
NPRG041 – 2025/26 Winter – Labs MS – Small Assignment C07

Movie Database II

Within this homework, we return back to the topic of our database of movies. We first preserve the entire
existing code and then refactor it to meet several modified and newly added requirements. In particular, we
will alter the representation of our actors, we will start working with series in addition to just movies, and
we will also adjust the container with which we simulate our database as such. Finally, we will also add the
evaluation of three new queries, as well as adapt the existing ones to the new situation.

Let us first focus on the changes in the representation of actors. While we have represented the actors
only using their atomic names until now (and, thus, technically using the std::string strings), we want to
be capable of storing more pieces of information about them from now on, and, furthermore, in a structured
way. For this purpose, we will create an Actor class, assuming we specifically have the following information
about each actor: first name (std::string), last name (std::string), and year of birth (int). We will
design its constructors and other methods analogously to the class for movies, in particular, we expect the
following pair of constructors, as well as getter methods name, surname, and year for accessing the individual
private data members.

• Actor(const std::string& name, const std::string& surname, int year)
• Actor(std::string&& name, std::string&& surname, int year)

In order to even be capable of working with actor instances inside the set container std::set, we
must first define their mutual ordering. This can be achieved by implementing a global function bool
operator<(const Actor& actor1, const Actor& actor2), through which we introduce the behavior of
the < operator for comparing pairs of actors. From the logical point of view, this comparison will be defined
by a triple consisting of a last name, first name, and year of birth (in that order). The function returns
true if and only if the first actor precedes the second one.

Printing an actor to a specified (or standard) output stream will be achieved by a method void
print_json(std::ostream& stream = std::cout) const, and also via the implementation of our own
operator <<, that is, using a global function std::ostream& operator<<(std::ostream& stream, const
Actor& actor). The goal is to print a given actor in the form of a JSON object, e.g., { name: "Ivan",
surname: "Trojan", year: 1964 }. Again, we will faithfully preserve the order of items and separators
in the form of commas and spaces. We do not print any line breaks at the end.

For the purpose of importing the actors from an input stream, we add our own operator >>, that is, we
implement a global function std::istream& operator>>(std::istream& stream, Actor& actor). We
expect that the individual details about a given actor are listed in the correct order and that they are
separated by spaces, e.g., Ivan Trojan 1964. To implement such a stream extraction operator efficiently
and still preserve the individual data members of the actor as private, we will use the friend mechanism.

The second main change in the current program consists in the fact that we will now want to work
with series in addition to movies. Technically, we will make this change by first renaming the current class
Movie to Title, and then deriving from it, as a common abstract ancestor, two specific classes using the
inheritance, namely Movie for movies and Series for series.

In the case of movies, besides the common data items for all titles, we also want to store their optional
length in minutes (int). For its representation and creation of values, we will use the std::optional
type and std::make_optional function or std::nullopt constant, respectively, all from the <optional>
library. In the case of series, on the contrary, we add their number of seasons and total number of episodes
(both int). To distinguish between the two types of titles, we add a virtual function Type type() const
returning a respective value from an enumeration class enum class Type { MOVIE, SERIES }. We will add
other methods and suitable constructors as needed, assuming we will always put newly added items at the
end, we will respect their order and also names of the access methods length, seasons, and episodes.

The existing function for printing the titles will be modified so that the first item in the generated JSON
object will be an item specifying the title type, specifically { type: "MOVIE", … } in the case of movies,
and, vice versa, { type : "SERIES", … } in the case of series. We print the actors field in the same way as
the last time, but each actor will now be represented by its own JSON object, as we have already described.
We will place specific title items at the end. In the case of movies, it means their length, e.g., { …, length:

112 }. If the length is missing, we will not print the item at all. In the case of series, it means their number
of seasons and episodes, e.g., { …, seasons: 8, episodes : 73 }. To increase the comfort of the users,
we will also offer our own stream insertion operator << for titles as such.

We modify the existing function for importing movies from input CSV data analogously. We now
assume that the first field for each title will be a selector determining its type, namely MOVIE;… for movies
and SERIES;… for series. Again, specific fields will be given at the end, i.e., the optional length for movies,
e.g., …;112, and the number of seasons and episodes for series, e.g., …;8;73. Valid ranges of the newly added
numeric values are as follows: length 0 to 300, seasons 0 to 100, and episodes 0 to 10000. If the first field
does not contain a valid selector, we throw the following structured exception:

• Code 2 (parse errors)
– Invalid type selector <selector> in field <type> on line <line>:

invalid type selector value selector

In general, we expect that exception messages are now constructed using formatted strings std::format
from the <format> library (as well as we refactor the existing exceptions from the previous assignment
accordingly). When parsing the actors (i.e., directly inside the extraction operator >> for the actors), the
detection of error situations will be based on the contextual conversion of a stream to a logical value. In
particular, we assume the following structured exceptions:

• Code 2 (parse errors)
– Missing attribute <attribute>:

value of the first name (name) or surname (surname) attribute is missing
– Missing, invalid, or overflow value in attribute <attribute>:

value of the birth year attribute (year) is either missing, or, although present, it is not a valid
number (without distinguishing the specific cause)

– Integer <value> out of range <min, max> in attribute <attribute>:
value of the birth year attribute is outside of the allowed range 1850 to 2100

During the import process of movies, we then append the text messages of these exceptions (while
preserving their codes) with further information describing the context of a given input movie, namely ...
in actor <actor> on line <line>, where actor will be replaced by the entire input string of a given actor,
and line is again the line number. Entirely empty actors will again be skipped. Just to be sure, let us have
a look at the following illustrative examples:

• MOVIE;Pres prsty;2019;comedy;56;Petra Hrebickova 1979,Jiri Langmajer 1966;101
is correct

• MOVIE;Pres prsty;2019;comedy;56;Petra Hrebickova 1979,Jiri;101
throws an exception with text Missing attribute <surname> in actor <Jiri> on line <1>

• MOVIE;Pres prsty;2019;comedy;56;Petra Hrebickova 1979,Jiri Langmajer NaN;101
throws an exception with text Missing, invalid, or overflow value in attribute <year> in
actor <Jiri Langmajer NaN> on line <1>

The third change will be a partially enforced modification of the representation of our simulated database
as such, i.e., the container for movies. We will now need a polymorphic container that allows for working
with titles of any type, i.e., movies and series. This time, however, we will no longer use traditional C-style
pointers, but smart pointers, specifically in the form of the shared smart pointers. This will make the
situation easier for us in terms of dynamic allocation, and, above all, deallocation of individual title instances.
We therefore assume a new database of titles in the form of std::vector<std::shared_ptr<Title>>.
Individual instances of titles will now be constructed via std::make_shared<Movie>(…) for movies, and
analogously for series.

We will preserve both the existing database queries without changing their meaning. However, this will
involve the following two technical modifications: in both of them, we will consider and so find all titles (not
only the original movies), and, specifically for query db_query_2, considering the new structured actors, we
will look for a pair of actors Ivan Trojan 1964 and Tereza Voriskova 1989.

Finally, we implement the following three new queries, technically again using global functions in the
same style as the last time (including printing the end of lines after each title found):

• void db_query_3(
const database_t& database,
Type type, int begin, int end,
std::ostream& stream = std::cout

): we find all titles having a type type (movies or series according to our enumeration) that were
filmed in a given interval of years [begin, end), understanding this interval as open on the right; only
correct intervals of years are assumed, otherwise the behavior will be undefined; if the values begin
and end are the same, a given interval is empty; for each matching title, we print a text string in
the form of a JSON object { type: "selector", name: "name", year: year }, where selector is
replaced by the title type (string values MOVIE or SERIES), name by title name, and year by its year
of filming

• void db_query_4(
const database_t& database,
int seasons, int episodes,
std::ostream& stream = std::cout

): we find all series that have at least a given number of seasons seasons or at least a given number
of episodes episodes; when retyping general titles to series (more precisely, pointers to them), it is
necessary to use static retyping via static_cast<...>(...) or possibly also std::static_pointer_
cast<...>(...) constructs; for each matching title, we print a text string in the form of a JSON
object { name: "name", seasons: seasons, episodes: episodes }, where name is replaced by the
title name, seasons by the number of seasons, and episodes by the number of episodes

• void db_query_5(
const database_t& database,
int length,
std::ostream& stream = std::cout

): we find all movies that have a length at least length minutes; movies that do not have their length
specified will be ignored; for retyping in this case, it is necessary to use dynamic retyping instead, using
dynamic_cast<...>(...) or possibly also std::dynamic_pointer_cast<...>(...) constructs, and
the success of such a conversion must be properly tested; for each matching title, we again print a text
string in the form of a JSON object { name: "name", length: length }, where name is replaced
by the title name and length by its length

As usual, submit all created source files (*.cpp and *.h) except for the main file Main.cpp. Within it,
we again assume directives #include for the header files Database.h and Queries.h, through which all the
expected functionality must be directly or indirectly accessible. We also continue to assume the Storage.h
header file containing the definition of the type alias for our database.

The goal of the assignment is to verify the ability to work with selected custom operators (especially
stream insertion and extraction operators), shared smart pointers used in connection with a hierarchy
of classes and polymorphic containers, class std::optional, formatted strings std::format, and the
mechanisms of both static and dynamic casting.

From the code quality point of view, do not forget to work with named constants. Their definitions should
be placed into modules to which they logically belong, and their names should be chosen systematically (e.g.,
using appropriate prefixing). Simply because we already have a large number of them, and so it should be
immediately clear what each constant relates to (titles, movies, series, actors, …).

During the import of titles, it is essential to process individual actors using their stream extraction
operator >>. This was actually the very reason why we have designed it in the first place. Inside this operator,
the first name, surname, and birth year attributes should again be processed using their respective extraction
operators, and the obtained values should be stored directly into the provided output actor instance. Finally,
let us note that movies themselves could be handled analogously via their own extraction operator as well.
However, due to the CSV format (and so separators other than whitespace characters), this would be more
complicated and without meaningful benefits for us. Hence, such a change is not worth implementing.

When importing and printing specific variants of titles, i.e., movies and series, avoid duplicating the
same or similar code. In other words, shared attributes (those belonging to every title) should be handled
once, not repeatedly. In the case of printing the titles as JSON objects, make use of the benefits offered

by the mechanism of virtual methods. Even though general titles are abstract, their hypothetical printing
should still result in a well-formed and meaningful JSON output.

Since we are now familiar with string views std::string_view, consider whether it would be reasonable
to use them in suitable places (aside from the binding interface, i.e., only in your internal methods, whether
newly introduced or by refactoring the existing code). At the very end, let us once again recall our
requirement regarding the database query db_query_2, where verification of the presence of actors must
still be accomplished in logarithmic time.

