http://www.ksi.mff.cuni.cz/~svoboda/courses/NPRG041/

Practical Class

NPRGO041: Programming in C++

2025/26 Winter

Martin Svoboda
martin.svoboda@ matfyz.cuni.cz

Charles University, Faculty of Mathematics and Physics

http://www.ksi.mff.cuni.cz/~svoboda/courses/NPRG041/
mailto:martin.svoboda@matfyz.cuni.cz

NPRGO041: Programming in C++
2025/26 Winter | Martin Svoboda | martin.svoboda@matfyz.cuni.cz

Class 1: Subsets

Project structure
Function main
Header files
Passing parameters
Constness qualifier
Control structures
C-style arrays
Standard output
Memory allocation

mailto:martin.svoboda@matfyz.cuni.cz

E1l: Hello World

Create a traditional Hello World application

e |.e., print the aforementioned greeting to the standard output
e Creating a new project in Visual Studio

= Language: C++

= Project type: Empty Project
o Useful hints

" #include <iostream>

= int main(int argc, char** argv) { /* ... */ }
= int main() { /* ... */ }
= std::cout << "..." << std::endl;

E2: Finding Subsets

Find and print all subsets of a given set on the input
e Simulate the input using a constant expression

= Putit into a header file called Input.h
= #include "..."

* Add inclusion guards to avoid repeated inclusion
= Directives #ifndef, #define, #endif
e Assume, in particular, the following input
= constexpr char ITEMS[] = { 'A', 'B', 'C', 'D' };
= constexpr size_t COUNT =
sizeof (ITEMS) / sizeof (ITEMS[0]);

* Whole program must be universal, though
= |.e., it must work even with different input arrays

E2: Finding Subsets

Cont’d...
* Decompose the entire problem into appropriate functions

e Print each found subset to the standard output
= Put exactly one subset on each line

— Preserve the order of individual elements
— Presence of an element takes precedence over its absence

= Qutputformat: { A, C, D }
* Dynamic allocation of an array with size unknown in advance

* bool* signature = new bool[count];
= delete[] signature;
= We will not solve possible allocation failures yet

NPRGO041: Programming in C++
2025/26 Winter | Martin Svoboda | martin.svoboda@matfyz.cuni.cz

Class 2: Options

Declarations and definitions
Program arguments

Vector container

Strings

Iterators

Named constants

Type aliases

Short-circuit evaluation
Range-based for loops

mailto:martin.svoboda@matfyz.cuni.cz

E1l: Printing Arguments

Print all the provided input arguments to the standard output
* Use the extended main function interface
* int main(int argc, char** argv) { /* ... */ }
 First, transform the arguments to strings std: :stringand
insert them into a container std: :vector
= #include <string>
® #include <vector>
® using args_t = std::vector<std::string>;
* args_t arguments(argv + 1, argv + argc);
* Wrap the executive code into a separate function
= Pass the container with arguments using a reference
= Use the following approach to iterate over its items
— for (auto&& item : arguments) { /* ... x*/ }

E1l: Printing Arguments

Cont’d...
* Accessing namespace names

® using namespace std;
= Or just selectively using std::cout, std::endl;
= Never use this construct in header files

e Separate definitions from declarations in header files

= #ifndef, #define, #endif
" #include "..."

e Setting input arguments in VS
= (Project) Properties — Debugging — Command Arguments

E2: Options Detection

Detect a predefined set of expected short and long options
e |n particular, expect the following options
= -t,-x, -y
= —-grayscale, -——transparent
* Introduce names of these options via global named constants

= constexpr char OPTION_TRANSPARENT_SHORT = 't';
= constexpr char OPTION_TRANSPARENT LONG[] =
"transparent";

* Allow grouping of short options, too
= E.g.: -xy
e Print the recognized options to the standard output

= Flag option <x> detected
= Unknown option <something> found!

E2: Options Detection

Cont’d...

* Use iterators to iterate over the arguments this time
= |t allows us to control the course of iteration manually

= for (
auto it = arguments.begin();
it != arguments.end();
++it

) L /x o0 %/}

— lterator data type is args_t::const_iterator
— Andso std::vector<std::string>::const_iterator

e Iterator dereferencing

= const std::string& item = *it;

E2: Options Detection

Cont’d...
* Useful methods over strings
= std::string substr(size_t pos, size_t len)
— Second parameter can be omitted

= size_t size()

¢ Determine the exit code based on the detection success
= 0in the case of success, 1 otherwise

E3: Value Options

Extend our program with detection of value options

e |n particular, expect the following new value options
= -r,-g, b, -a
= —-red, -—green, ——blue, ——alpha

* Support the following means of passing values
= -xy -r 255, -xyr255, -xyr 255
= -xy —--red 255

* Detect missing values as well as extra standalone values
= -r,-x something

e Print everything to the standard output again

= Value option <r> detected with value <255>
= Value option <r> detected but its value is missing!
= Standalone value detected <something>

NPRGO041: Programming in C++
2025/26 Winter | Martin Svoboda | martin.svoboda@matfyz.cuni.cz

Class 3: Counter

Streams and files
Stream manipulators
Contextual conversions
Parsing numbers
Structures and classes
Static methods
Function overloading
Handling exceptions
C-style pointers

mailto:martin.svoboda@matfyz.cuni.cz

E1l: Printing File

Print the contents of an input text file to the standard output
e Use the following constructs

= Libraries <iostream>, <fstream>, <string>
" std::ifstream

— void open(const char* filename);
— bool good();
- void close();
* std::istream& std::getline(
std::istream& input,
std::string& line
)3
* Print the following message after an unsuccessful file opening
= Unable to open input file

E2: Counting Letters

Count and print the overall number of characters
* Place the code into an appropriate class and its static methods
* void process(const std::string& filename,
size t* chars);
* void process(std::istream& stream,
size_t* chars);
* void print(const std::string& filename,
const size_t* chars);
" void print(std::ostream& stream,
const size_t* chars);

e Variable chars will be initialized by the caller
= That allows to accumulate the value across multiple inputs
— These can be input files, but also the standard input

E2: Counting Letters

Cont’d...

* Throw a text exception after an unsuccessful file opening
= throw "...";
— Unable to open input file
— Unable to open output file
stry { /*x ... %/}
catch (const char* e) { /* ... */ }

* Define the text messages via named constants

E3: Parsing of Numbers

Extend our program with parsing of numeric values
* We specifically want to recognize integer numbers

= Use the following standard functions for that
" int std::isdigit(int c)
int std::isalpha(int c)
— Library <cctype>
= int std::stoi(const std::string& s, size_t* p)
— Library <string>
— Exceptions std: :invalid_argument, std: :out_of_range
* Throw text exception in case of invalid inputs
= Invalid integer number detected

* We will temporarily assume a simplified input format
= There is always one word or one number on each line
— Skip possible empty lines

E3: Parsing of Numbers

Cont’d...
* We also want to extend the detected statistics
= Number of lines, words, and numbers
= Sum of all numbers
e Encapsulate all these records into a suitable structure
= Define it in our header file
= struct Statistics {
size_t lines = 0;
/* ... x/
}
» Alter printing of these statistics, too
= E.g., one record on each line in the form Lines: 7

E4: Extended Counter

Add comprehensive input text parsing and additional statistics

e Considered input format
= Input now contains an arbitrary number of sentences
= Sentences are ended by . ! ? and separated by spaces
= Sentence contains words or numbers separated by spaces
= Word contains only letters
= Number contains only digits 0 to 9 and possibly dot .
* Detect and store these records in our structure
= QOverall number of lines, sentences, words, and numbers
= QOverall number of letters, digits, spaces, and symbols
= Sum of all integer and separately decimal numbers

e Print the calculated statistics again

NPRGO41: Programming in C++ | Practical Class 3: Counter | 15. 10. 2025 19

E4: Extended Counter

Cont’d...
* Parsing floating point numbers
= float std::stof(const std::string& s, size_t* p)
* Printing floating point numbers

= Use stream manipulators

= Library <iomanip>

= std::fixed

" std::setprecision(precision)
= std::defaultfloat

NPRGO041: Programming in C++
2025/26 Winter | Martin Svoboda | martin.svoboda@matfyz.cuni.cz

Class 4: Movies |

Classes

Constructors and destructors
Member initializer lists

Inline functions

Move semantics

Container set

Emplace mechanism

Legacy and uniform initialization
String streams

mailto:martin.svoboda@matfyz.cuni.cz

E1l: Movie Representation

Propose a class for a movie representation

e Each movie has the following private data items
= Name (std: :string)

Filming year (int)

Genre (std: :string)

Rating (int)

Set of actor names (std: :set<std::string>)
— Library <set>

¢ Implement the following functions first

= Parameterized constructor
= Getter functions for accessing individual data items

— In the form of inline functions

E1l: Movie Representation

Cont’d...
e Add a function for printing the movie as a JSON object

* void print_json(std::ostream& stream =
std::cout) const;

— { name: "Bobule", year: 2008, genre: '"comedy",
rating: 65, actors: ["Krystof Hadek", "Tereza
Voriskova"] }

= Actors field is not listed at all when no actors are provided
e Experimentally test your code directly in the main function

= Create a container for movie instances
— std::vector<Movie> database;

= Manually add a couple of sample movies
= And print the container content to the standard output

E2: Movie Construction

Allow for more efficient creation of movie objects
* Implement a constructor accepting rvalue references
= |n particular, for name, genre, and set of actors data items
* Try the following means of new movies creation and insertion

= Standard push_back
= Improved push_back combined with function std: :move

— Library <utility>

= Mechanism emplace_back

E3: Importing Movies

Extend our database by importing movies from CSV files

e Add a type alias for our database first
= To simplify the intended changes in the following tasks
® using database_t = std::vector<Movie>;
= Header file Storage.h

e Encapsulate the import functionality in a Database class
= Header file Database.h

» Offer the following static member functions in particular

= void import(const std::string& filename,
database_t& database);

= void import(std::istream& stream,
database_t& database);

E3: Importing Movies

Cont’d...
* Use the following constructs for parsing CSV records
= std::istringstream
— Library <sstream>
= istream& std::getline(
istream& stream, string& line, char delimiter
);
e The following delimiters are specifically assumed
= Semicolon ; for records as such
= Comma , for actors
* Edge situations will be treated via structured exceptions

" struct Exception { int code; std::string text; 7

E3: Importing Movies

Cont’d...

* Exceptions with code 1 (inputs)
= Unable to open input file <filename>

* Exceptions with code 2 (parsing)
= Field names: name, year, genre, rating, and actors
= Missing field <name> on line <line>
= Empty string in field <name> on line <line>
= |nvalid integer <value> in field <name> on line <line>
= Qverflow integer <value> in field <name> on line <line>

= Malformed integer <value> in field <name> on line <line>
= |nteger <value> out of range <min, max> in field <name> on
line <line>
— Intervals [1900, 2100] for years and [0, 100] for ratings

E4: Retrieving Movies

Prepare the following two simple database queries
e Header file Queries.h
¢ Q1: all movies

* void db_query_1(const database_t& database,
std::ostream& stream = std::cout);

= Print the whole JSON objects of the found movies

* Q2: names of comedies filmed before 2010, in which Ivan
Trojan or Tereza Voriskova played

* void db_query_2(const database_t& database,
std::ostream& stream = std::cout);

= Hard-wire all the query parameter values

= Print names of the found movies only

NPRGO041: Programming in C++
2025/26 Winter | Martin Svoboda | martin.svoboda@matfyz.cuni.cz

Class 5: Expressions |

Single inheritance

Virtual functions

Abstract classes
Inheriting constructors
Virtual destructors
Enumeration classes
Dynamic allocation
Operators new and delete
Null pointers

mailto:martin.svoboda@matfyz.cuni.cz

E1l: Arithmetic Expressions

Assume simple integer arithmetic expressions

* These expressions may only contain...
= Basic binary operations
— Addition +, subtraction -, multiplication * and division /
= Natural numbers including zero as simple operands

Propose classes for inner tree nodes of such expressions

Abstract class Node as a common ancestor

Final derived class NumberNode for leaf nodes with numbers

Abstract derived class OperationNode for inner nodes

Final derived classes for individual operations

* AdditionNode, SubtractionNode, MultiplicationNode,
DivisionNode

NPRGO41: Programming in C++ | Practical Class 5: Expressions | | 29. 10. 2025 30

E1l: Arithmetic Expressions

Cont’d...
* Basic use of the inheritance concept
* class NumberNode final : public Node { /* */ }
e Distribute data members appropriately into individual classes

= Leaf nodes: private number
= Inner nodes: protected pointers to left and right subtrees

* Define the following constructors

= NumberNode (int number);
= OperationNode(Nodex left, Nodex right);

— using OperationNode: :OperationNode;
e Use enum class to distinguish between these two node types
* enum class Type { /* ... */ }

E1l: Arithmetic Expressions

Cont’d...

* Use virtual member functions appropriately
* virtual Type get_type() const;
* virtual Type get_type() const = 0;
= Type get_type() const override;
e In particular, implement the following member functions
= Type get_type() const;
— As a public function for all nodes
— Avoid use of data members to store the types of nodes
= char get_operator() const;

— Only as a protected function for operation nodes
— Define operator symbols via global constants
— Do without data members for these operators again

E1l: Arithmetic Expressions

Cont’d...

¢ Dynamic allocation mechanism is assumed to be used
® Node* node_ptr = new NumberNode(2);
= delete node_ptr;
* nullptr protection

* Do not forget virtual destructor
= ~Node();
* Add Expression class to encapsulate the expression

= Constructor Expression(Node* root);
= Destructor

E1l: Arithmetic Expressions

Cont’d...

» Test all functionality experimentally
= Implicit input: (2+3)*4
* Expression el(
new MultiplicationNode(
new AdditionNode(
new NumberNode(2), new NumberNode(3)
),
new NumberNode (4)
)
);

E2: Expression Evaluation

Extend our application for arithmetic expressions

* Add a function for calculating the expression result
= int evaluate() const;
— We will not deal with division by zero yet

E3: Expression Printing

Extend our application for arithmetic expressions
e Add a function for printing the expression in postfix notation
= |.e., the so-called reverse Polish notation
— You just need to perform a postorder depth-first tree traversal
= void print_postfix(
std::ostream& stream = std::cout
) const;
= Always separate operators and numbers with exactly one space
° Example
= Implicit input: 1%2+3% (4+5)-6
= Qutput: 1 2 * 3 4 5 + % + 6 -

E4: Expression Printing

Extend our application for arithmetic expressions

* Add a function for printing the expression in infix notation
= yvoid print_infix(
std::ostream& stream = std::cout
) const;

= Do not print any spaces around operators or parentheses
= Print parentheses only when really necessary

— Operations * and / have higher precedence than + and -
* Example
= Implicit input: (7+(9-(3%1))/3)-(5-1)
= Qutput: 7+(9-3%1)/3-(5-1)

NPRGO041: Programming in C++
2025/26 Winter | Martin Svoboda | martin.svoboda@matfyz.cuni.cz

Class 6: Expressions Il

Polymorphic containers
Container stack

String views
Compiler-generated methods
Compiler attributes

Custom exception hierarchies
Dynamic allocation failures
Memory leaks avoidance

mailto:martin.svoboda@matfyz.cuni.cz

E1l: Custom Exceptions

Propose your own hierarchy of classes for exceptions

e Common ancestor Exception
= Constructor inline Exception(const char* message);
* Method inline const char* message() const;
= Destructor virtual ~Exception() = default;

* Derived classes
= EvaluationException
= ParseException
= MemoryException

* Deal with division by zero when evaluating expressions

= Exception EvaluationException
= Text message Division by zero

E2: Expression Parsing

Create a simple parser for infix arithmetic expressions

e Only syntactically well-formed expressions are considered
= We continue to work only with natural numbers and zero
— lLe., numbers cannot be preceded by a unary minus -
= They may also contain auxiliary round parentheses ()
e Convert the input expression to postfix notation
= |.e., print the expression in postfix notation to the output

— Input: 10%2+3* ((1+14)-18)-10
— Output: 10 2 * 3 1 14 + 18 - * + 10 -

= Separate operators and numbers with exactly one space

* Use the shunting-yard algorithm for the transformation

NPRGO41: Programming in C++ | Practical Class 6: Expressions Il | 5. 11. 2025

40

E2: Expression Parsing

1 foreach token tin the input infix expression do

2 if Zis a number then print ¢ to the standard output

3 else if ¢is an opening parenthesis (then put (onto the stack
4 else if ¢ is a closing parenthesis) then
5
6

while there is an operator o on top of the stack do
|_ remove o from the stack and print it to standard output

7 remove (from the stack

8 else tis an operator n

9 while there is an operator o with precedence higher than n,
10 or the same, but only if n is left-associative do

11 |_ remove o from the stack and print it to standard output
12 add n onto the stack

13 while the stack is non-empty do
14 |_ remove o from the stack and print it to standard output

E2: Expression Parsing

Cont’d...

* We assume the following properties of operations

= They are all left-associative
= QOperations * and / have higher precedence than + and -

* Use the standard stack container

= std::stack<char> (library <stack>)

* Methods push(..), top(), pop(), size (), empty ()
* Expected implementation

= Class Parser

= Static method void parse(std::string view input);
e String views

= Class std: :string_view (library <string_view>)

E3: Syntactic Tree

Extend our parser for arithmetic expressions
* Construct a syntactic tree representing the input expression

» Use a modified shunting-yard algorithm
= We will now also need a second stack for operands
— std::stack<Nodex*>
= Creation of leaf nodes for numbers...
— Create a new node and put it onto this stack
= Creation of internal nodes for operations...

— Remove the right and then left operand from this stack
— Create a new node and insert it onto this stack

= We will find the root node on this stack at the very end
— It will be its only element

NPRGO41: Programming in C++ | Practical Class 6: Expressions Il | 5. 11. 2025

43

E3: Syntactic Tree

1 foreach token tin the input infix expression do

2 if £is a number then create a new leaf node for t...

3 else if tis an opening parenthesis (then put (onto the operator st.
4 else if tis a closing parenthesis) then
5
6

while there is an operator o on top of the stack of operators do
|_ remove o from the stack and create a new inner node for o...
7 remove (from the stack of operators

8 else tis an operator n

9 while there is an operator o with precedence higher than n,

10 or the same, but only if n is left-associative do

11 |_ remove o from the stack and create a new inner node for o...

12 add n onto the stack of operators

13 while the stack of operators is non-empty do
14 |_ remove o from the stack and create a new inner node for o...

E3: Syntactic Tree

Cont’d...

* Expected implementation
= Parser class extension
— Data members for both the stacks
= [[nodiscard]] static Nodex*
parse(std::string_view input);
— Creation of a parser instance using a private constructor
— Attribute [[nodiscard]] enforces handling of return values

= Other helper functions will be normal (non-static)

— Decomposition at least for individual tokens
— No need to pass references to the stacks

* Finally, add a new Expression class constructor

= Expression(std::string_view input);

E3: Syntactic Tree

Non-standard situations will be handled using exceptions

* ParseException
= Unknown token (e.g., a, 3a, a3, ...)
— Unknown token
Number value overflow

— Overflow number

Lack of operands when creating an operation node
— Missing operands

= Unpaired opening / closing round parentheses

— Unmatched opening parenthesis
— Unmatched closing parenthesis

Incorrect number of operand nodes at the algorithm end

— Unused operands
— Empty expression

E3: Syntactic Tree

Cont’d...

¢ MemoryException
= QOut of memory for dynamically allocated operands
— Unavailable memory
— Response to the exception std: :bad_alloc
e Pay attention to ensuring atomic behavior
= |.e., we must empty the operand stack in the event of errors

— This means we need to deallocate all the prepared nodes
— We would otherwise uncontrollably lose our memory

= Exception rethrowing

-ty { /* ... */}
catch (const Exception& e) { /* ... */ throw; }

NPRGO041: Programming in C++
2025/26 Winter | Martin Svoboda | martin.svoboda@matfyz.cuni.cz

Class 7: Movies I

Code refactoring
Container set

Custom operators
Shared smart pointers
Declaration friend
Optional values
Formatted strings
Static retyping
Dynamic retyping

mailto:martin.svoboda@matfyz.cuni.cz

E1l: Structured Actors

Modify and extend our movie database application
e Actor will no longer be just an atomic string with a name,
but a structured record with the following items
= First name (std: :string), last name (std: :string)
= Year of birth (int)

* Propose a class to represent such an actor
= Prepare default and parameterized constructors
— Actor() = default;

= Add access functions for individual items, too
* Implement a custom comparison operator for actors

= Global function bool operator<(const Actor& s
const Actor&)

— Order is defined by a triple of surname, first name, and year

NPRGO41: Programming in C++ | Practical Class 7: Movies Il | 19. 11. 2025 49

E1l: Structured Actors

Cont’d...
* Allow for printing of actors via a custom operator <<

" std::ostream& operator<<(std::ostream& stream,

const Actor& actor);
= We will again utilize a JSON object

— { name: "Ivan", surname: "Trojan", year: 1964 }
* Import of actors will also be solved with our own operator >>
= Entirely empty actors will again be skipped
= std::istream& operator>>(std::istream& stream,

Actor& actor);
= Individual attributes are separated by spaces

— Ivan Trojan 1964

E1l: Structured Actors

Cont’d...

e Actor import errors will again be handled via exceptions

= Use stream contextual conversion
= Final text messages will be constructed in two stages

— Actor stream extraction operator generates the first part ...
— ...so that it can then be finalized in the import process
* Exceptions with code 2
= Attribute names: name, surname, and year
= Missing attribute <name>

= Missing, invalid, or overflow value in attribute <name>
= |nteger <value> out of range <min, max> in attribute <name>

— In particular, interval [1850, 2100] is assumed for the years
= .. in actor <actor> on line <line>

E1l: Structured Actors

Cont’d...

* Use formatted strings for exception messages
= std::format(format, /* ... */)
— Library <format>

» Refactor the remaining parts of the current code as well
= Import process, database queries, ...

E2: Titles Hierarchy

Extend our application to support different types of titles
e First, refactor the current code
= Rename class Movie to Title
= Database container will now contain smart pointers
— std::shared_ptr<...> (library <memory>)
— Function std: :make_shared<Title>()
* Next, propose a new hierarchy of titles

= Class Title will become abstract
= Derived class Movie with an additional item

— Optional length in minutes (int) with values [0, 300]
— Class std: :optional<...> (library <optional>)

= Derived class Series with additional items

— Number of seasons (int) with values [0, 100]
— Number of episodes (int) with values [0, 10000]

NPRGO41: Programming in C++ | Practical Class 7: Movies Il | 19. 11. 2025

53

E2: Titles Hierarchy

Cont’d...

¢ Add also the following functions
= Constructors and functions for accessing new items
= Enumeration to distinguish types of titles
— enum class Type { MOVIE, SERIES };
= Function for returning such a type
— Type type() const;
e Modify the function for printing titles
= Add a field describing the title type to the beginning

— Movies: { type: "MOVIE", ... }
— Series: { type: "SERIES", ... }

= Add new specific items to the end, on the contrary
— Movies: { ..., length: 112 }
— Series: { ..., seasons: 8, episodes: 73 }

E2: Titles Hierarchy

Cont’d...

* Modify the function for importing titles
= Expect a string distinguishing the title type at the beginning

— Movies: MOVIE; . ..
— Series: SERIES; . ..

= Expect newly added specific items at the end, on the contrary

— Movies: ...;112
— Series: ...;8;73

* We continue to use exceptions to treat extreme situations
= Code 2 (also for fields type, length, seasons, and episodes)
— Invalid type selector <selector> in field <name> on line <line>
» Refactor the remaining parts of the current code as well
= |.e., at least the database queries

E3: Type Conversions

Prepare the following three database queries
* Q3: titles having a type type filmed in years [begin, end)

= void db_query_3(
const database_t& database,
Type type, int begin, int end,
std::ostream& stream = std::cout

);
= Interpret the interval of years as open from the right
= Return the found titles as strings with JSON objects

— Only types, names, and years of these titles will be included
- { type: ".", name: "..", year: .. }

E3: Type Conversions

Cont’d...

* Q4: series with at least seasons number of seasons or at least
episodes number of episodes

* void db_query_4(
const database_t& database,
int seasons, int episodes,
std::ostream& stream = std::cout

);

= Use static retyping
— (Seriesx)&*title_ptr;
— static_cast<Series*>(&*title_ptr);
— std::static_pointer_cast<Series>(title_ptr);

= Return the found titles as strings with JSON objects again

— { name: "..", seasons: .., episodes: .. }

E3: Type Conversions

Cont’d...

* Q5: movies with a length at least 1ength minutes

= void db_query_5(
const database_t& database,
int length,
std::ostream& stream = std::cout

)3

= Use dynamic retyping
— dynamic_cast<Moviex>(&*title_ptr);
— std::dynamic_pointer_cast<Movie>(title_ptr);

= Return the found titles as strings with JSON objects again
— { name: ".", length: ..}

NPRGO041: Programming in C++
2025/26 Winter | Martin Svoboda | martin.svoboda@matfyz.cuni.cz

Class 8: Matrix

Class and function templates
Template instantiation
Dependent names

Array container

Inner classes

Two-level indexing
Implementation of operators
Constness conversion
Copy-on-write mechanism

mailto:martin.svoboda@matfyz.cuni.cz

E1l: Matrix Core

Create a template class for a two-dimensional numeric matrix
e Template parameters: element type, matrix height and width
® template<typename Element, size_t Height,
size_t Width>
class Matrix { /* ... %/ }
e Use std: :array container for the inner storage
= However, only one flat, not an array with embedded arrays

— We will therefore use the following index arithmetic
— data_[row * Width + column]

= Two template parameters: element type, number of elements
* Define the following constructor

= Matrix(const Element& value = 0);
— Initialize all matrix elements using data_.fil11(..);

E1l: Matrix Core

Cont’d...

¢ Implement the following member functions
= Element& get(size_t row, size_t column);
— Returns a modifiable reference to the element at a given
logical position
= const Element& get(size_t row, size_t column)
const;
— Analogously returns a constant reference

= yvoid set(size t row, size_t column,
const Element& value);

— Sets a new value of the element at a specified position

E1l: Matrix Core

Cont’d...
¢ Implement the following print function
= void print(std::ostream& os = std::cout) const;

— Prints the matrix to a given output stream
— Use the following format: [[1, 2], [3, 4], [5, 6]]

¢ Finally, implement the stream insertion operator as well

" std::ostream& operator<<(
std::ostream& stream,
const Matrix<Element, Height, Width>& matrix
);
* Experimentally try them all

E2: Increment Operators

Extend our matrix by adding the following operators
* Pre-increment operator
" Matrix& operator++();
* Post-increment operator

* Matrix operator++(int);

* Implement both the operators as member functions
= Global functions could alternatively be used as well

E3: Subscript Operators

Extend our matrix by adding the following subscript operators
* We start with a solution that is easier to implement...
* Single-level indexing (e.g., matrix[5])
= Physical positions within the internal storage will be used
* Required operators

= Element& operator[] (size_t index);
= const Element& operator[](size_t index) const;

* We then replace this code with a better solution...

E3: Subscript Operators

Cont’d...
* Two-level indexing (e.g., matrix[1] [2])

= Particular row is specified first, column subsequently
= Auxiliary class Request will be needed

— Requested row and matrix reference will be stored within it
* First level of operators over the Matrix class
" Request operator[](size_t row);

= const Request operator[] (size_t row) const;

* Second level of operators over the Request class
* Element& operator[](size_t column);
— Concealing constancy with conversion const_cast<..>(..);

= const Element& operator[](size_t column) const;

* Use of member functions is necessary in all cases this time

E4: Deferred Copying

Add support for the copy-on-write mechanism to our matrix
* In order to ensure content sharing across matrix instances
= And their separation (and thus copying) only when necessary
* We adjust the internal storage first
= Use a shared pointer to detach it outside of the matrix
= std::shared_ptr<std::array<.., ..>> data_;
* Prepare an internal method for data separation

" void ensure_ownership(Q);
= Ensures the need for separation and its execution

— Smart pointer method long use_count () ;
= Call the method in every modifying operation on the matrix
— Including modifying variants of get and []

* Make necessary adjustments to the current code

NPRGO41: Programming in C++ | Practical Class 8: Matrix | 26. 11. 2025

66

E5: Arithmetic Operators

Extend our matrix by adding the following operators
* Adding a constant to a matrix

* Matrix<Element, Height, Width> operator+(
const Matrix<Element, Height, Width>& matrix,
const Element& increment

);
e Multiplying a matrix by a constant

* Matrix<Element, Height, Width> operatorx*(
const Matrix<Element, Height, Width>& matrix,
const Element& factor

);
* Solve all these operators as global functions
= Member functions could alternatively be used as well

E5: Arithmetic Operators

Cont’d...
* Addition of two matrices
* Matrix<Element, Height, Width> operator+(

const Matrix<Element, Height, Width>& matrixl,
const Matrix<Element, Height, Width>& matrix?2

);
e Multiplication of two matrices
* Matrix<Element, Height, Width> operatorx*(
const Matrix<Element, Height, Depth>& matrixl,
const Matrix<Element, Depth, Width>& matrix2

)

NPRGO041: Programming in C++
2025/26 Winter | Martin Svoboda | martin.svoboda@matfyz.cuni.cz

Class 9: Movies llI

Associative containers
Helper structures
Structured binding
Functors

Standard functors
Passing callable objects
Template specialization
Observer pointers

Copy elision mechanism

mailto:martin.svoboda@matfyz.cuni.cz

El: Title Names

Create an index for finding titles by their names
e Use an ordered map container
® using index_titles_by_names_t =
std::map<std::string, std::shared_ptr<Title>>
= Library <map>
* Create this index using the following function
= void db_index_1(
const database_t& database,
index_titles_by_names_t& index

)
¢ Insertion of entries into the index
* std::pair<.., ..> item; or std::make_pair(.., ..);

= Methods index.insert(..); or index.emplace(..) ; resp.

El: Title Names

Implement the following database query
* Q6: title with a name name

= void db_query_6(
const index_titles_by_names_t& index,
std::string_view name,
std::ostream& stream = std::cout

);

= Finding the intended title
— Function index.find (name) ;

= Internal pair std: :pair
— Data members first and second

= Print the whole JSON object of the found title
— OrNot found! otherwise

E2: Numbers of Actors

Create an index for finding actors by their years of birth
e Use an ordered map container again
® using index_actors_by_years_t =
std: :map<int, std::set<Actor>>
* Create this index using the following function
= void db_index_2(
const database_t& database,
index_actors_by_years_t& index
);
¢ Insertion of entries into the index
= Use the [] operator at the level of the outer map

E2: Numbers of Actors

Cont’d...

e Q7: overall number of actors born during years [begin, end)
= void db_query_7(
const index_actors_by_years_t& index,
int begin, int end,
std::ostream& stream = std::cout
);
= Finding the intended years

— Iterator from: index.lower_bound(begin) ;
— Iterator to: index.lower_bound(end) ;

= Expected output
— count actors or actor accordingly

E3: Filming of Movies

Create an index for finding titles by years of their filming
¢ Use an ordered multimap container this time
® using index_titles_by_years_t =
std: :multimap<int, std::shared_ptr<Title>>
= Ordering of elements
— Default functor is assumed std: : less<int>
— Third template parameter
e Create this index using the following function
= yvoid db_index_3(
const database_t& database,
index_titles_by_years_t& index

)

E3: Filming of Movies

Implement the following database queries
* Q8: titles filmed in a year year
= void db_query_8(
const index_titles_by_years_t& index,
int year,
std::ostream& stream = std::cout
= ;hdmgthehnendedﬁﬂes

— Function index.equal_range (year) ;
— Returns a pair (std: :pair) of iterators [from, to)

= Print strings with the following JSON object

— { name: ".", year: .. }foreach title
— OrNot found! otherwise

E3: Filming of Movies

Cont’d...
* Q9: titles filmed between years [begin, end)
= void db_query_9(
const index_titles_by_years_t& index,
int begin, int end,
std::ostream& stream = std::cout
= %hdmgthehnendedﬁﬂes

— Iterator from: index.lower_bound(begin) ;
— Iterator to: index.lower_bound(end) ;

= Print strings with the following JSON object again

— { name: ".", year: .. }foreach title
— OrNot found! otherwise

E4: Finding Actors

Implement the following database query

* Q10: casting of actors born between years [begin, end)

* void db_query_10(

const database_t& database,

int begin, int end,

std::ostream& stream = std::cout
)
We are looking for every single casting of matching actors

— We only want the actors themselves, duplicates are preserved
= Use a multiset container internally

— std::multiset<Actor, Comparator_Q10_Actors>
— Comparison will be achieved via a custom functor ...

Print the whole JSON object for each actor
— OrNot found! otherwise

E4: Finding Actors

Cont’d...

e Comparison functor
= Functor is a regular class implementing the () operator
= Specifically in our case
— bool operator() (
const Actor& actorl, const Actor& actor2
) const;
* Comparing actors
= Ascending order by years, first names, and surnames
— We will apply the following trick
= Tuple class std: :tuple<...> (library <tuple>)

= Function std: :make_tuple(...);
= Available operator <

— l.e., create auxiliary tuples and then mutually compare them

E5: Finding Titles

Implement the following database query

* Q11: titles satisfying a search condition predicate

= yvoid db_query_11(
const database_t& database,
const std::function<bool(const Title*)>&

predicate,
std::ostream& stream = std::cout
);
= Purpose of the predicate function

— Expects a title passed via the so-called observer pointer
— Returns true for titles we want to include in the result
— Structure std: :function (library <functional>)

= Print full JSON objects of the found titles
— OrNot found! otherwise

E5: Finding Titles

Cont’d...
* We then prepare two particular predicates
* Implement the first one using an ordinary global function

® bool predicate_Q11_movies(const Titlex title);
— Find movies (not series) with at least three actors that are not
comedies
* Implement the second one as a functor
= class Predicate_Q11_Titles {
public:
bool operator() (const Title* title) const;
+;
— Find titles with a rating of at least 80 in which Tatiana
Vilhelmova 1978 played

E6: Actors Casting

Create an index for finding titles by their actors
* Use an unordered multimap container
® using index_titles_by_actors_t =
std: :unordered_multimap<
Actor, std::shared_ptr<Title>
>
= Default functors for hashing and ordering are assumed
— std::hash<Actor>and std::equal_to<Actor>
= Library <unordered_map>
* Create this index using the following function
= yvoid db_index_4(
const database_t& database,
index_titles_by_actors_t& index

)

E6: Actors Casting

Cont’d...

* Hash functor specialization
= template<>
struct std::hash<Actor> { /* ... */ }
= Method size_t operator () (
const Actor& actor

) const noexcept;
= Use actor last name

— Specifically via std: :hash<std::string>{}(..);
* Comparison operator

= Global function bool operator==
const Actor& actorl, const Actor& actor2

)

— Use function std: :tie(...) for auxiliary tuples

E6: Actors Casting

Implement the following database query

* Q12: titles where an actor with a surname surname played
" std::vector<Titlex*> db_query_12(
const index_titles_by_actors_t& index,
string_view surname
)3
= Finding the intended titles

— Unfolding of a pair using structured binding
— for (auto&& [key, value] : index) { /* ... */ };

= Put the found titles into the output container
— In the form of C-style observer pointers

E7: Title Genres

Create an index for finding actors and titles by genres and years
e Use an ordered multimap container and tuples
® using index_cast_by_genres_t = std::multimap<
std: :tuple<std::string, int>,
std::tuple<std::string, std::string,
std::shared_ptr<Title>>
>
= Meaning of pairs and triples in the map
— Key: genre and year of title filming
— Value: first and last actor name, pointer to title
* Create this index using the following function
= void db_index_5(.., ..);

E7: Title Genres

Implement the following database query

* Q13: names of actors and names of titles in titles having a
genre genre filmed in a year year

" std::vector<std::string> db_query_13(
const index_cast_by_genres_t& index,
std::string_view genre,
int year

);

= Accessing members of tuples
— Function std: :get<position>(tuple);
— Orvia structured binding

= Return found records in the form of strings with JSON objects

— { name: "..", surname: "..", title: ".." }

NPRGO041: Programming in C++
2025/26 Winter | Martin Svoboda | martin.svoboda@matfyz.cuni.cz

Class 10: Array |

Low-level dynamic allocation
Constructors and destructors invocation
Special member functions

Exception guarantees

Resource stealing

Rule of Five / Three / Zero

Implicitly generated functions
Conditional compilation

Standard exceptions

mailto:martin.svoboda@matfyz.cuni.cz

E1l: Flexible Array

Implement a custom flexible array container
* Single template parameter: element type
* Internal storage
= First level
— Standard vector of C-style pointers to item blocks
= Second level (individual blocks)

— C-style array for individual items
— Low-level dynamic allocation will be used

e Assumptions

= [tems will only be added / removed at the end
= Index arithmetic for accessing items

— data_[i / block_size_][i % block_size_];
= Maintaining necessary capacity only

NPRGO41: Programming in C++ | Practical Class 10: Array | | 10. 12. 2025

87

E1l: Flexible Array

Cont’d...
* Data members
= Selected fixed block size (number of available slots in a block)
= Internal storage as such
= Current capacity and current number of items
e Constructor
" Array(size_t block_size = 10);
— Optional parameter determines the selected block size
= We will add more constructors later on...
e Destructor
= ~Array() noexcept;
— We will postpone its implementation for now...

E1l: Flexible Array

Cont’d...

* Basic functions
= inline size_t size() const;
— Returns the current number of items stored
* inline bool empty() const;
— Returns true if and only if the array is empty
* inline size_t capacity() const;
— Returns the current internal storage capacity
* Access functions
= T& at(size_t index);
= const T& at(size_t index) const;
= T& operator[] (size_t index);
= const T& operator[](size_t index) const;

E2: Element Insertion

Implement functions for adding and removing items

¢ Internal block addition
= Determining required memory size
— Operator sizeof (type)
= Block dynamic allocation

— Function void#* ::operator new(size_t size);
— Library <new>
— Throws std: :bad_alloc if not successful

= Ensuring atomicity
— Notice that the push_back call at the first level may fail
— Rollback will then be needed
* Internal block removal
= Block deallocation
— Function void ::operator delete(void* ptr);

E2: Element Insertion

Cont’d...
* Item addition
® void push_back(const T& item);
void push_back(T&& item);
— Inserts a new item into the flexible array
= Explicit invocation of item copy / move constructors
— new (target) T(item);
— new (target) T(std::move(item));
= Ensuring atomicity
— Beware of failed item construction
* Item removal
= void pop_back();
— Removes the last item
= Explicit destructor call ~T () ;

E2: Element Insertion

Cont’d...

* Destructor and container emptying
= void clear();
— Removes all existing items

= ~Array() noexcept;

E3: Special Members

Extend the implementation of our flexible array
* Special member functions
= Copy / move constructor / assignment operator
= But first...
* Global swap function
= void swap(

Array<T>& array_1, Array<T>& array_2
) noexcept;

— Use std::swap(ol, 02); onall members

E3: Special Members

Cont’d...

e Copy constructor
= Array(const Array& other);
— Testing: Array<int> a; auto b = a;
e Copy assignment
= Array& operator=(const Array& other);

— Validity check (this != &other)
— Testing: Array<int> a, b; b = a;

e Ensuring atomicity in both the cases
= |.e., strong exception guarantee

E3: Special Members

Cont’d...

* Move constructor
= Array(Array&& other) noexcept;
— Testing: Array<int> a; auto b = std::move(a);
* Move assignment
= Array& operator=(Array&& other) noexcept;

— Validity check (this != &other)
— Testing: Array<int> a, b; b = std::move(a);

E4: Debug Exceptions

Add the support for flexible array user debugging
e Activation using a macro
® #define ARRAY_DEBUG_MODE

= #ifdef ARRAY_DEBUG_MODE
" #endif

e |n particular, the following standard exceptions are assumed

= Library <stdexcept>
= std::out_of_range("Invalid index")

— For an invalid index in access functions
— Always in at (...)
— Conditionally in operator[] (..)

= std::invalid_argument ("Empty array")
— Conditionally when removing an item from an empty array

NPRGO041: Programming in C++
2025/26 Winter | Martin Svoboda | martin.svoboda@matfyz.cuni.cz

Class 11: Array Il

Initializer list constructors
Concepts

Requires clauses and expressions
Static assertions

Perfect forwarding

Variadic templates

Custom iterators

Iterator categories

Conversion operators

mailto:martin.svoboda@matfyz.cuni.cz

E1l: Array Modifications

Modify the implementation of our flexible array

e Put the entire array code into a custom namespace 1ib
* namespace lib { /* ... */ };

e Add public type aliases into the array class
® using value_type = T;
® using size_type = std::size_t;
®= using difference_type std: :ptrdiff_t;
® using reference = T&;
* using const_reference
® using pointer = Tx;
® using const_pointer = const T*;
= Two more will be added later on...

const T&;

E1l: Array Modifications

Cont’d...

* Create a custom concept for the array elements

= template<typename T>
concept ArrayElement =
(
std: :copy_constructible<T> ||
std::move_constructible<T> ||
std::default_initializable<T>
) && std::destructible<T>;
= Library <concepts>

e Use this concept within our array

= template<ArrayElement T>
class Array;

E1l: Array Modifications

Cont’d...

* Add compile-time checks using assert declarations
= static_assert(condition, message);
— Violation of the condition triggers a compilation error
= Copy constructor / assignment and push_back methods

— std::copy_constructible<T> or
std: :move_constructible<T> respectively

= Use meaningful text messages

E2: Advanced Constructors

Add additional constructors to the flexible array class
* Repeating constructor
= Array(size_t count, const T& item);
¢ Initializer constructor
= Array(std::initializer_1ist<T> items);

— Library <initializer_list>
— for (auto&& item : items) { /* ... *x/ }

e Ensure atomicity
= And also add relevant concept checks

E2: Advanced Constructors

Cont’d...

* Range constructor
® template<std::input_iterator Inputlterator>
Array(InputIterator first, InputIterator last);
— Library <iterator>
— Concept std: :input_iterator
— Allows both iterators and C-style pointers
= Concept check
— std::constructible_from<
T 3
typename std::iterator_traits<Inputlterator>
::reference

E3: Element Insertion

Extend the flexible array insertion capabilities
* Merge both the existing push_back functions

® template<typename Source>

requires std::constructible_from<T, Source&&>
void push_back(Source&& item);

— std::forward<Source>(item) ;
— Library <utility>
* Also add the emplace_back function
= We use the following variadic template
= template<typename... Args>

requires std::constructible_from<T, Args&&...>
T& emplace_back(Args&&... args);

— std::forward<Args>(args)...;

E4: Forward Iterator

Implement a custom forward iterator in our container
* Inner class

" class iterator;
= template<typename T>
class Array<T>::iterator { /* ... */ };

* Private data members

= Flexible array pointer
= Position number

¢ Public constructors

" iterator (Array<T>* array, size_t position);
= jiterator();

E4: Forward Iterator

Cont’d...
* Flexible array methods

" iterator begin();
= iterator end();
* Public type aliases inside the iterator class
= Library <iterator>
® using iterator_category =
std::forward_iterator_tag;
® using value_type = T;
® using pointer = Tx*;
®= using reference = T&;
® using difference_type = std::ptrdiff_t;

E4: Forward Iterator

Cont’d...

* Expected basic functions

bool operator==(const iterator& other) const;
bool operator!=(const iterator& other) const;
iterator& operator++();

iterator operator++(int);

reference operator*() const;

pointer operator->() const;

E4: Forward Iterator

Cont’d...
* Experimental testing
= for (
auto it = array.begin();
it != array.end();
++it
) L /x ... %/}

= for (auto&& item : array) { /x ... =*/ }

E5: Constant Iterator

Extend the functionality of our iterator
* We want to distinguish iterator and const_iterator
= |deally without code repetition
» Refactor the current iterator class first

= Declaration
template<bool Constant>
class iterator_base;
= Definition
template<typename T>
template<bool Constant>
class Array<T>::iterator_base { /* ... */ };

* Update definitions of all the other existing methods

E5: Constant Iterator

Cont’d...
* Add the following type aliases into the flexible array class

® using iterator = iterator_base<false>;

® using const_iterator = iterator_base<true>;
* We will now have the following access functions

= iterator begin();

= iterator end();

= const_iterator begin() const;

* const_iterator end() const;

= const_iterator cbegin() const;

= const_iterator cend() const;

E5: Constant Iterator

Cont’d...

* Modify the used types in the base iterator class
= In particular, aliases value_type, pointer, and reference
= And also a pointer to the flexible array as such
* We will use type traits for this purpose
= std::conditional_t<bool B, class T, class F>
= Library <type_traits>
= Unfolds to type name T or I based on the value of B
* Example of use
® using array_pointer = std::conditional_t<
Constant,
const Array<Element>*, Array<Element>*
5.

K

E5: Constant Iterator

Cont’d...

* Finally, we also add the following conversion operator
= So that we can change iterator to const_iterator
— And really only in this direction
* operator iterator_base<true>() const;

— Base iterator member function
— New instance of the specified target type is returned

E6: Iterator Extension

Extend the functionality of our iterator
* Extension to a bidirectional iterator
= Tag std::bidirectional_iterator_tag
* Expected methods

" iterator_base& operator--();
= iterator_base operator--(int);

E6: Iterator Extension

Cont’d...
* Extension to a random access iterator
= Tag std::random_access_iterator_tag
* Expected methods

" iterator_base operator+(

difference_type n
) const;

— Analogously also operator-
= difference_type operator-(
const iterator_base& other

) const;
" iterator_base& operator+=(difference_type n);

— Analogously also operator-=

E6: Iterator Extension

Cont’d...

* Expected methods...
= reference operator[] (difference_type n) const;
* bool operator<(

const iterator_base& other
) const;

— Analogously also operator<=, operator>, and operator>=
¢ Finally, one global function

= friend iterator_base operator+(
difference_type n,
const iterator_base& it

Y { /x ... %/}
— Must be defined directly within the friend declaration

E7: Array Modifications

Finally, implement two methods that modify our array
* Resizing the array
= void resize(size_t size);
— Check concept std: :default_initializable<T>
= Both array shrinking and expanding is allowed
* Erasing a range of elements

= iterator erase(

const_iterator first, const_iterator last

);
— Check concept std: :assignable_from<T&, T&&>
— Check condition requires(T& t, T&& s) {
{ t = std::move(s) } noexcept;
};

= Return iterator to an element following the last erased one

NPRGO041: Programming in C++
2025/26 Winter | Martin Svoboda | martin.svoboda@matfyz.cuni.cz

Class 12: Movies IV

Standard algorithms
Fake iterators

Lambda expressions
Ranges and views
Passing callable objects
Regular expressions
Raw string literals
Variant type

Doxygen documentation

mailto:martin.svoboda@matfyz.cuni.cz

E1l: Storage Change

Change the movie database storage to our flexible array
* l.e., replace std: :vector with 1ib: :Array
= At least if you dare to ...

E2: Title Sorting

Implement the following database query
* Q14: titles where an actor actor played
" database_t db_query_14(
const database_t& database,
const Actor& actor
);
* Use of particular standard algorithms is expected
= Library <algorithm>
e Copy all titles into the output container first

= Method resize(count);
= Function std: :copy(begin, end, target);

E2: Title Sorting

Cont’d...

* Remove all non-matching title records
= Function std: :remove_if (begin, end, predicate);
= Method erase(begin, end);

* Implement the filtering predicate using a functor

= class Predicate_Q14_Actor { .. };
= |ts parameter will be a specific actor actor
= Add the round parentheses operator then
— bool operator() (
const std::shared_ptr<Title>& title_ptr
) const;
— Return true if a given title is to be removed

E2: Title Sorting

Cont’d...

¢ Finally, sort the records of titles
= Function std: :sort(begin, end, comparator);
¢ Implement the sort comparator using a functor, too
* class Comparator_Q14_Years { /* ... */ };
= Add the round parentheses operator within it again

— bool operator() (
const std::shared_ptr<Title>& title_ptr_1,
const std::shared_ptr<Title>& title ptr_2
) const;
— Return true if the first object precedes the second
— l.e., simulate the behavior of a common < operator

= Specifically, we want to sort the titles in descending order by
years of filming and in ascending order by their names

E3: Years of Filming

Implement the following database query
* Q15: movies (not series) filmed in a year year
= void db_query_15(
const database_t& database,
int year,
std::ostream& stream = std::cout
);
e Put suitable titles into an auxiliary container first
= Choose our database_t type
Initialize it as an empty container
* std::copy_if(begin, end, target, predicate);
Use a fake iterator for the target (library <iterator>)

— std::back_inserter(container);
— Createsan std: :back_insert_iterator instance

E3: Years of Filming

Cont’d...
* Define the filtering predicate via a lambda expression
* [year] (const std::shared_ptr<Title>& title_ptr)
-> bool { /x ... */ }
* Sort the titles in ascending order by their names
= Use a lambda expression again
* Finally, print the titles into the provided stream

® std::transform(begin, end, target, action);
= Use a fake iterator for the target, terminate movies via "\n"

— std::ostream_iterator<std::string>(stream,
delimiter);

= Use a lambda expression for the transformation action again

— { name: "title", year: year }

E4: Titles Aggregation

Implement the following database queries

* Q16: integer average rating of titles having a type type and a
genre genre
" std::optional<int> db_query_16(
const database_t& database,
Type type, std::string_view genre
);
e Pass the calculated average via the return value
= std::for_each(begin, end, action);
= Implement everything using a custom functor

— class Visitor_Q16_Rating { /* ... x/ };
— Return std: :nullopt if there are no titles found

= Function for_each creates a copy from the passed functor
— This used instance is then returned via the return value

E4: Titles Aggregation

Cont’d...

* Q17: overall sum of the numbers of actors playing in titles
with a rating of at least rating
* size_t db_query_17(
const database_t& database,
int rating

)

e Use std: :for_each and a lambda expression

E5: Complex Query

Implement the following database query

* Q18: titles satisfying all the following conditions ...

Genre of a given title is genre

Its name matches a regular expression pattern
Rating is equal to at least rating

Title has an above-average number of actors

All actors of a given title were born before a year year

std: :vector<std::string> db_query_18(
const database_t& database,
std::string_view genre,
std::string_view pattern,
const std::variant<int, std::string>& rating,
int year

E5: Complex Query

Cont’d...
* Average number of actors
= std::accumulate(begin, end, initial, operation);

— For calculating the sum of numbers of actors over all titles
— Library <numeric>

= Calculate the average as a decimal number (double)

* Years of birth of actors
= Function std::all_of (begin, end, predicate);
— Simulates the behavior of the universal quantifier

E5: Complex Query

Cont’d...
* Title name
= Class for a regular expression representation std: :regex
— Library <regex>
= Constructor std: :regex(pattern, flags);
— Case-insensitivity flag — std: :regex_constants::icase
= Function std: :regex_match(string, regex);
* Raw string literals
= R"delim(text)delim"

— Without standard escape sequences
— Selectable delimiter (including an empty one)

= E.g.,R" (\b\w*xbobule\b)"

E5: Complex Query

Cont’d...

* Rating of titles
= We also allow ratings in the form of stars
— There can be 0 to 5 stars, each worth 20 points
— E.g., x** =60
= We will use type std: :variant<...>
— Library <variant>
— Specifically std: :variant<int, std::string>
= Useful functions

— std::holds_alternative<type>(variant);
— std::get<type>(variant);

E5: Complex Query

Cont’d...
e Use solely lambda expressions
= For all conditions, actions, and operations
o Titles processing
= Again use std: :for_each
* Return a string with a JSON object for each matching title

* { name: "title", year: year }

E6: Actor Counts

Implement the following database query
* Q19: titles filmed between years [begin, end)
* void db_query_19(
const database_t& database,
int begin, int end,
std::ostream& stream = std::cout
);
* Find matching titles and transform them first
= Library <ranges>

= Adapter std::views::filter(predicate);
= Adapter std: :views: :transform(action);
— Generate triples: title name, filming year, number of actors
— std::tuple<std::string, int, size_t>;
Use lambda expressions for both filtering and transformation

E6: Actor Counts

Cont’d...

» Create the resulting view by chaining the | operator
= |nsert the found records into an auxiliary container
= std::vector<..> records(begin, end);

* Sort all records

= By years and title names, both in ascending order
= Function std: :ranges: :sort(range, comparator);
= Use a lambda expression again
¢ Serialize and output records to the provided stream
= Use the transform view and a lambda expression
— { name: "title", year: year, actors: actors }
= Function std: :ranges: :copy(range, target);
= Use a fake iterator over the stream for the target again

E7: General Query

Implement the following database query

* Q20: titles satisfying a general search condition
® template <
typename Selector,
typename Comparator,

typename Serializer
>

void db_query_20(

const database_t& database,
Selector selector,

Comparator comparator,
Serializer serializer,
std::ostream& stream = std::cout

E7: General Query

Cont’d...
» Find titles satisfying a condition selector
" bool operator() (
const std::shared_ptr<Title>& title_ptr
)3
e Sort them using a comparison comparator
" bool operator () (
const std::shared_ptr<Title>& title_ 1,
const std::shared_ptr<Title>& title_ 2
)s
e Print them serialized via a serializer to a given stream
" std::string operator() (
const std::shared_ptr<Title>& title ptr
);

E8: Doxygen Documentation

Get acquainted with the Doxygen documentation tool
* Download link
= https://www.doxygen.nl/download.html
* Installation
= Add path to the bin directory to the PATH system variable
* Generate a configuration file
= doxygen -g config.ini
e Configure the following directives

= PROJECT_NAME = "..."
= EXTRACT_PRIVATE = YES
= EXTRACT_STATIC = YES

https://www.doxygen.nl/download.html

E8: Doxygen Documentation

Learn how to document selected code fragments
* Files
= /// @file filename
e Classes and template parameters

= /] .
/// @tparam argname ..

* Class members
»/// .

* Global and member functions
= /// .

/// @param argname ..
/// @return ..
/// Q@exception typename ..

E8: Doxygen Documentation

Cont’d...
e Generate and browse the exported documentation

® doxygen config.ini

	Class 01: Subsets
	Class 02: Options
	Class 03: Counter
	Class 04: Movies I
	Class 05: Expressions I
	Class 06: Expressions II
	Class 07: Movies II
	Class 08: Matrix
	Class 09: Movies III
	Class 10: Array I
	Class 11: Array II
	Class 12: Movies IV

