NPRGO041 - 2025/26 Winter — Labs MS — Small Assignment C06

Arithmetic Expressions 11

In this homework, we will again focus on the topic of arithmetic expressions and working with them.
Specifically, we preserve all the source code from the previous task and extend the currently provided
functionality by allowing the construction of our expressions from input strings in infix notation.

The content of these input strings corresponds exactly to the assumptions we had the last time. It means
we work with the operations of addition, subtraction, multiplication, and division. The first two listed have
a lower precedence than the remaining two, all are left-associative. In addition to numbers (natural numbers
or zero without unary signs), parentheses can also appear in the expressions, but only the round ones (i.e.,
not other types such as square brackets or curly braces). Individual numbers, operators, and parentheses
occur immediately after each other, there are no separating spaces or other white characters in the strings.

A sample input string could be, e.g., 10%2+3*((1+14)-18)-10. In general, we can assume that these
input strings are valid (syntactically well-formed). As we will describe later, however, we will detect and
handle certain incorrect situations.

Input strings will logically be perceived as a sequence of tokens, which can be numbers, operator
symbols, or symbols of opening or closing parentheses. To process these tokens (i.e., parse the input
string and construct the resulting expression tree), we will use the shunting-yard algorithm described in
the following pseudocode. It is based on working with two stacks, one for operators (including opening
parentheses) and another for operands (already created tree nodes). For both these stacks, we will use the
standard std::stack container from the <stack> library. Specifically, std: :stack<char> for the former
and std: :stack<Nodex> for the latter.

1 foreach token ¢ in the input string in infix notation do

2 if ¢ is a number then

3 ‘ create a new leaf node for ¢ and add it onto the stack of operands

| else if ¢ is an opening parenthesis (then

5 ‘ put (onto the stack of operators

6 else if ¢ is a closing parenthesis) then

7 while there is an operator o on top of the stack of operators do

8 remove o from the stack of operators

9 remove two nodes r and [from the stack of operands

10 create a new inner node for o based on [and r and add it onto the stack of operands

11 remove (from the stack of operators

»—‘
S
)

Ise t is an operator n

13 while there is an operator o on top of the stack of operators with precedence higher than n,
or the same, but only if n is left-associative at the same time do

14 remove o from the stack of operators

15 remove two nodes r and [from the stack of operands

16 create a new inner node for o based on [and r and add it onto the stack of operands

17 add n onto the stack of operators

18 while the stack of operators is not empty do

19 remove o from the stack of operators

20 remove two nodes r and [from the stack of operands

21 create a new inner node for o based on [and r and add it onto the stack of operands

If the algorithm runs successfully to the very end, exactly one node should remain on the stack of
operands. This node will constitute the root node of our entire expression. We just need to take it and
wrap it by an instance of the expression we were supposed to create.

The only required interface we must adhere to is the following new constructor of the existing Expression
class. Since we neither need to store nor modify the input string, we will use the std: :string_view type

from the <string_view> library to pass it. This type enables efficient encapsulation and unified processing
of both C-style strings and std: :string strings, moreover, without copying its content in the latter case.

o Expression(std::string_view input): creates a new instance of an arithmetic expression based on
parsing the provided input string in infix notation

Since the entire parsing algorithm is apparently non-trivial, it would not be a good idea to implement
it directly inside this constructor. The core of our will therefore be a parser class that will encapsulate the
entire parsing process. Although its exact form, interface, and even name are not prescribed at all, the
overall concept of the solution must be followed.

One might understandably consider implementing all functions of this class as static, i.e., without the
intention of creating its instances (similarly to the counter class from the third assignment). However,
requiring a suitable decomposition at least at the level of processing individual tokens (at least because of
decoupling the high-level logic of the entire parsing algorithm from the individual low-level situations to be
handled), there will be quite a few such functions. Moreover, we would constantly have to pass the stacks
between them, which would certainly be possible, but not particularly convenient.

We will hence adopt the following solution. Once again, we will offer the users a public static function,
e.g., in the form [[nodiscard]] static Node* parse(std::string_view input). Its task will be to
carry out the entire parsing process and return the resulting pointer to the root node. Inside this function,
we will use a private constructor to create an instance of the parser, maintaining both the stacks as its data
members. All other helper methods can then be regular (i.e., non-static), and so the stacks will be accessible
directly. However, since the constructor will be private, the users will still not have access to it.

Let us also explain the purpose of the (voluntarily) used [[nodiscard]] attribute. It is a general
mechanism that allows additional information to be provided to the compiler. Specifically, this attribute
enforces checking that the return value of a function is not entirely ignored by the caller. Of course, this
cannot automatically guarantee program correctness, but it can reduce the risk of an accidental oversight.
In our specific case, this is particularly appropriate due to the use of dynamic allocation.

The entire algorithm has the property that it can successfully process certain input expressions that are
not actually valid. Moreover, since we are not able to detect all such situations straightforwardly, we will
not even attempt to do so. On the other hand, as already indicated, we can come to correct conclusion in
certain situations of obvious errors. And that is why we will detect and treat such selected situations.

Not only because of this intention, we propose our own custom hierarchy of exception classes. Specifically,
we start with a base class Exception and derive from it variants ParseException, MemoryException, and
EvaluationException. We will offer one constructor Exception(const char* message). Since we will
work only with fixed text messages (defined as constant expressions) further describing given error situations,
we will pass them via C-style strings (and we do not become their owners). As for the remaining interface,
we will only offer a method enabling access to this message via const char* message() const.

When it comes to particular situations when to throw these exceptions and their text messages, we expect
the following behavior. Let us begin with exceptions of the ParseException type, which are supposed to
deal with incorrect input strings during their parsing.

e Unknown token: we encounter an invalid or unknown token, e.g., 3+a, 3+1a, or 3+al

e Overflow number: we are not able to correctly recognize a numerical value because of its overflow

e Missing operands: we fail to construct the current operation node due to missing operands in the
stack of operands, e.g., 1+

e Unmatched closing parenthesis: when processing a closing parenthesis, we are not able to find the
corresponding opening parenthesis on the stack of operators, e.g., 1+2)

e Unmatched opening parenthesis: during the final cleaning of the stack of operators, we come across
an opening parenthesis that has not yet been closed, e.g., (1+2

e Unused operands: at the very end, the stack of operands contains more than just a single node

o Empty expression: or in the same situation, none on the contrary

We must also think of the situations when there will not be enough memory to perform dynamic allocation
of individual tree nodes. We detect such cases by catching the standard std: :bad_alloc exception. Exactly
that exception is thrown when an attempt at dynamic allocation using the new operator fails. Instead of it,
we just throw our MemoryException exception with a text message Unavailable memory.

If the parsing fails for any of the reasons mentioned above, we must not forget to correctly deallocate all
the already successfully created nodes. We would otherwise not be able to ensure atomicity and consistency
of the entire algorithm in terms of correct memory use, i.e., we could lose our memory uncontrollably and
irreversibly (the so called memory leaks).

Finally, we will also start to handle situations where we would be attempting to divide by zero when
evaluating the already constructed expressions. In this case, we will throw an EvaluationException
exception with a message Division by zero. At the same time, we avoid repeated evaluation of the
right subtree since it may not be trivial.

Submit all the created source files (*.cpp and *.h) except for the main file Main.cpp with the main
function. The predefined one will then contain a directive #include "Expression.h". Everything needed
must therefore be directly or indirectly available through this header file again.

The primary goal of this task is to verify the ability to implement a more complex algorithm according to
a provided pseudocode and correctly work with dynamically allocated memory in connection with objects
having a non-trivial life cycle (including handling error situations because of preventing memory leaks).
This means, it is again necessary to use the traditional C-style pointers to our nodes rather than unique
smart pointers std: :unique_ptr. In terms of technical resources, it is necessary to demonstrate the use of
the stack container, in the form of a polymorphic container allowing to store instances of different types of
nodes. Again, follow the usual assignment requirements.

Let us note that our intention is not to create a universal code that would be capable of parsing
and processing expressions of arbitrary forms. Therefore, we can hard-wire all specifics of arithmetic
expressions (such as operations, precedence, associativity, etc.) directly into the code in an appropriate
way. Specifically, it is not reasonable to design the parsing algorithm as a loop over general tokens, which
we would first recognize, temporarily store as instances of some auxiliary classes, and only then process.
Technical complications and growth of code volume would not outweigh the benefits. Moreover, such an
approach would likely not be general enough anyway.

While the manual deallocation of the already created nodes and so expressions as a whole is relatively
straightforward and was already addressed through the respective destructors in the previous assignment,
ensuring correct handling of dynamically allocated memory during the parsing algorithm is a significantly
more complex challenge. We must prevent memory leaks even in various edge and error situations that may
arise during the entire process and which may prevent it from reaching its successful end at all.

This specifically includes all situations in which we throw the previously discussed exceptions as a
response to invalid input strings or unavailable memory. In particular, we must realize that memory issues
can arise not only from the failure of the new operator we explicitly use to allocate new nodes, but also
when using standard containers that also rely on dynamic memory allocation. This includes the stack of
operators as well as the stack of operands, but also operations involving std: :string strings, even when
creating them (via constructors or even methods such as substr). Even the creation of empty instances of
all these containers may also potentially fail.

The first key aspect, therefore, is being able to identify all places where such failures might occur.
The second key aspect is ensuring proper cleanup, i.e., manually deallocating anything that will not be
deallocated automatically. This includes all instances of nodes we have successfully created, whether they
are still in the stack of operands or have already been removed from it. In case of any failure, we must be
able to perform kind of a rollback concerning the existing nodes.

To fulfill both the aspects, it is necessary to carefully place the required try / catch blocks. The objective
is not only to ensure correctness, but also avoid unnecessary repetition of code that handles our compensation
actions. An approach where we allow certain issues to intentionally bubble up to more appropriate places
rather than addressing them immediately could help. In any case, we must ensure that the parsing method
fully handles all issues internally, exposing only our custom exception types from the Exception hierarchy.
This specifically means that no other exceptions (such as std::bad_alloc) may propagate even into the
constructor of the Expression class.

Technically, we will need to formulate catch blocks where we want to catch any exception from our
hierarchy. In such cases, we will naturally use a constant reference, i.e., catch (const Exception& e)
{...}. However, the important point is that if we need to rethrow such a caught exception, we cannot do
it via throw e, as this would cut its specialization. Instead, we rethrow it using a standalone throw.

Finally, let us emphasize that within the ReCodEx tests, it is unfortunately not possible to cover all
the cases where the discussed dynamic allocation might fail. Therefore, before submitting the final version,
think everything through carefully and check your code very, really very thoroughly.

