NPRGO041 - 2025/26 Winter — Labs MS — Small Assignment C09
Movie Database II1

Within the third assignment belonging to the topic of our movie database, we will start with the existing
application and extend it by adding several auxiliary indices and especially new queries. The purpose of these
indices, as auxiliary data structures based on various standard containers, will be to simulate traditional
database indices, and thus enable more efficient evaluation of our queries.

Let us note right at the beginning that it is actually not necessary to have the previous assignment in this
thematic series fully implemented for the successful completion of this task. The database implementation
itself will not be submitted, only the newly added indices and queries. It will therefore suffice to familiarize
yourself with the public interface of the Title, Movie, Series, and Actor classes only. This means the
interface of their constructors, getter methods for data members, their printing using the << operators, and
distinguishing types of titles using the Type enumeration.

We specifically create five of the mentioned indices: let us call them the index of titles by names,
actors by years, titles by years, titles by actors, and cast by genres. For their implementation, we will use
standard containers std: :map, std: :multimap, and std: :unordered_multimap (from libraries <map> and
<unordered_map>), and for increasing clarity when working with them, we will also assume the following
type aliases.

e using db_index_titles_by_names_t = std::map<
std::string, std::shared_ptr<Title>
>: index allowing to search for titles based on their (unique) names

e using db_index_actors_by_years_t = std::map<
int, std::set<Actor>
>: index for finding actors by their years of birth; when inserting records into this index, operator []
on the outer map is expected to be used

e using db_index_titles_by_years_t = std::multimap<
int, std::shared_ptr<Title>
>: index for searching titles based on years they were filmed; we assume that std::less<int> will be
used as the comparison functor when creating the container for this index; it already exists, we will
therefore not implement it

e using db_index_titles_by_actors_t = std::unordered_multimap<
Actor, std::shared_ptr<Title>

>: index enabling to find titles by actors who played in them; when creating the container for this
index, std::hash<Actor> will be used as a hash functor, and, analogously, std: :equal_to<Actor>
will be used as a comparison functor; the first mentioned one does not exist, and we will therefore need
to implement it by ourselves (in a header file) as a specialization of the hash functor template, i.e., in
the form of a structure template<> struct std::hash<Actor> { .. }, within which we implement
just a single method, namely the parentheses operator () in the form of a member function size_t
operator () (const Actor& actor) const noexcept, where we just return a hashed value based on
the actor surname, for which we will use an instance of the existing functor std: :hash<std: :string>;
as for the comparison functor std: :equal_to<Actor>, it suffices to implement the equality comparison
operator == in the form of a global function, i.e., bool operator==(const Actor& actor_1, const
Actor& actor_2); we perform the actual comparison using the already implemented operator == on
tuples std::tuple from the <tuple> library, which we artificially create for this purpose using the
std: :tie function

e using db_index_cast_by_genres_t = std::multimap<
std::tuple<std::string, int>,
std::tuple<std::string, std::string, std::shared_ptr<Title>>
>: this index will allow storing the cast information in titles based on their genres and years, specifically
in the form of triples (actor first name, actor surname, pointer to a given title) based on pairs (title
genre, year of title filming)



In all cases, we assume that an empty instance of a given index will first be prepared in the main function,
our task will be to implement the following global functions through which we will be able to populate a
given index with the corresponding records based on the current content of the database.

e void db_index_1(const database_t& database, db_index_titles_by_names_t& index)
e void db_index_2(const database_t& database, db_index_actors_by_years_t& index)
e void db_index_3(const database_t& database, db_index_titles_by_years_t& index)
e void db_index_4(const database_t& database, db_index_titles_by_actors_t& index)

e void db_index_5(const database_t& database, db_index_cast_by_genres_t& index)

We preserve all the five existing database queries unchanged and add the following new queries in the
same style. However, as for the interface point of view, we will no longer pass them a reference to the entire
database, but only a relevant index discussed above. It continues to apply that for each title found, we print
the result in the required format to a specified output stream. Alternatively, we print a message that no
suitable record could be found. We again terminate printing of each record with the end of line.

e void db_query_6(
const index_titles_by_names_t& index,
std::string_view name,
std::ostream& stream = std::cout
): based on the index of titles by names, we find a specific title that has a name name; if we find it,
we print its full JSON object; otherwise, we only print a message Not found!

e void db_query_7(
const index_actors_by_years_t& index,
int begin, int end,
std::ostream& stream = std::cout
): based on the index of actors by years, we calculate the overall number of actors born during the
years belonging to a given right-open interval [begin, end ); the result will be printed in the form
count actors or actor, depending on the determined count (e.g., 7 actors or 1 actor)

e void db_query_8(

const index_titles_by_years_t& index,

int year,

std::ostream& stream = std::cout
): using the index of titles by years, we find all titles that were filmed in a year year; we print each such
title as a string with a JSON object { name: "name", year: year }, where name will be replaced
with title name and year with its year of filming; if there is no suitable title, we just print a message
Not found!

e void db_query_9(
const index_titles_by_years_t& index,
int begin, int end,
std::ostream& stream = std::cout
): using the same index, we find all titles that were filmed in a year belonging to a right-open interval
[begin, end ); we print the found titles in the same format as in the previous query; if we do not find
any, we again only print Not found!

In the following two queries, we will do without indices, and so we will once again work with the database
directly. In the first of them, we will try out working with a container that uses a sorting functor other
than the default one. The second one will then allow finding of titles based on a general search condition
implemented in the form of a separate function or functor.

e void db_query_10(
const database_t& database,
int begin, int end,
std: :ostream& stream = std::cout



): we find every single casting of actors born in the years belonging to an interval [begin, end ); in
other words, we go through all titles and find all matching actors within them; we are only interested
in the actors themselves, all duplicates will be preserved; since we also want to print these actors
in a specific order (different from the default one, i.e., the one we defined in the previous task),
we will first store them internally in an auxiliary multiset container std::multiset, in which we
will use our own functor for sorting; specifically, it will be a class Comparator_Q10_Actors with a
public method void operator() (const Actor& actor_1, const Actor& actor_2) const, which
will simulate the behavior of the < operator for the ascending order based on years of birth, first
names, and last names; for its elegant implementation we will again use artificially created tuples
std: :tuple, this time obtained using the std: :make_tuple function; for each found actor, we print
its complete JSON object; if none exists, we print the Not found! message

e void db_query_11(

const database_t& database,

const std::function<bool(const Titlex)>& predicate,

std::ostream& stream = std::cout
): we find all titles that satisfy a general selection condition evaluated by the provided predicate
function; this function expects a single parameter in the form of a non-modifying C-style observer
pointer to a title for which the condition is to be evaluated, while it returns true if and only if the
given title should be included in the query result; to allow the use of not only ordinary functions but
also functors or even lambda expressions later on for these conditions, we will pass this parameter
using the std::function structure from the <functional> library; for each found title, we print its
whole JSON object; if no title is found, we print Not found!

For the previous query, we also prepare the following two functions with specific conditions. The first
one will be implemented as an ordinary global function, the second as a functor. In neither case should you
create named constants for the given particular values, as it would go against the purpose of these functions.

o Global function bool predicate_Q11_movies(const Title* title): we find all movies (not series,
i.e., only titles with type Type: :MOVIE) with at least three actors that are not comedies

e Functor Predicate_Q11_Titles implementing a method bool operator() (const Title* title)
const: we find all titles with a rating of at least 80 where Tatiana Vilhelmova 1978 played

Finally, we add the following two queries. We return back to working with indices, and we will no longer
print anything to the output stream, because the found or calculated results will always be passed to the
caller in the form of a return value instead.

e std::vector<Title*> db_query_12(
const index_titles_by_actors_t& index,
std::string_view surname
): based on the index of titles by actors, we find all titles in which an actor with a surname surname
played; the result will be returned in the form of a vector of traditional C-style observer pointers to the
corresponding titles; when iterating over individual records in the index, it is expected that structured
binding auto&& [key, value] will be used

e std::vector<std::string> db_query_13(
const index_cast_by_genres_t& index,
std::string_view genre, int year
): using the last defined index cast by genres, we find names of actors and names of titles in titles with
a genre genre filmed in a year year; each found record will be returned as an std: : string containing a
JSON object in the following format: { name: "name", surname: "surname", title: "title" I,
where name is the actor first name, surname their last name, and title name of a given title

As already explained in the introduction, during the work on the assignment, you will use the current
version of your movie database project (provided you have it). However, you will only submit the module
for database queries as such. More precisely, you will only submit queries Q6 to Q13, all indices and related
code. If you also submit older queries Q1 to Q5, nothing happens, they will just not be tested. Specifically,



you will most likely only submit the Queries.h header file and the corresponding Queries. cpp source file.
No other files from the original project should be submitted. In other words, your queries will be evaluated
against the implementation of the entire database contained in the prepared test, not the one you created
on your own.

The test itself will contain the #include directive for the header file Queries.h only. Within it, you may
(in addition to the required standard libraries) include only the Storage.h header file, through which you
will gain access to everything necessary, particularly everything related to titles, movies, series, and actors.

As part of this assignment, we are to implement, among other things, a specialization of the hash functor
std: :hash and the equality test operator == for our actors. Naturally, it would make the most sense to
place both of them into the module of actors. However, since it will not be submitted, place them into the
query module instead so that they can be tested.

You are expected to adhere to the usual requirements on our assignments. If specific constructs or
functions were prescribed within individual indices or queries, it is necessary to abide by such an intention.
The objective of this assignment is to verify the ability of working with additional standard containers
such as std::map, std::multimap, std: :unordered_multimap, and std::multiset with custom classes,
structures std: :pair, std: :tuple, and std::function, predefined functors std::less, std: :hash, and
std::equal_to, and functors themselves in general.



