction intents) edgesavg(T FB1k , G0, RFN-?-E) is reduced only to 34% and
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Table 5.4: Multigraph characteristics for data trees of 1 000 nodes

Algorithm Created Explored vertices Explored edges
configuration tasks Total Average Total Average

DEF E 4 021 15 029 3.74 22 397 5.57

EXP E
3 737 13 904 3.72 15 366 4.11
93% 93% 99% 69% 74%

RFN E
2 779 5 141 1.85 4 961 1.79
69% 34% 49% 22% 32%

22% respectively when having the default strategy as a baseline, but the average
sizes of multigraphs are significantly reduced too. In particular, whereas correc-
tion multigraphs in case of the default strategy had on average 3.74 vertices and
5.57 edges, these numbers have been dwindled up to just verticesavgavg(T FB1k , G0,
RFN-?-E) = 1.85 vertices and edgesavgavg(T FB1k , G0, RFN-?-E) = 1.79 edges per a
correction multigraph.

Having the previous observations in mind, we can safely conclude that the
pruning impact of the refinement strategy is more than significant. This corre-
sponds to our expectations from the theoretical point of view as well as to our
original motivation. However, it is another question which configuration will ac-
tually provide the lowest execution times. In other words, one thing is the number
of created tasks and its reduction, a completely other thing is the overhead related
to the shattered evaluation, as we have already outlined.

5.2.3 Features of Strategies

Before we move toward the execution times, we still keep focused on value-based
characteristics for a while. In order to understand how the structure of created
tasks and multigraph sizes behave on larger documents. For this purpose we
generated another sequence of data trees, this time of sizes starting at 1 000
nodes and ending at 10 000 nodes.

We have a dataset DSB = 〈T SB1k , T SB2k , . . . , T SB10k 〉, always having 100 data trees
for each particular size. While starting with fanOutmaxavg (T SB1k ) = 7, depthminavg (T SB1k )
= 7 and depthmaxavg (T SB1k ) = 12, we end with fanOutmaxavg (T SB10k ) = 7, depthminavg (T SB10k )
= 9 and depthmaxavg (T SB10k ) = 15.

We first target at results presented in Table 5.5, i.e. numbers of created
tasks tasksavg(T SBi , G0, ?-?-E) for i ∈ {1k, . . . , 10k}. Once again, regardless
the chosen execution approach, the results would remain untouched. The first
conclusion that could be made is that the overall number of created tasks is linear
with respect to the data tree size. This is apparent especially when looking at
Figure 5.4.

More interesting results, however, are depicted in Figure 5.3, where we con-
sider all the intent types t ∈ Ω separately and study the differences between
taskstavg(T SBi , G0, ?-?-E) among the strategies.

106



Table 5.5: Created tasks for data trees of 1 000 to 10 000 nodes

Created Created tasks depending on intent types
Nodes

tasks Correct Insert Delete Repair Rename

DEF correction strategy:

1 000 4 021 1 21 1 000 1 517 1 481
2 000 8 021 1 21 2 000 3 051 2 947
3 000 12 021 1 21 3 000 4 596 4 402
4 000 16 021 1 21 4 000 6 120 5 878
5 000 20 021 1 21 5 000 7 606 7 392
6 000 24 021 1 21 6 000 9 116 8 882
7 000 28 021 1 21 7 000 10 660 10 338
8 000 32 021 1 21 8 000 12 205 11 793
9 000 36 021 1 21 9 000 13 756 13 242

10 000 40 021 1 21 10 000 15 288 14 710

EXP correction strategy:

1 000 3 661 1 21 1 000 1 517 1 122
2 000 7 267 1 21 2 000 3 051 2 193
3 000 10 892 1 21 3 000 4 596 3 274
4 000 14 534 1 21 4 000 6 120 4 392
5 000 18 232 1 21 5 000 7 606 5 604
6 000 21 877 1 21 6 000 9 116 6 738
7 000 25 443 1 21 7 000 10 660 7 760
8 000 29 043 1 21 8 000 12 205 8 816
9 000 32 630 1 21 9 000 13 756 9 852

10 000 36 240 1 21 10 000 15 288 10 930

RFN correction strategy:

1 000 2 743 1 5 1 000 1 000 737
2 000 5 418 1 5 2 000 2 000 1 412
3 000 8 142 1 5 3 000 3 000 2 136
4 000 10 871 1 5 4 000 4 000 2 865
5 000 13 672 1 5 5 000 5 000 3 666
6 000 16 410 1 5 6 000 6 000 4 404
7 000 19 051 1 5 7 000 7 000 5 045
8 000 21 729 1 5 8 000 8 000 5 723
9 000 24 384 1 5 9 000 9 000 6 378

10 000 27 067 1 5 10 000 10 000 7 061
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(a) Created tasks of type correct

(b) Created tasks of type insert

(c) Created tasks of type delete

(d) Created tasks of type repair

(e) Created tasks of type rename

Figure 5.3: Created tasks of different types for trees of 1 000 to 10 000 nodes
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Figure 5.4: Created tasks of all types for trees of 1 000 to 10 000 nodes

Whereas the number of tasks of the type correct is not surprising, since it is
always equal to 1 by definition, tasks of other intent types are worth of studying.
First, the number of insert tasks is constant with respect to data tree sizes,
because it only depends on the grammar characteristics. In case of the delete

type, the number of tasks is equal to the number of nodes in data trees. Finally,
repair and rename both depend on the grammar as well as data tree sizes. Just
note that although the refinement strategy prunes more than the exploring one
in general, the particular results may not necessarily always look exactly like the
presented ones.

Furthermore, to make the mutual comparison easier to comprehend in Fig-
ure 5.3, we also enriched the individual figures (in case of insert, repair and
rename types) with gray polygons that mark the boundaries of the worst and
best results among strategies.

Now we shortly return to the multigraph characteristics and inspect their
values on the currently assumed sequence dataset DSB. According to the data
presented in Table 5.6, the overall number of explored vertices verticesavg(T SBi ,
G0, ?-?-E) and edges edgesavg(T SBi , G0, ?-?-E) for i ∈ {1k, . . . , 10k} remains
linear with respect to data tree sizes, which is in direct compliance with the
overall number of created tasks tasksavg(T SBi , G0, ?-?-E).

More interesting observation (but not from the theoretical perspective) is that
average sizes of multigraphs remain nearly the same, i.e. both verticesavgavg(T SBi ,
G0, ?-?-E) and edgesavgavg(T SBi , G0, ?-?-E) are independent on data tree sizes.

Figure 5.5 only illustrates this finding, while at the same time confirms the so
far winning position of the refinement strategy.
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Table 5.6: Multigraph characteristics for data trees of 1 000 to 10 000 nodes

Created Explored vertices Explored edges
Nodes

tasks Total Average Total Average

DEF correction strategy:

1 000 4 021 15 028 3.74 22 378 5.57
2 000 8 021 30 028 3.74 44 716 5.57
3 000 12 021 45 027 3.75 67 077 5.58
4 000 16 021 60 028 3.75 89 442 5.58
5 000 20 021 75 028 3.75 111 842 5.59
6 000 24 021 90 027 3.75 134 211 5.59
7 000 28 021 105 028 3.75 156 532 5.59
8 000 32 021 120 027 3.75 178 871 5.59
9 000 36 021 135 028 3.75 201 198 5.59

10 000 40 021 150 027 3.75 223 539 5.59

EXP correction strategy:

1 000 3 661 13 619 3.72 15 051 4.11
2 000 7 267 27 171 3.74 30 219 4.16
3 000 10 892 40 723 3.74 45 318 4.16
4 000 14 534 54 317 3.74 60 362 4.15
5 000 18 232 68 035 3.73 75 379 4.13
6 000 21 877 81 648 3.73 90 456 4.13
7 000 25 443 95 098 3.74 105 589 4.15
8 000 29 043 108 621 3.74 120 757 4.16
9 000 32 630 122 130 3.74 135 940 4.17

10 000 36 240 135 687 3.74 151 109 4.17

RFN correction strategy:

1 000 2 743 4 997 1.82 4 899 1.79
2 000 5 418 9 887 1.82 9 713 1.79
3 000 8 142 14 827 1.82 14 605 1.79
4 000 10 871 19 785 1.82 19 494 1.79
5 000 13 672 24 927 1.82 24 479 1.79
6 000 16 410 29 943 1.82 29 374 1.79
7 000 19 051 34 761 1.82 34 133 1.79
8 000 21 729 39 639 1.82 38 958 1.79
9 000 24 384 44 466 1.82 43 744 1.79

10 000 27 067 49 366 1.82 48 571 1.79

110



(a) Average number of vertices in correction multigraphs

(b) Average number of edges in correction multigraphs

Figure 5.5: Multigraph characteristics for data trees of 1 000 to 10 000 nodes
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Figure 5.6: Task calls for RFN-N1-E and trees of 1 000 to 10 000 nodes

The last characteristic over DSB we focus on is the number of task calls,
i.e. callsavg(T SBi , G0, ?-?-E). In case of the default and exploring strategy, the
number of calls is identical to the overall number of created tasks, since tasks
are created only when they are about to be requested, and their evaluation is
always complete. On the other hand, in case of the refinement strategy with the
evaluation scattered into smaller steps, the number of calls starts to differ.

As we see in Table 5.7 as well as in Figure 5.6, callsavg(T SBi , G0, RFN-?-E)
remains linear with respect to data tree sizes. Furthermore, the number of calls is
notably lower than the number of all created tasks tasksavg(T SBi , G0, RFN-?-E).

This necessarily means that there exists a significant amount of tasks that
have not been requested for execution et all, i.e. the first cost estimates based
on associated repairing instructions were sufficient to reject the given ways of
correction as unpromising immediately after their first consideration. And since
there most likely exist tasks that have been called for more than just one time,
the number of such quickly rejected unpromising task will certainly not be lower
than the derived minimal 37%. This finding means that we have confirmed one of
our important expectations and motivations for the refinement strategy as such.

Finally, we also shortly look at another, though not yet introduced, charac-
teristic dealing with the number of runs. It is similar to the number of calls, but
it is technically related only to the forwarding execution approaches in general,
since these approaches force to shatter the intent evaluation into smaller pieces
at the implementation level (similarly as we discussed it in case of the refinement
strategy, but from a different reason and toward a different end).

The number of runs tells how many times the given correction procedure has
been invoked, even in the bottom-up direction when backtracking, i.e. returning
back after having the requested task execution accomplished (whereas it was a
complete or just partial evaluation). Therefore, this number is basically two times
higher than the number of calls, but can be a bit lower in case of the FN approach
because of the execution performed by multiple threads concurrently.
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Table 5.7: Task calls and runs for trees of 1 000 to 10 000 nodes

Created Task Task runs depending on approaches
Nodes

tasks calls N1, I1, IN F1 FN

DEF correction strategy:

1 000 4 021 4 021 4 021 8 041 7 676
2 000 8 021 8 021 8 021 16 041 15 309
3 000 12 021 12 021 12 021 24 041 22 913
4 000 16 021 16 021 16 021 32 041 30 510
5 000 20 021 20 021 20 021 40 041 38 066
6 000 24 021 24 021 24 021 48 041 45 658
7 000 28 021 28 021 28 021 56 041 53 309
8 000 32 021 32 021 32 021 64 041 60 936
9 000 36 021 36 021 36 021 72 041 68 567

10 000 40 021 40 021 40 021 80 041 76 186

EXP correction strategy:

1 000 3 661 3 661 3 661 7 322 6 923
2 000 7 267 7 267 7 267 14 533 13 720
3 000 10 892 10 892 10 892 21 784 20 517
4 000 14 534 14 534 14 534 29 068 27 355
5 000 18 232 18 232 18 232 36 464 34 251
6 000 21 877 21 877 21 877 43 753 41 080
7 000 25 443 25 443 25 443 50 885 47 841
8 000 29 043 29 043 29 043 58 085 54 598
9 000 32 630 32 630 32 630 65 259 61 372

10 000 36 240 36 240 36 240 72 480 68 173

RFN correction strategy:

1 000 2 743 1 001 1 001 2 001 2 001
2 000 5 418 2 001 2 001 4 001 4 001
3 000 8 142 3 001 3 001 6 001 6 001
4 000 10 871 4 001 4 001 8 001 8 001
5 000 13 672 5 001 5 001 10 001 10 001
6 000 16 410 6 001 6 001 12 001 12 001
7 000 19 051 7 001 7 001 14 001 14 001
8 000 21 729 8 001 8 001 16 001 16 001
9 000 24 384 9 001 9 001 18 001 18 001

10 000 27 067 10 001 10 001 20 001 20 001
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5.2.4 Execution Times

At this moment we have successfully demonstrated that the pruning impact of
the refinement strategy seems to be the most promising. But we still need to
take particular execution approaches into account and study the execution times
to be really able to put everything together and make the final comparison.

To enable interpreting the measured execution times in a broader scope, we
should describe parameters of the system we used for the experiments. In par-
ticular, it was a casual laptop Dell Latitude E5510 with Intel Core i5 M560,
2.67 GHz, 2 cores, hyper threading, 64-bit processor, 4 GB 1333 MHz DDR3
system memory with Windows 7 Professional SP1 and Java Standard Edition 8
Update 25 runtime environment.

We measured the times over DSB, i.e. a sequence 〈T SB1k , T SB2k , . . . , T SB10k 〉 of
data trees of sizes ranging from 1 000 to 10 000 nodes as in the previous tests.
However, we used only the first 20 data tree instances of each size in this ex-
periment. We always first performed 3 warming-up executions which we did not
consider, and then we performed 12 measured executions, from which we removed
1 maximal and 1 minimal. Thus we finally obtained 10 measured executions that
we included into the average time characteristic timeavg(T SBi , G0, ?-?-E).

All the acquired execution times for all the correction strategies and execution
approaches with enabled handling of signatures are shown in Table 5.8. In order
to present the values in a more convenient and interpretable way, we decided to
put the results into three separate figures, one for each of the correction strategies.
So we have Figure 5.7 for the default strategy, Figure 5.8 for the exploring, and,
finally, Figure 5.9 for the refinement strategy.

Each of these figures nicely illustrates the comparison of all the execution
approaches within the given strategy. To make the mutual comparison among
strategies possible as well, we also added a gray polygon in each of the figures
to mark the boundaries of the best configuration (RFN-N1-E) and the worst one
(DEF-I1-E).

As we can see from the figures, it is surprisingly difficult to make any gener-
al conclusion from the measured times. Anyway, contrary to our expectations,
though multi-threaded alternatives of the invoking IN and forwarding FN execu-
tion approaches performed better than their single thread alternatives I1 and F1

in case of the default and exploring strategies, they did not in the refinement
strategy. And all in all, they always performed worse than the most simple and
straightforward nesting single approach N1.

In other words, the best execution approach for all the strategies seems to be
the nesting single approach. The reason might be based on two main explanations.
First, the required synchronization between individual threads probably became
a bottleneck of the entire correction. Second, in case of the refinement strategy,
the scattering of the evaluation brought only too small amounts of work that the
overhead related to management of threads (though harnessing a pool of prepared
worker threads) simply prevailed.
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Table 5.8: Times for data trees of 1 000 to 10 000 nodes

Times in milliseconds depending on execution approaches
Nodes

N1 I1 IN F1 FN

DEF correction strategy:

1 000 41 215 65 174 69
2 000 81 430 121 321 136
3 000 125 771 192 605 203
4 000 170 933 282 633 265
5 000 234 1 195 372 990 348
6 000 329 1 604 470 1 395 456
7 000 393 1 941 591 1 790 561
8 000 651 2 330 810 2 239 814
9 000 814 2 851 1 085 2 617 1 030

10 000 977 3 200 1 270 2 821 1 256

EXP correction strategy:

1 000 31 232 135 148 50
2 000 66 330 99 257 101
3 000 105 483 167 408 142
4 000 142 759 221 448 191
5 000 187 735 267 669 244
6 000 233 1 004 347 846 297
7 000 291 1 226 410 1 055 373
8 000 346 1 628 507 1 492 437
9 000 423 1 965 560 1 561 521

10 000 602 2 047 748 2 000 700

RFN correction strategy:

1 000 18 98 116 70 51
2 000 27 144 169 92 129
3 000 43 240 261 153 207
4 000 59 294 285 166 242
5 000 76 342 384 211 348
6 000 91 488 493 254 340
7 000 110 538 542 322 498
8 000 132 599 694 425 561
9 000 147 657 757 473 617

10 000 164 831 881 482 577
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Figure 5.7: Times for the DEF strategy and trees of 1 000 to 10 000 nodes

Figure 5.8: Times for the EXP strategy and trees of 1 000 to 10 000 nodes
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Figure 5.9: Times for the RFN strategy and trees of 1 000 to 10 000 nodes

Figure 5.10: Times for the N1 approach and trees of 1 000 to 10 000 nodes
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Table 5.9: Times for the N1 approach and data trees of 1 000 to 10 000 nodes

Times in milliseconds depending on correction strategies
Nodes

DEF EXP RFN

1 000 41 31 76% 18 44%
2 000 81 66 81% 27 33%
3 000 125 105 84% 43 34%
4 000 170 142 84% 59 35%
5 000 234 187 80% 76 32%
6 000 329 233 71% 91 28%
7 000 393 291 74% 110 28%
8 000 651 346 53% 132 20%
9 000 814 423 52% 147 18%

10 000 977 602 62% 164 17%

Anyway, the winning configuration apparently is the RFN-N1-E, as we can see
from the direct comparison presented in Table 5.9 as well as in Figure 5.10, where
only execution times for the nesting single execution approaches were considered
among all the strategies.

5.2.5 Effect of Invalidity Extents

Until now we have assumed that all the data trees were valid with respect to G0.
But what effect could invalidity have on the overall correction process? We try
to focus on this question right in the following paragraphs.

First, let us shortly describe how we have created such invalid data trees. We
simply used our generator and randomly changed node labels (element names)
to a specific and certainly not permitted name (in particular x) with a given
parameterized probability – invalidity extent.

Table 5.10: Created tasks for invalid data trees of 1 000 nodes

Invalidity Created Created tasks depending on intent types
extent tasks Correct Insert Delete Repair Rename

0 % 2 733 1 5 1 000 1 000 727
5 % 2 855 1 13 1 000 975 866

10 % 2 953 1 13 1 000 953 986
15 % 3 051 1 13 1 000 931 1 106
20 % 3 145 1 13 1 000 905 1 226
25 % 3 234 1 13 1 000 873 1 346
30 % 3 317 1 13 1 000 839 1 464
35 % 3 395 1 13 1 000 799 1 582
40 % 3 472 1 13 1 000 755 1 703
45 % 3 542 1 13 1 000 707 1 820
50 % 3 609 1 13 1 000 657 1 938
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Figure 5.11: Created tasks for invalid data trees of 1 000 nodes

Figure 5.12: Created typed tasks for invalid data trees of 1 000 nodes
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Table 5.11: Multigraph characteristics for invalid data trees of 1 000 nodes

Invalidity Created Explored vertices Explored edges
extent tasks Total Average Total Average

0 % 2 733 4 981 1.82 4 884 1.79
5 % 2 855 6 202 2.17 6 105 2.14

10 % 2 953 7 126 2.41 7 186 2.43
15 % 3 051 7 952 2.61 8 274 2.71
20 % 3 145 8 680 2.76 9 293 2.95
25 % 3 234 9 348 2.89 10 268 3.18
30 % 3 317 9 935 3.00 11 174 3.37
35 % 3 395 10 473 3.08 12 032 3.54
40 % 3 472 10 978 3.16 12 867 3.71
45 % 3 542 11 435 3.23 13 644 3.85
50 % 3 609 11 863 3.29 14 398 3.99

In all the invalidity test scenarios we worked with a dataset DIA = 〈T IA0.00,
T IA0.05, T IA0.10, . . . , T IA0.50 〉 of data trees having exactly 1 000 nodes each, but with
different invalidity extents. So, whereas data trees in T IA0.00 are perfectly valid,
data trees in T IAi have on the other hand the introduced invalidity extent equal
to i ∈ {0.00, 0.05, . . . , 0.50}. Each particular set contains 500 instances in order
to obtain more accurate average characteristics once again.

To be complete, the average maximal fan-out of all data trees inDIA regardless
the invalidity extent is equal to fanOutmaxavg (T IAi ) = 7, average minimal depth
depthminavg (T IAi ) = 7 too, and average maximal depth depthmaxavg (T IAi ) = 11.

Since we have already identified the most efficient correction configuration to
be the RFN-N1-E, we perform the following experiments using right this configura-
tion only, i.e. we are no longer interested in the remaining execution approaches,
nor correction strategies.

Figure 5.13: Multigraph characteristics for invalid data trees of 1 000 nodes

120



Numbers of the created tasks (including their structure according to individual
intent types) is presented in Table 5.10. As we see, the higher the invalidity extent,
the higher the overall number of tasks tasksavg(T IAi , G0, RFN-N1-E). However,
more interesting results can be observed in case of the repair and rename intent
types. Whereas the former one tasksrepairavg (T IAi , G0, RFN-N1-E) decreases (since
repairing of the introduced x nodes is no longer the cheapest correction option),
the latter one tasksrenameavg (T IAi , G0, RFN-N1-E) thus increases (and increases faster).
This mutual relationship is easy to see in Figure 5.12, whereas Figure 5.11 depicts
the overall number of the created tasks.

Multigraph characteristics for the dataset DIA are then listed in Table 5.11. It
is obvious that although both the average numbers of vertices verticesavgavg(T IAi , G0,
RFN-N1-E) and edges edgesavgavg(T IAi , G0, RFN-N1-E) for i ∈ {0.00, 0.05, . . . , 0.50}
increase with the rising extent of invalidity, this rise is no worse than linear with
respect to the invalidity, i.e. does not cause any difficulties that could notably
affect the behavior of the whole correction as such. For clarity, both the yet
discussed average multigraph size dependencies are the subject of Figure 5.13.

Table 5.12: Times and task calls for invalid data trees of 1 000 nodes

Invalidity Created Explored Task Task Execution
extent tasks edges calls runs times

0 % 2 733 4 884 1 001 1 001 13
5 % 2 855 6 105 2 548 2 548 20

10 % 2 953 7 186 4 031 4 031 26
15 % 3 051 8 274 5 275 5 275 32
20 % 3 145 9 293 6 324 6 324 37
25 % 3 234 10 268 7 261 7 261 43
30 % 3 317 11 174 7 996 7 996 47
35 % 3 395 12 032 8 609 8 609 50
40 % 3 472 12 867 9 136 9 136 54
45 % 3 542 13 644 9 573 9 573 57
50 % 3 609 14 398 9 940 9 940 60

Let us now focus on Table 5.12 with both the execution characteristics. Al-
though the number of executed task calls callsavg(T IAi , G0, RFN-N1-E) grows with
respect to the extent of invalidity and even exceeds the number of all created
tasks tasksavg(T IAi , G0, RFN-N1-E) according to Figure 5.14, this growth is once
again in very reasonable boundaries. Finally in Figure 5.15, the execution times
timesavg(T IAi , G0, RFN-N1-E) are depicted (only for the first 100 data trees from
each T IAi , 3 ignored executions, and then 10 measured ones without extremes).

To conclude the previous experiments, though the extent of invalidity gen-
erally influences the performance of the correction algorithm (in particular the
considered RFN-N1-E), this influence is not worse than linear, and so more than
acceptable. Especially when we realize that invalidity extents higher than let us
say 10% imply data trees probably only too inconsistent.
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Figure 5.14: Task calls for invalid data trees of 1 000 nodes

Figure 5.15: Times for invalid data trees of 1 000 nodes
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5.2.6 Scaling Perspectives

Last but not least, we present results of yet another experiment – this time dealing
with the efficiency possibilities of the RFN-N1-E configuration even for very large
data trees.

For this purpose assume we have a dataset DSC = 〈T SC10k , T SC20k , . . . , T SC100k 〉 of
data trees of sizes starting at 10 000 nodes and ending at 100 000 nodes. For each
particular size we generated 100 data tree instances and their basic characteristics
are as follows: the average maximal fan-out fanOutmaxavg (T SC10k ) = 13, average
minimal depth depthminavg (T SC10k ) = 8 and average maximal depth depthmaxavg (T SC10k ) =
11 for the smallest data trees, and fanOutmaxavg (T SC100k) = 13, depthminavg (T SC100k) = 9
and depthmaxavg (T SC100k) = 14 for the largest ones.

Since measuring of the times would be affected by computing all the remaining
value-based characteristics, we first focused only on them, and in a separate test
scenario we detected the execution times themselves. For them we always worked
with the first 50 data tree instances only, while performing 3 ignored start-up
executions and then 7 measured ones, from which 5 remained for the final results
after having 1 minimal and 1 maximal extremes ignored too.

All the obtained scaling results are presented in Table 5.13. Without any
further discussion required, all our previously accepted general conclusions related
to the task numbers, multigraph sizes and task calls are still valid.

The execution times are then depicted in Figure 5.16. They still seem to be
nearly linear, which only confirms our theoretical expectations.

Figure 5.16: Times for RFN-N1-E and trees of 10 000 to 100 000 nodes
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Table 5.13: Scaling characteristics for data trees of 10 000 to 100 000 nodes

Created Graph averages Task Execution
Nodes

tasks Vertices Edges calls times

10 000 25 243 1.79 1.82 10 001 141
20 000 51 938 1.76 1.82 20 001 345
30 000 80 406 1.78 1.80 30 001 783
40 000 109 092 1.79 1.79 40 001 1 277
50 000 134 768 1.80 1.79 50 001 1 713
60 000 158 717 1.79 1.80 60 001 2 244
70 000 182 651 1.79 1.81 70 001 2 583
80 000 206 481 1.79 1.81 80 001 3 057
90 000 230 673 1.79 1.82 90 001 3 505

100 000 255 263 1.79 1.82 100 001 4 409

To summarize all the performed experiments presented in this work, we first
concluded that having signatures enabled is no doubt a fundamental requirement
to obtain a correction algorithm that would be usable in practice.

Then we also compared the pruning capabilities of all the correction strategies
and confirmed our initial expectation that the refinement strategy might be the
most efficient one.

However, it was no sooner until we performed the execution times tests, so we
could make our final conclusion that the winning configuration that outperforms
all the remaining ones, deals more than appropriately with different extents of
invalidity, and also scales well at the same time, is really built on top of the re-
finement strategy – in particular the RFN-N1-E configuration utilizing the nesting
single execution approach.
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6. Conclusion

XML documents and related technologies represent one of the most widespread
ways of interchanging and managing data on the contemporary Web. However, its
size, distributed, and dynamic nature, as well as mere aspects of human behavior
often cause that these XML documents contain various inconsistency issues.

Though they span from the low level well-formedness to complex integrity
constraints, we focused on the problem of the validity. In particular, structural
invalidity with respect to schemata expressed by constructs of DTD and XSD
(XML Schema) languages. In this thesis we presented results of our research
dealing with the problem of the correction of the invalid XML documents, directly
covering our former publications [83, 76, 86, 75, 85, 84].

Having a potentially invalid XML document modeled as a data tree, and a
schema modeled as a regular tree grammar, our goal is to find all its corrections,
i.e. valid data trees that are as close as possible to the original data tree. For
this purpose we introduced a set of edit operations that allow us to add new
leaf nodes, remove existing ones, or change their labels. Composing these edit
operations into sequences, we are able to insert entire new subtrees, delete existing
ones, or repair them. Thus we achieve a mechanism that enables us to transform
invalid data trees into valid ones.

Given a data tree T and a regular tree grammar G, we formally want to find
a set argminT2∈L(G) dist(T , T2), i.e. the set of all the valid data trees that have
the minimal possible distance from T .

The provided data tree T is processed from its root node ε toward leaves.
Beginning with the starting correction intent I• responsible for the correction
of this root node ε with respect to a set S of starting nonterminal symbols of
grammar G, we then recursively invoke other nested correction intents responsible
for dealing with simpler subproblems.

The evaluation goal of each particular correction intent I is to correct a se-
quence u of original siblings nodes with respect to a particular grammar context
C that describes the allowed content model via a regular expression r. All the
horizontal actions we can consider for this purpose are directly motivated by the
possibilities of the introduced edit operations, and transition function δ of the cor-
responding finite automaton Ar capable of recognizing all the words belonging to
the language L(r).

However, we do not dynamically traverse the state space of such automaton
and generate the allowed sequences one by one, step by step. Instead, we rep-
resent them statically within a correction multigraph MI . This structure then
immediately allows us to transform the problem of node sequence u correction to
the problem of finding the shortest correction paths Pmin

vS ,VT
. Once they are found,

they are encapsulated into a sequence repair NI first, and then to an intent repair
RI in the end.

Having backtracked to the very beginning, i.e. having found the intent repair
RI• for the starting correction intent I•, we have successfully corrected the entire
data tree T . If required at all, the intent repair RI• can be unfolded to obtain
a set of edit operations fix(RI•) that can be applied to the original data tree T
to explicitly acquire all the corrected data trees from argminT2∈L(G) dist(T , T2).
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Despite the correction model is built on top of a plain idea of recursive pro-
cessing, there are several difficulties that needed to be appropriately taken into
account. Starting with competing nonterminal symbols in grammars, and so the
possibility of existence of more interpretation trees when resolving the validity,
we also had to be aware of recursive production rules. And even when grammars
as such are consistent, which means that they do not lead to empty data tree
languages, they still may contain inconsistent production rules in general, as well
as reachable inconsistent production rules in particular.

Also note that regular expressions in production rules themselves may also
represent empty regular languages. However, the main difficulty is that these
regular expressions are over the alphabet of nonterminal symbols, whereas labels
of data tree nodes are based on terminal symbols. Another issue is related to reg-
ular expressions that are not 1-unambiguous. In this case we may not be able to
directly construct a corresponding finite automaton that would be deterministic,
though each nondeterministic one can always be transformed into a deterministic
one. Anyway, even when we have a deterministic automaton where the transition
function always offers at most one possibility for each particular input symbol,
there can be cycles, loops, as well as no reachable accepting states, or more of
them on the contrary.

However, the key component of the whole correction model is the problem of
searching for the shortest correction paths themselves. In order to find them in a
given correction multigraph, we have to be provided with costs of all the relevant
edges, and so the overall correction costs of all the involved nested correction
intents. In other words, in order to evaluate a particular correction intent, we
need to assume that the subproblems have already been evaluated.

The fundamental idea of the efficient evaluation of correction intents lies in
the concept of intent signatures. They allow us to avoid repeated evaluations
when it is obvious from the theoretical point of view that the resulting intent
repair structures simply have to be identical.

Besides, we also introduced three correction strategies – different ways how
the shortest correction paths are in particular being found. Whereas the default
strategy always constructs the entire correction multigraphs and only then starts
searching for the paths themselves, the exploring strategy discovers only those
parts of the multigraphs that really need to be considered to ensure that all the
required paths are still found.

The most extended strategy is the refinement one. On the contrary to both
the previous strategies, it is able to rely only on partially evaluated nested cor-
rection intents, and so only on estimates of their overall correction costs. As a
consequence, it not only incorporates the horizontal pruning idea of the exploring
strategy, but it is also able to prune unpromising correction intents even to the
depth of their recursive nesting.

Finally, we also considered a set of execution approaches, i.e. different ways
how the model and strategies can be implemented in practice using the available
programming and system constructs. Whereas the nesting approach uses direct
recursive calls of the correction procedures, the nesting and forwarding approaches
utilize worker threads to which correction tasks are being assigned in order to be
evaluated.
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Having introduced two signatures modes (D, E), three correction strategies
(DEF, EXP, RFN), and five execution approaches (N1, I1, IN, F1, FN), we obtained
a whole set of particular algorithm configurations, i.e. particular correction al-
gorithm implementations. Despite not all of them make sense even from the
theoretical point of view, several of them proved to perform well in practice, as
we have shown in our thorough experimental evaluation.

Focusing on a wide range of general characteristics dealing with numbers of
created tasks or features of correction multigraphs, as well as execution times,
we first confirmed the intrinsic importance of the enabled handling of signatures
and caching of the already evaluated intent repairs. Then we mutually compared
all the individual configurations, and concluded that the most efficient one is
RFN-N1-E, i.e. the refinement strategy with the nesting single execution approach
with the enabled signatures.

Although we originally started with XML documents and their DTD and
XSD schemata, we eventually managed to extend our model to deal with a more
general issue – the problem of the structural correction of trees with respect to
regular tree grammars. From the abstract point of view, the main complexity
of our entire solution is related to the efficient search for the shortest paths in
recursively nested multigraphs.

Beside the practical motivation in the correction of XML documents them-
selves, our model and algorithms are directly linked to the similarity among trees,
and trees with respect to tree languages. Therefore it is connected to a wide range
of applications like integration and interchange of XML data, searching and com-
position of web services, querying over inconsistent data, classification or ranking
of XML documents, as well as document and schema evolution.

Last but not least, we summarize all the important features and contributions
of the correction model and algorithms we proposed.

• First of all, our correction model is the only one that supports the full
expressive power of the regular tree grammars, where competing nontermi-
nal symbols may occur without limitations. On the contrary, the approach
by Suzuki [81] assumes single-type tree grammars, and the approaches by
Boobna and de Rougemont [16] and Bouchou et al. [18] even more restricted
local tree grammars.

• Moreover, our correction model can also handle even grammars that are
inconsistent or contain useless production rules, as well as it can work with
all the regular expressions, and not just with those that are 1-unambiguous
(as required by both DTD and XML Schema languages).

• Regardless the particular algorithm configuration we choose, we are always
able to find all the minimal corrections. This means that we are able to
find them regardless the extent of invalidity of the original data trees to be
corrected. While [16] also aims at finding the minimal corrections, it can
only be successful when the data trees are invalid only a bit. Next, [18]
aims at finding all the corrections within a given similarity threshold, but
if this threshold is set too low, no correction is found at all. Finally, [81]
searches for the k-closest corrections.
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• We do not require to be provided with any parameter in order to commence
and manage the correction. On the other hand, [18] requires the already
mentioned similarity threshold parameter in order to deal with potentially
infinite loops caused by iterations in regular expressions or by recursive
production rules. Unfortunately, it is not easy to appropriately set a value
of this threshold because it is not related to the extent of invalidity. If too
small, no corrections are found; if unnecessarily high, only too high and
unacceptable efficiency impact can be observed.

• Although [18] as well as [81] generate sequences of edit operations through
which the corrected data trees can directly be obtained, our correction mod-
el does not need to generate them explicitly in order to find the corrections
themselves. In other words, we encode all the found corrections within
compact and recursively nested structures of intent repairs. Only when the
user is really interested in enumerating the sequences, we obtain them by
unfolding and translating the intent repairs. This solution represents an-
other important efficiency improvement in case of data trees with more and
mutually independent validity issues with more potential local corrections.

• We implemented all the proposed algorithm configurations and made this
implementation including all the source files publicly available [82]. Sim-
ilarly, both the executable application and source codes are available for
[18]. However, this is not the case of [16], nor [81].

• When the handling of signatures is enabled, the worst-case time complexity
of all our correction algorithms is polynomial with respect to the size of da-
ta trees measured in a number of nodes. And when the maximal observed
fan-out is sharply lower than the overall number of nodes, the most efficient
configuration RFN-N1-E tends to be even nearly linear in practice. Where-
as [16] was evaluated on data trees of 800 nodes, [18] assumed 450 nodes.
And while the latter approach led to execution times in the order of min-
utes, we only require a few seconds for the correction of data trees of even
100 000 nodes. Notwithstanding the different assumptions and capabilities,
or algorithm therefore performs several orders of magnitude better.

To conclude, though there are still several minor open questions that could
be tackled, we claim that our correction model and algorithms not only represent
a notable contribution with respect to the other existing approaches, but that
the refinement correction strategy represent a well-scalable approach that can be
directly and successfully used in practice.
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