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Graphs

Flexible Array
For the purpose of the intended graph representation, it is first expected to implement a custom container
template of a flexible array lib::Array<T>, which will allow for storing elements of any data type T in
a way that guarantees the immutability of element locations throughout their existence. In other words,
when manipulating this container (e.g., when adding or removing individual elements), there will never
be a need to perform the internal storage reallocation. This will not only result in a more friendly work
with dynamically allocated memory, but, at the same time, there will never be a need to relocate the
existing elements in memory (at best, by moving, at worst, by copying, according to the capabilities of these
elements), and thus invalidate any references or pointers to these elements held by the users.

The extent of functionality of the flexible array container and the associated iterators is assumed to be
at the level of the two relevant small homework assignments. On a practical level, however, it is actually
not necessary to have this implementation fully complete, as it will suffice to only have those functions that
you really want to use within the graph. As for the iterators, in particular, it will suffice to reach just the
category of forward iterators. On the other hand, if need be, it is possible to extend the existing functionality
of the array even further. We continue to assume the possibility of activating the debug mode via the macro
__DEBUG__, thanks to which the flexible array will throw exceptions in the corresponding edge situations.

If you do not have the flexible array implementation at all or at least not sufficiently debugged, you
can actually use an ordinary standard container std::vector within this task. However, it is important to
realize that the standard vector does not provide the aforementioned guarantees and you will thus have to
deal with certain implied limitations. In any case, use of a flexible array is suitable and desirable, yet not
mandatory nor necessary.

Graph Representation
The main goal of this assignment is to program a class template that would allow us to represent a graph,
both directed and undirected. In both these cases, there can be at most one edge only (in a given direction)
between any pair of nodes, so we only consider an ordinary graph, not a multigraph. It is also important to
note that we also need to be capable of binding these nodes and edges with any additional information we
want to store with them.

The graph class as such Graph<NData, EData> will provide a basic common interface for both the
mentioned variants of graphs. It will, however, be abstract, it will not be possible to create instances from
it. This will only be possible for a particular derived variant of a directed graph DirectedGraph<NData,
EData> and an undirected graph UndirectedGraph<NData, EData>.

Template parameter NData determines a data type used for the representation of the information
associated with individual nodes, and, analogously, EData with edges. In both cases, any basic type as
well as an arbitrary standard or user-defined class can be chosen, but pointers are not allowed. Whatever
type is selected, it will be copyable and moveable (in this case in the noexcept mode), have a default
constructor, and implement its own << and >> operators for working with streams.

In terms of the logical decomposition, the graph class will contain two separate components, namely
an instance of a Nodes<NData, EData> class for handling all the functionality related to the graph nodes,
and, analogously, an instance of an Edges<NData, EData> class for the edges. Instead of standalone classes,
you can alternatively implement both the components as inner classes Graph<NData, EData>::Nodes and
Graph<NData, EData>::Edges as well. Each individual node will be implemented as an instance of a
Node<NData> class, an edge as an instance of an Edge<EData> class, regardless of whether or not it is
directed. In other words, edges themselves do not need to and will not distinguish this fact.

Although a large part of the entire solution design will not be restricted in any way, certain aspects of
the expected interface must, as usual, be observed. Moreover, in many situations, we will need variants of
functions for modifiable but also constant graphs or their components. In order to avoid duplication of the



headers of such functions in the following text, we just mark them with the [♠] symbol. Analogously, we
will use the [♣] symbol in situations where, for a particular parameter, we want to offer two variants of its
forwarding via a constant lvalue reference or a modifiable rvalue reference, respectively.

Nodes and Edges
Each node and edge is assigned a unique identifier from the set N0, i.e., natural numbers including zero.
These identifiers are immutable, i.e., once assigned, they can never be changed later. If the graph contains
n ∈ N0 nodes, then their identifiers cover all the numbers from 0 to n− 1. In other words, these identifiers
follow each other continuously, we do not skip any. The same applies analogously (separately) to the edges.
Technically, we will use the size_t data type for these identifiers, but we will work with an Identifier
alias in the code to facilitate possible future changes. Whatever type we will assume, though, it will always
have the << and >> operators implemented, and its values will be implicitly convertible to non-negative
size_t values.

Specifically for the node class, the following interface needs to be implemented:

• Identifier getId() const: returns the identifier of a given node
• NData& getData() [♠]: returns a reference to the data content associated with a given node

In the case of the edge class, the interface is analogous, we just add the possibility of accessing nodes
determining a given edge:

• Identifier getId() const: returns the identifier of a given edge
• Identifier getSource() const: returns the identifier of the source node
• Identifier getTarget() const: returns the identifier of the target node
• EData& getData() [♠]: returns a reference to the data content associated with a given edge

We will further implement the << operators for nodes as well as edges so that we can print them to
any output stream. In both cases, the following output format needs to be respected. If we have a node
with identifier n, we serialize it into a string node (n {data}), where data (that is, the string between the
pair of curly braces) represents the serialized data content. Whatever it looks like, it will never contain
other embedded curly braces. It is assumed that each NData type we will want to use also implements the
corresponding operator <<, and thus can itself be printed in this way. Similarly, for an edge with identifier m
between nodes with identifiers i and j, we will expect the output in the form edge (i)-[m {data}]->(j),
where data again constitutes the serialized content of the EData instance obtained by the appropriate <<
operator. We will print the suggested arrow for all edges, regardless of whether they are directed or not.

The output of individual nodes and edges shall not be terminated by line endings. For example, if we
had a graph DirectedGraph<std::string, std::string>, it could contain a node node (1 {one}) or an
edge edge (1)-[3 {one-four}]->(4) between nodes 1 and 4.

Graph Components
In terms of its data content, each graph must logically (not necessarily also physically) directly or indirectly
store (in the sense of ownership) at least the following three data members (including transitively their
content): 1) internal storage for node instances, 2) internal storage for edge instances, and also 3) adjacency
matrix for efficient retrieval of edges based on the knowledge of identifiers of pairs of nodes they should
connect. In all three cases, we assume that our flexible array lib::Array will primarily be used, yet
standard std::vector will suffice as well. In addition to the listed items, it is, of course, possible to store
other data if need be.

The graph class will expose the components for nodes and edges as follows:

• Nodes<NData, EData>& nodes() [♠]: returns the reference to the component handling nodes
• Edges<NData, EData>& edges() [♠]: analogously for edges

When it comes to placing the mentioned data members, there are two basic solutions: either you put
them all in one place directly in the graph class Graph<NData, EData>, or you can split them up and
place them accordingly into the classes of both the components Nodes<NData, EData> and Edges<NData,



EData>. Both variants offer certain advantages, but they also have their drawbacks. Therefore, think
carefully about which approach is closer to you. In any case, both components must be preserved, if only to
encapsulate the expected functionality, since it simply cannot be provided in just one place directly in the
graph itself.

As for the internal storage for node objects, all nodes in that container are assumed to be arranged
exactly in the order of their identifiers. In other words, node at a position n in the array must have an
identifier n. The same will analogously be satisfied for the internal container with edge objects.

The adjacency matrix can be implemented via an ordinary data member as well as via a separate
class. Technically, it can contain pointers to the respective edges, or, better, their identifiers. Again, all
variants offer certain advantages and disadvantages, the choice of a particular solution should thus not be
underestimated. One way or the other, we need to realize that our graph is supposed to be dynamic (it
must allow for the addition of new nodes), it would therefore definitely not be a good idea to linearize the
matrix content. To conclude, let us just note that a position (i, j) corresponds to an edge leading from a
node with an identifier i to a node with an identifier j. In the case of an undirected graph, the matrix must
be symmetric along the main diagonal. Loops, i.e., edges starting and ending at the same node, are also
supported.

Graph Serialization
We must be able to print the graph as a whole, meaning its nodes and edges, to the standard output (or to
another stream). It applies that we always print all the nodes first, in ascending order according to their
identifiers, only then all the edges, again in ascending order according to their identifiers. Always one node
or one edge per line, terminating each one with std::endl. As expected, the Nodes<NData, EData> class
will be able to print the nodes, while the Edges<NData, EData> class will be able to print the edges. In
both cases, we achieve this via the following interface:

• void print(std::ostream& stream = std::cout) const: prints the component of nodes or edges

We can then easily add the following functions to the graph class as a whole:

• void print(std::ostream& stream = std::cout) const: prints the entire graph (i.e., first all the
nodes and then all the edges) into a specified stream

• void print(const std::string& filename) const: prints the graph in the same way to an output
file with a given name

Both the components as well as the entire graph will also supply analogous implementations of the <<
operators. Sample graph serialization could then look like this:

node (0 {zero})
node (1 {one})
node (2 {two})
edge (0)-[0 {zero-one}]->(1)
edge (0)-[1 {zero-two}]->(2)

For debugging and testing purposes, the edges class will also have the following function, using which
will be able to separately print the content of the already discussed adjacency matrix:

• void printMatrix(std::ostream& stream = std::cout) const: prints the current content of the
adjacency matrix to a given stream; we write each matrix row on a separate line of the output; we
then list the values (individual columns) in the matrix row one after the other and separate them with
the | symbol; if there is an edge at a given position, we print its identifier; otherwise we print the -
symbol

Serialization of the adjacency matrix from the previous sample graph (in the undirected variant) would
then, in particular, look like this:

-|0|1
0|-|-
1|-|-



Inserting Nodes and Edges
The newly constructed graph will always be empty, i.e., it will not contain any nodes or edges. We can then
add them individually using functions we will focus on now. In particular, the component of nodes will offer
the following interface:

• Node<NData>& add(Identifier id, NData [♣] data): inserts a new node with an explicitly given
identifier and associated data into the graph; at this moment, it is assumed that the specified identifier
is valid, i.e., corresponds to the first not yet used position in the flexible array; for the purposes of
testing and exceptions handling, it is further assumed that a new node instance is first inserted into
this array and only then the adjacency matrix is modified; reference to the created node object is
returned

• Node<NData>& add(NData [♣] data): the same, only the identifier of the newly inserted node is
implicitly specified as the next free

The component of edges will similarly offer the following functionality:

• Edge<EData>& add(
Identifier id, Identifier source, Identifier target, EData [♣] data

): inserts a new edge with an explicitly given identifier and associated data into the graph, namely
an edge connecting the specified pair of nodes; again, for this moment, we assume that all parameters
are correct; reference to the created edge object is returned

• Edge<EData>& add(
Identifier source, Identifier target, EData [♣] data

): the same, only the identifier of the inserted edge is implicitly determined as the next free

If for some reason it happens that a new node or a new edge cannot be inserted into the graph (due
to failed memory allocation within our internal array container or due to failed copying of bound data
instances), it is necessary to treat such a situation correctly and achieve the expected atomicity. That is,
the insertion operation will either succeed in its entirety, or it will not at all. In case of a partial failure, it
is therefore necessary to return all graph structures to a state that will again be consistent.

Graph Import
To make creating graphs easier, we also implement functions with which we will be able to load and import
graph content from an input file (or another stream). In this case, we can only import nodes and edges
into a graph instance already created. Moreover, the import function can be called repeatedly, and thus the
graph instance can be composed, for example, from several input files containing individual smaller parts
of the entire graph, as well as interleaved arbitrarily with calls of the previously discussed functions for the
manual addition of individual nodes or edges.

We define the import functions at the level of the graph class as a whole:

• void import(std::istream& stream = std::cin): imports nodes and edges from a given input
stream

• void import(const std::string& filename): imports nodes and edges from an input file with a
given name

Nodes and edges can be mixed arbitrarily in the input data. Therefore, it may not hold that all the
nodes are listed first and only then all the edges. It is, however, always true that each line contains only
one node or one edge. We then insert them into the graph gradually without changing their order. At the
same time, we can also rely on the fact that the records of each node and edge are syntactically correctly
formed and conform to the structure we already described within the respective serialization functions.

When it comes to data content linked to nodes and edges, we need to retrieve it from a string between
the pair of curly braces using the >> operator. In other words, we assume that each specific data type we
want to use for nodes or edges in this sense must implement the corresponding stream extraction operator.

It is assumed that the import function will internally use the previously introduced functions for adding
individual nodes and edges. Any entirely empty line will be skipped. If the import process fails, nodes
or edges that have already been successfully added into the graph will be preserved. We therefore expect



atomic behavior only at the level of individual nodes and edges. For illustration, let us provide the following
valid input file, which, despite the mixed order of nodes and edges, corresponds to our first example:

node (0 {zero})
node (1 {one})
edge (0)-[0 {zero-one}]->(1)
node (2 {two})
edge (0)-[1 {zero-two}]->(2)

Accessing Nodes and Edges
The nodes component class will offer the following functions, with which we will be able to access or query
particular nodes:

• size_t size() const: returns the current number of nodes in the graph
• bool exists(Identifier id) const: tests for the existence of a node, i.e., returns true if a node

with a given identifier exists in the graph, otherwise false
• Node<NData>& get(Identifier id) [♠]: returns a reference to a node with a given identifier; for

now, let us assume we can only access the existing nodes
• Node<NData>& operator[](size_t id) [♠]: the same

Analogously, we will prepare the following functions for the edges component class:

• size_t size() const: returns the current number of edges in the graph
• bool exists(Identifier id) const: tests for the existence of an edge, i.e., returns true if an edge

with a given identifier exists in the graph, otherwise false
• bool exists(Identifier source, Identifier target) const: the same, only for the existence of

an edge between the specified pair of nodes determined by their identifiers
• Edge<EData>& get(Identifier id) [♠]: returns a reference to an edge with a requested identifier;

for now let us again assume valid identifiers only
• Edge<EData>& get(Identifier source, Identifier target) [♠]: the same, only for a given pair

of nodes according to their identifiers

We will also add the [] operator to the edges component so that we can access particular edges. However,
not as a one-level approach using the identifiers of such edges, but as a two-level approach using the identifiers
of a pair of the corresponding nodes source and target (in that order). We thus want to be able to use
code fragments of the form graph.edges()[source][target] [♠].

Graph Iterators
The components of nodes and edges will also offer iterators that will allow for the iteration over individual
nodes and edges in the graph. Of course, it is not necessary to implement anything new, we just need to
utilize and expose the iterators we already have within the internal array. Just to remind, at least the level
of forward iterators in terms of their capabilities is expected. We specifically need to define two pairs of
functions begin() [♠] and end() [♠] with an obvious meaning.

Graph Manipulation
As for the graph class, it is also necessary to implement its standard copy and move (stealing) constructors
and assignment operators, thanks to which we will be able to manipulate graphs as a whole. To avoid any
misunderstandings, let us add that every node and edge is in the logical ownership of a graph instance to
which it belongs. Therefore, if we are about to copy or move graphs as a whole, we have to copy or move
their entire content as well. We must also not forget to ensure the expected atomicity. The possibility of
wrapping the entire function body (including a member initializer list within a constructor) using try/catch
blocks can also help us in this sense.



The move constructor and assignment operator must guarantee to preserve references to all individual
nodes and edges, but not to the components themselves. We will leave the stolen source graphs empty
(without any nodes or edges) and internally consistent (so that they can still be used correctly for testing
purposes). The copy assignment operator leaves the target graph empty and internally consistent again
in case of any failure (achieving atomicity at the level of Strong Exception Guarantee is thus not wanted).
Since we will need a graph emptying function anyway because of the mentioned reasons, we will add it into
the public interface of the entire graph in the form of void clear(), too.

Error Situations
Until now, we have mostly assumed that parameters of our functions were valid, as well as that nothing
else could get wrong. Within this section, we describe how to modify all the affected parts of our code in
such a way that we will be able to detect the majority of edge and error situations and also treat them
appropriately.

To achieve this, we will introduce a simple hierarchy of custom exceptions. The abstract ancestor will
be our own Exception class. It will provide a single function, const char* message() const. Its purpose
will be to return a specific textual description of the error that occurred. For practical reasons, we will need
to distinguish between two types of derived exceptions, namely exceptions with fixed text messages (known
at compile time), and variable messages (dynamically composed and constructed at runtime).

In the first category, there will only be a single derived class MemoryException. This is because it
will be invoked when there is insufficient memory for dynamic allocation. At such a moment, of course,
it is not possible to throw exceptions that would need it by themselves. The second category will contain
all other derived exception types, namely IdentifierException, ElementException, ConflictException,
and FileException.

The following overview contains particular situations we want to handle, their order, expected exception
types, as well as anticipated messages. These messages will contain placeholders in the form of $something,
which we just replace with the appropriate particular values:

• Access to a particular node using the get function or the [] operator based on its identifier:
– ElementException("Node with identifier $id does not exist");

when accessing a node that does not exist

• Access to a particular edge using the get function based on its identifier:
– ElementException("Edge with identifier $id does not exist");

when accessing an edge that does not exist

• Access to a particular edge using the get function or [] operator based on a pair of nodes:
– ElementException("Source node with identifier $source does not exist");

when the source node does not exist
– ElementException("Target node with identifier $target does not exist");

when the target node does not exist
– ElementException("Edge between nodes $source and $target does not exist");

when a non-existent edge is accessed between an otherwise valid pair of nodes

• Existence test of an edge using the exists function based on a pair of nodes:
– ElementException("Source node with identifier $source does not exist");

when the source node does not exist
– ElementException("Target node with identifier $target does not exist");

when the target node does not exist

• Addition of a new node using the add function:
– IdentifierException("Invalid node identifier $id requested");

when an invalid identifier is used (identifier with the highest possible size_t value)
– ConflictException("Node with identifier $id already exists");

when an identifier of an already existing node is used



– IdentifierException("Non-successive node identifier $id requested");
when a not-following-up identifier is used

– Original exception when making a copy of the bound data instance fails
– MemoryException("Unavailable memory for a new node in the nodes container");

when it is not possible to insert a node object into the internal array for nodes
– MemoryException("Unavailable memory for the adjacency matrix extension");

when it is not possible to add a new column and row into the adjacency matrix

• Addition of a new edge using the add function:
– IdentifierException("Invalid edge identifier $id requested");

when an invalid identifier is used (identifier with the highest possible size_t value)
– ConflictException("Edge with identifier $id already exists");

when an edge with the specified identifier already exists
– IdentifierException("Non-successive edge identifier $id requested");

when a not-following-up identifier is used
– ElementException("Source node with identifier $source does not exist");

when the source node does not exist
– ElementException("Target node with identifier $target does not exist");

when the target node does not exist
– ConflictException("Edge between nodes $source and $target already exists");

when an edge between a given pair of nodes already exists
– Original exception when making a copy of the bound data instance fails
– MemoryException("Unavailable memory for a new edge in the edges container");

when it is not possible to insert an edge object into the internal array for edges

• Printing a graph to a specified file using the print function:
– FileException("Unable to open output file $filename");

when a given output file cannot be opened

• Importing a graph from a specified file or stream using the import function:
– FileException("Unable to open input file $filename");

when a given input file cannot be opened (only for the first variant)
– Exceptions thrown by the functions for adding individual nodes and edges

• Graph copy constructor:
– MemoryException("Unavailable memory for constructing a source graph copy");

when a copy of the source graph could not be created due to lack of memory
– Original exception when making a copy of data instances bound to nodes or edges fails

• Graph copy assignment operator:
– MemoryException("Unavailable memory for assigning a source graph copy");

when a copy of the source graph could not be created due to lack of memory
– Original exception when making a copy of data instances bound to nodes or edges fails

Final Instructions
Submit all the created source files (probably only Graph.h and Array.h) except the Main.cpp file, which
is already part of the prepared test. It contains a single directive #include <Graph.h> and also the main
function, which will control the course of the test as usual.

The objective of the task is to show the ability to work with the constructs we have encountered since
the beginning of the semester. In addition to basic skills, it is mainly about working with text files, streams,
design of classes, use of constructors and destructors, inheritance, virtual methods, dynamic allocation,
templates, pointers, operators, iterators or exceptions.

The submitted implementation must, of course, be correct and stable, the compilation must take place
without any warnings. The overall quality of the code will also be evaluated, though. It means, especially,



but not exclusively, organization of code into individual files, classes and functions, use of header files, naming
of files, functions and variables, overall visual style of the code and indentation, passing of parameters by
value or reference, quality of the class design and use of inheritance and virtual methods, not repeating
the same code fragments unnecessarily, using named constants, handling error situations, as well as using
standard libraries, containers or functions.


