An Incremental Correction Algorithm for XML Documents and Single Type Tree Grammars

Martin Svoboda, Irena Mlýnková

XML and Web Engineering Research Group
Charles University in Prague

The Czech Republic

24 April 2012 NDT 2012 Dubai, United Arab Emirates

Outline

- Introduction
 - Motivation
 - Objectives
- Approach
 - Corrections
 - Algorithms
 - Experiments
- Conclusion

Introduction

- Motivation
 - Incorrect XML documents
 - Well-formedness
 - Schema validity
 - Data consistency
 - - ...
 - Strategies
 - Adjusting algorithms
 - Correcting data

Introduction

- Problem
 - Input
 - One XML document
 - Well-formed but (potentially) invalid
 - DTD or XML Schema
 - Output
 - All minimal repairs
 - Structural corrections of elements

Definitions

- Document
 - Trees
 - Nodes for elements and texts
 - Prefix numbering of nodes
 - Example

Definitions

- Schema
 - Grammars
 - Terminal symbols for element names
 - Nonterminal symbols for types
 - Production rules based on regular expressions
 - Classes
 - Regular tree grammars
 - Single type tree grammars (XML Schema)
 - Local tree grammars (DTD)

Model

- Edit operations
 - ADD leaf, REMOVE leaf, RENAME label
- Update operations
 - Sequences of edit operations
 - INSERT, DELETE, REPAIR, RENAME
- Cost function
 - Unit costs of edit operations

Model

Туре	Name	Model
Α	a	C.D*
В	b	D*
С	С	empty
D	d	D*

Algorithm

- Naive algorithm
 - Task
 - At each level of top-down tree processing...
 - ...find repairs for a sequence of sibling nodes
 - Steps
 - Construct a repairing multigraph
 - Recursively repair subtrees
 - Compose a repairing structure

Algorithm

Туре	Name	Model
Α	а	C.D*
В	b	D*
С	С	empty
D	d	D*

Algorithm

Algorithms

Naive

Dynamic

 Directly follows Dijkstra's algorithm and, thus, only required multigraph parts are explored

Caching

 Avoids repeated recursive computations by detecting and caching identical repairs

Incremental

Evaluates repairing multigraphs step by step

An Incremental Correction Algorithm for XML Documents

Algorithms

Incremental

- Task
 - Structure encapsulating multigraph evaluation
 - Multigraph structure
 - Dijkstra's variables
- Scheduler
 - Processing of an activated task:
 - Request further refinement of perspective edges
 - Activate corresponding tasks for nested problems

Experiments

- Data
 - Single type tree grammar
 - 7 nonterminal symbols
 - 6 terminal symbols
 - Recursion, iteration
 - XML data trees
 - Maximal depth 5, fan-out 8
 - Elements from 100 to 1,000
 - 20 files for each particular size
 - Average values from 20 repeats

Experiments

Execution time in miliseconds

Experiments

- Number of correction intents
 - Equals to a number of distinct multigraphs

Conclusion

- Contributions
 - Single type tree grammars
 - Always all minimal repairs
 - New incremental algorithm
- Advantages
 - Compact repair structure
 - Prototype implementation

Thank you for your attention...

XML and Web Engineering Research Group

Charles University in Prague

