NIE-PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/

Lecture 11+12

Query Evaluation

Martin Svoboda
martin.svoboda@fit.cvut.cz

9. and 16. 12. 2025

Charles University, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Information Technology

http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/
mailto:martin.svoboda@fit.cvut.cz

Lecture Outline

Algorithms
* Access methods
¢ External sort
* Nested loops join
e Sort-merge join
¢ Hash join
Evaluation
* Query evaluation plans

e Optimization techniques

Introduction

SQL queries
e SELECT statements

SET operation

(
\»\|

Introduction

Relational algebra
e Basic and inferred operations

= Selection o, projection 7, . ,,, renaming Pbi/ay,....bn)an
= Set operations: union U, intersection M, difference \
* Inner joins: cross join x, natural join x, theta join x,
Left / right natural / theta semijoin x, x, x,, X,
Left / right natural / theta antijoin &, <, >, <,

= Division +
* Extended operations

= Left / right / full outer natural join Ix, XC, 2xC
= Left / right / full outer theta join 14 , <, 0,
= Sorting, grouping and aggregation, distinct, ...

Naive Algorithms

Selection: ¢, (E)
* lIteration over all tuples and removal of those filtered out
Projection: m,, .. (E)
 Iteration over all tuples and removal of excluded attributes
= But also removal of duplicates within the traditional model

Distinct

» Sorting of all tuples and removal of adjacent duplicates
Inner joins: Ep X Es, Ep X Eg, Ep X, Eg

* lIteration over all the possible combinations via nested loops
Sorting

e Quick sort, heap sort, bubble sort, insertion sort, ...

Challenges

Blocks
* Tuples stored in data files are not accessible directly
= Since we have read / write operations for whole blocks only
e That is true for all types of files...

= And so not just data files for tables
= But also files for index structures or system catalog

Latency

* Traditional magnetic hard drives are extremely slow
= Efficient management of cached pages is hence essential

Memory

* Size of available system memory is always limited
= external algorithms are needed

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025

Objectives

Query evaluation plan

* Based on the database context and available memory...
... suitable evaluation algorithms need to be selected...
... 50 that the overall evaluation cost is minimal

Database context
* Relational schema: tables, columns, data types
* Integrity constraints: primary / unique / foreign keys, ...
» Data organization: heap / sorted / hashed file
* Index structures: B tree, bitmap index, hash index
* Available statistics: min / max values, histograms, ...

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025

Objectives

Available system memory
* Number of pages allocated for the execution of a given query

e There are two possible scenarios...
= Having a particular memory size...
— Propose its usage and estimate the evaluation cost
= Having a particular cost expectation...
— Determine the required memory and propose its usage

Evaluation algorithms
* Access methods
e Sorting: external sort approaches
* Joining: nested loops, merge join, and hash join approaches

Objectives

Cost estimation

* Expressed in terms of read / write disk operations
= Since hard drives are extremely slow, as already stated...
— And so everything else can boldly be ignored
* We are interested in estimates only

= Since it is unlikely we could provide accurate calculations
= But still...

— The more accurate estimates, the better evaluation plans
= And there can really be huge differences in their efficiency...
— Even up to several orders of magnitude!
* In other words...

* Query optimization is crucial for any database system
= As well as we also need to know what we are doing...

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025

Available Statistics

Environment

e P: size of a block / page, usually ~ 4 kB

e M: number of available system memory pages
Relation R

* np: number of tuples

* sp: average / fixed tuple size
br =~ | B/sgr]: blocking factor

= Number of tuples that can be stored within one block

pr ~ [ng/br]: number of blocks
e V4 cardinality of the active domain of attribute A
= Number of distinct values of A occurringin R

* ming 4 and mazr 4: minimal and maximal values for A

Access Methods

Data Files

Internal structure

» Blocks of data files for tables are divided into slots
= Each slot is intended for storing exactly one tuple
— By the way, they can easily be uniquely identified
— Using a pair of block and slot logical ordinal numbers

¢ Fixed-size slots
= Usage status of each slot just needs to be remembered

(e [

e Variable-size slots

= When at least one variable-size attribute is involved
= Slot beginnings and lengths need to be remembered

(o '

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025 12

Heap File

Heap file

e Tuples are put into individual slots entirely arbitrarily

= |.e., we do not have any specific knowledge of their position

52 [20]10]] [s]55]sa] 5] [3a]3s] 2]] [w][]o] [] | | |

Selection costs

e Full scan is inevitable in almost all situations
" C=DR

* Equality test with respect to a unique attribute
= ¢c= [pr/2]

— Since we can stop at the moment a given tuple is found
— However, uniform distribution of data and queries is assumed
— And values outside of the active domain may also be queried

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025

13

Sorted File

Sorted file
e Tuples are ordered with respect to a particular attribute

‘6‘11‘18‘18"20‘23‘25‘34"36‘42‘49‘53"53‘71‘75‘82"93‘ ‘ ‘ “

Selection costs

* Binary search (half-interval search) can be used in general
= However, only when the same attribute is queried, of course

— l.e., the same attribute as the one used for sorting
— Otherwise, sequential read as in a heap file would be needed

* Equality test
= ¢ = [log, pr| for a unique attribute
= ¢ = [logy pr| + [pr/ Vr. 4] for a non-unique attribute

e Various range queries

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025

14

Hashed File

Hashed file

e Tuples are put into disjoint buckets (logical groups of blocks)
= Based on a selected hash function over a particular attribute

- E.g, W(A) = Amod 3

‘18‘42‘75‘36"82‘34‘49‘25"53‘20‘23‘53‘
[sfssl [J|L [[| Jjluf[n] |]
h(A) =0 h(A) =1 h(A) =2

¢ Hash function

= |ts domain are values of a given attribute A

= |ts range provides H distinct values

— There is exactly one bucket for each one of them
— All tuples in a bucket always share the same hash value

Hashed File

File statistics
* Hpg: number of buckets
o Crp= [pr/Hg]: expected bucket size
= Measured as a number of blocks in a bucket
Selection costs
* Equality test when the hashing attribute is queried

= Only the corresponding bucket needs to be accessed
= ¢ = (g for a non-unique attribute
= ¢ = [Cr/2] for a unique attribute
— Similar assumptions as in the case of heap files
* Any other condition
" c= DR
— l.e., full scan is needed

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025 16

B* Tree Index

B tree index structure = self-balanced search tree
* Logarithmic height is guaranteed (the same across all leaves)
* Moreover, very high fan-out is assumed
= |.e., our trees will tend to be significantly wider than taller
— => search times will not only be logarithmic, but also really low
Logical structure
* Internal node (including a non-leaf root node)

= Contains an ordered sequence of dividing values and pointers
to child nodes representing the sub-intervals they determine

e Leaf node

= Contains individual values and pointers to tuples in data file
= Leaves are also interconnected by pointers in both directions

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025 17

B™ Tree Index

BT tree index structure (cont’d)
* Sample index for relation R and its attribute A

: < %‘10‘11‘14‘ ‘ ‘19‘21‘21‘ ‘ € %‘23‘26‘ ‘ ‘ (428 \
Index

Table

B* Tree Index

Physical structure

* Each node is physically represented by one index file block
= And so they are treated the same way as data file blocks
— le., loaded into the system memory one by one, etc.

Index statistics
* mp 4: maximal number of children (order of tree)

= Usually up to small hundreds in practice
= Actual number is guaranteed to be at least [mp_4/2]

— Except for the root node
* [4: index height
= Usually just =~ 2 — 3 for typical real-world tables

* ppr.a: number of leaf nodes

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025 19

B™ Tree Index

Search algorithm
* Index is traversed from its root toward the corresponding leaf
= Data tuple then needs to be fetched from the data file

7] | |

EEED [

=L

L

CL L1 \

O b fonse fol@aml folas fo]al

Index

Table

Non-Clustered B' Tree Index

Non-clustered index
e Order of items within the leaves and data file is not the same
= |.e., data file is organized as a heap file of hashed file

[s] | |

[M ‘LA,AAA CLL L]

] e Iy I s I e [R e
IIIII g
Table /

\ 1| T = | T | T
NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Ealuaton | 9.and16.12.2025 21

Clustered B™ Tree Index

Clustered index

e On the contrary, order of items is (at least almost) the same
= |.e., data file is a sorted file (with respect to the same attribute)

[| |

LAAAA‘M////

[81421J

i~

Selection costs

Non-clustered B tree index
* Equality test for a unique / non-unique attribute
"c=1Ipa+1
= c=Ipa+ [pra/VR.Al +min(pr, [nr/VR.al)
e Various range queries
* ...
Clustered B™ tree index
¢ Equality test for a unique / non-unique attribute
"c=1Ipa+1
= c=Ipa+[pr/VR.Al
e Various range queries

Examples

Sample scenario #1
* Movie (id, title, year, ...)
= Basic statistics

— npr = 100 000 tuples, by = 10, par = 10 000 blocks
— Varia = nar = 100 000 values (since they are unique)

Heap file
Sorted file (using ids)
Hashed file
~ h(M.id) = M.id mod 50
— Hjyr = 50 buckets, C3; = 200 blocks
BT tree index (using ids)
— mys.sq = 100 followers
- IM.id = 3, PM.id = 1 500 blocks

Examples

Equality test: movie with a particular identifier

* Heap file

* ¢= [py/2] = 5000
* Sorted file

* c=[logypy| =14
¢ Hashed file

= ¢=[Cy/2] = 100

Non-clustered index (BT tree & heap file)
s c=Iyuy+l=3+1=4

Clustered index (B™ tree & sorted file)
s c=Iyut+1=3+1=4

Examples

Sample scenario #2
* Movie (id, title, year, ...)
= Basic statistics

— nypr = 100 000 tuples, by = 10, par = 10 000 blocks
= VM year = 50 values
= MINM.year = 1943, mazps year = 2022 (i.e., 80 values)

Heap file
Sorted file (using years)
Hashed file

- h(M.year) = M.year mod 20
— Hjy = 20 buckets, C3; = 500 blocks

BT tree index (using years)

— MM.year = 100 followers
- IM,year - 3; pM,year = 1 500 bIOCkS

Examples

Equality test: movies filmed in a particular year

* Heap file

= c¢=py = 10000
* Sorted file

= ¢ = [logy pur] + [Pat/ Viryear] = 14 + 200 = 214
¢ Hashed file

= ¢c= Cy =500
Non-clustered index (BT tree & heap file)

" Cc= IM.year + [pM.year/ VM.year—| + min(pM» [nM/ VM.year—D
=3+30+2000=2033

Clustered index (BT tree & sorted file)
" Cc= IM.year + [pM/ VM.year-‘ =3+ 200 = 203

External Sort

External Sort

N-way external merge sort
e Sort phase (pass 1)

= Groups of input blocks are loaded into the system memory
= Tuples in these blocks are then sorted

— Any in-memory in-place sorting algorithm can be used
— E.g.: quick sort, heap sort, bubble sort, insertion sort, ...

= Created initial runs are written into a temporary file
* Merge phase (passes 2 and higher)

= Groups of runs are loaded into the memory and merged

= Newly created (longer) runs are written back on a hard drive
= Merging is finished when exactly one run is obtained

— And so the entire input table is sorted

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025

29

Sort Phase

Pass 1

e |nput data file
= Relational table R
— E.g., ng = 18 tuples, by = 4 tuples/block, pr = 5 blocks

R‘49‘15‘27‘81"27‘11‘43‘36"92‘19‘72‘68"26‘63‘43‘32"84‘35‘ ‘ ‘

R[] R[2] R[3) R[4] R[5]

¢ System memory layout
= Input buffer 7
— E.g., size M = 2 pages

Sort Phase

Pass 1

e Groups of M blocks are presorted and so initial runs created
= Input blocks from R are first loaded to Z

— Individual tuples in Z are then sorted
— Created runs are stored to a temporary file R!

= [[olTlu] frlufels] .

Memory

Hard disk

(=] []

R |49‘15‘27‘81‘ |27‘11‘43‘36‘ ‘92‘19‘72‘68‘ ‘26‘63‘43‘32‘
R[1] R[2] - > >

= (I] (< « < /
R}

Sort Phase

Pass 1
 Resulting runs in R! within our sample scenario

R[] R[2) R[3] R4 R3]

R ‘49‘15‘27‘81"27‘11‘43‘36"92‘19‘72‘68"26‘63‘43‘32”84‘35‘ ‘ “
J

Rl ‘11‘15‘27‘27"36‘43‘49‘81"19‘26‘32‘43"63‘68‘72‘92”35‘84‘ ‘ “

Ri R; Ry

Merge Phase

Pass 2

* Groups of M runs are iteratively merged together
= Blocks from these input runs are gradually loaded into 7

— Minimal items are then iteratively selected and moved to O
— Merged (longer) runs are written to a new temporary file R?

A |11|15|27|z7||19|zs|3z|43| o D:I:\:“ ~

A
Memory

Hard disk

R |11|15|27|27|‘36‘43‘49‘81‘|19|26|32|43|‘63‘68‘72‘92”35‘84‘ ‘ “
Ri - R} —> > > >

- | I [
R}

Merge Phase

Passes 2 and 3

* Merging continues until just a single run is acquired
= And so the entire input table is sorted

Rl ‘11‘15‘27‘27"36‘43‘49‘81"19‘26‘32‘43"53‘68‘72‘92“35‘84‘ ‘ “
R L R} J R;
M v
RZ 11 15 19 26 27 27 32 36 43 43 49 63 68 72 81 92 35 84 ‘
R? L R2 J
v
R3 11 15 19 26 27 27 32 35 36 43 43 49 63 68 72 81 84 92 ‘

Rt

Algorithm

Sort phase (pass 1)

1 p+1

2 foreach group of blocks By, ..., By (if any) from 'R do
3 read these blocks to 7

4 sort all items inZ

5 write all blocks from Z as a new run to R”

Algorithm

Merge phase (passes 2 and higher)

while R? has more then just one run do

6
7 p+—p+1

8 foreach group of runs Ry, ..., Ry (if any) from R?~! do
9 start constructing a new run in R?

10 read the first block from each run R, to Z[z]

11 while 7 contains at least one item do

12 select the minimal item and move it to O

13 if the corresponding Z[z] is empty then

14 | read the next block from R, (if any) to Z[1]
15 if O is full then write O to R? and empty O

16 if O is not empty then write O to R? and empty O

Summary

Memory layout
e Sort phase (pass 1): M
= Input buffer Z: M pages

_—
Input buffer Z
M pages

* Merge phase (passes 2 and higher): M + 1
= Input buffer Z: M > 2 pages
= Qutput buffer O: 1 page

Input buffer 7 Output buffer O
M pages 1 page

Summary

Time complexity
* Single pass (regardless of the phase)
" Cread = Curite = PR
* Number of passes
= t=[logy(pr)]
e Overall cost
* cgs = t- (Cread + Curite) = [logy(pr) | - 2pR
Limitation of the overall number of passes
* Ingeneral...
" M=[/pr]
» Specifically for t = 2 (i.e., exactly 2 passes)

* M=1ypr]
NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Ealuaton | 9.and16.12.2025 3%

Nested Loops Join

Nested Loops

Binary nested loops

* Universal approach for all types of inner joins
= Natural join, cross join, theta join
— l.e., arbitrary joining condition can be involved

= Support possible duplicates
= Requires no index structures

* Not the best option in all situations, though
= Suitable for tables with significantly different sizes

Basic idea
e Outer loop: iteration over the blocks of the first table
* Inner loop: iteration over the blocks of the second table

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025

40

Nested Loops

Sample input data
* Tables R and S to be joined using a value equality test

R ‘21‘84‘56‘19"41‘72‘69‘35”56‘84‘ ‘ ‘

S ‘31‘56‘75‘43"88‘21‘43‘14"92‘52‘25‘81"72‘37‘64‘35”14‘64‘ ‘ ‘

Basic setup
e Memory layout: 1 +1+1
= Input buffer Z: 1 page
= |Input buffer Zs: 1 page
= : 1 page
H-N -]
—— —— ——

Ir Is o
1 page 1 page 1 page

Nested Loops

Basicsetup (1 +1+ 1)
* Another pair of loops is used for joining tuples in the memory

D A —

yyyyyy

dddddddd

BN

R |21‘84‘56‘19‘ ‘41‘72‘69‘35‘
> > >

S ‘31‘56‘75‘43"88‘21‘43‘14"92‘52‘25‘81"72‘37‘64‘35”14‘64‘ ‘ “
> > >

T‘ - }: =

Algorithm

Basicsetup (1 +1+ 1)

1 foreach block R from R do
2 read Rinto Zy

3 foreach block S from S do

4 read Sinto Zg

5 foreach item rin Zy do

6 foreach item sin Zg do

7 if and s satisfy the join condition then

8 join rand s and put the result to O

9 L if O is full then write O to T, empty O

10 if O is not empty then write O to 7 and empty O

Observations

Time complexity
e Basicsetup (1 +1+1)
" CNL = PR+ PR DS
* = smaller table should always be taken as the outer one
General setup
* Multiple pages are used for both the input buffers
* Memory layout: Mp + Mg+ 1
= Input buffer Zx: Mg pages
= |nput buffer Z5: Mg pages
= : 1 page

EN-N - 5E -3 - [
H_/

Ir Is o

MFp, pages Mg pages 1 page

Algorithm

General setup (Mpz + Mg+ 1)

1
2
3
4
5
6
7
8
9

foreach group of blocks R, ..., Ry, (if any) from R do
read these blocks into Zx
foreach group of blocks S, ..., Su (if any) from S do

read these blocks into Zg
foreach item rin Z do
foreach item sin Zg do
if rand s satisfy the join condition then
join rand s and put the result to O
L if O is full then write O to T, empty O

10 if O is not empty then write O to 7 and empty O

Observations

Time complexity
e General setup (Mp + Mg+ 1)
" cn = pr + [pr/MR] - ps
* = there is no reason of having Mg > 2
Standard setup
* Memory layout: Mrp +1+1
= |nput buffer Zp: Mg pages
= Input buffer Zs: 1 page
= : 1 page

EN-E -8 - [
— S S
Ir Is o

Mp, pages 1 page 1 page

Standard Approach

Standard setup (My + 1 + 1) with zig-zag optimization
* Multiple pages are used just for the outer table

Ir
Memory
Hard disk
R ‘21‘84‘56‘19"41‘72‘69‘35”56‘84‘ ‘ “
o> > >
S ‘31‘56‘75‘43"88‘21‘43‘14"92‘52‘25‘81"72‘37‘64‘35”14‘64‘ ‘ “
o> > > “« €« <«

T‘ - }: J

Observations

Zig-zag optimization
* Reading of the inner table S

= Odd iterations normally
= Even iterations in reverse order

Time complexity
e Standard setup (Mgr + 1+ 1)
= ¢y = pr + [pr/MR] - ps (without zig-zag)
= cw = pr+ [pr/MR] - (ps — 1) + 1 (with zig-zag)
Special cases
* Smaller table fits entirely within the memory, i.e., pr < My
" CNL = PR+ Ps
* Non-brute-force replacement for inner loops
= When a suitable index exists on the inner table, ...

Sort-Merge Join

Sort-Merge Join

Sort-merge join algorithm (or just merge join)
e Inner joins based on value equality tests only

= Basic version without duplicates
— Could be extended to support them, though

e Suitable for tables with relatively similar sizes

= Especially when they are already sorted
= Or when the final result is expected to be sorted

Phases
e Sort phase
= Both tables are externally sorted, one by one (if not yet)
¢ Join phase
= |tems are joined while simulating the merge of the two tables

Basic Approach

Sample input data
* Input tables R and S

R ‘65‘19‘35‘92”49‘31‘ ‘ ‘

S ‘52‘94‘38‘71"92‘41‘63‘19"75‘54‘46‘68"15‘27‘22‘43"11‘50‘49‘ ‘

Sort phase
* Resulting sorted tables

R ‘19‘31‘35‘49”65‘92‘ ‘ ‘

S’ ‘11‘15‘19‘22‘ ‘27‘38‘41‘43‘ ‘46‘49‘50‘52‘ ‘54‘63‘68‘71‘ ‘75‘92‘94‘ ‘

Basic Approach

Join phase
* Blocks from the sorted tables are processed one by one

dddddddd

4 |19|31|35|49H55‘9z‘ ‘ “
-

S’ ‘11‘15|19‘22"27‘38‘41‘43"46‘49‘50‘52"54‘63‘68‘71"75‘92‘94‘ “
>

r [-~k /

Algorithm

Join phase

1 read block R’[1] to Zx and block S’[1] to Z
2 while both Z and Zs contain at least one item do

3 let rbe the minimal item in Z and s minimal item in Zg
4 if rand s can be joined then

5 join rand s and put the result to O

6 if O is full then write O to 7 and empty O

7 remove both rfrom Zy and sfrom Zg

8 else remove the lower one of rfrom Zy or s from Zg

9 if 75 is empty then read the next block from R’ (if any)
10 if Z5 is empty then read the next block from &’ (if any)

11 if O is not empty then write O to 7 and empty O

Observations

Join phase
e Memorylayout: 1 +1+1
= Input buffer Zy: 1 page
= Input buffer Zs: 1 page
= Qutput buffer O: 1 page
o0 -]
—— —— ——

Ir Is o
1 page 1 page 1 page

Time complexity
* Sort phase
¢ Join phase
" CM3 = PR+ DS

Extended Version

Duplicate items
* Possible duplicates in one table only
= Letit be S (without loss of generality)
= Algorithm modification is straightforward...

— Having successfully joined rand s, we just remove s from Zg
and not rfrom Zp, (line 7)

I,
" .I,

‘28‘30‘31‘34“35‘38 ‘46‘48‘50‘51‘

L0

‘14‘19‘28‘28‘ ‘37|40|40|40| |40|40|49‘52‘
A
T

L

5

‘52‘57‘61‘65‘

‘54‘54‘57‘57‘

3

5

Is

Extended Version

Duplicate items
* Possible duplicates in both tables

= All matching pairs of rand sjust need to be joined...
= Unfortunately, size of input buffers might not be sufficient

— Since we may span block boundaries, even repeatedly

I,
" .I,

‘7‘10‘11‘16”16‘19 .27‘27‘30‘

N

Ble o n

=\

5

‘31‘31‘31‘34‘

3

5

‘2 ‘ 8 ‘10‘10‘ ‘17|25|25|25| |25|25|25|25|
A

Hash Join

Hash join approaches
e Basic principle
= |tems of the first table are hashed into the system memory
= |tems of the second table are then attempted to be joined
e Limitations
= Inner joins based on value equality tests only
— Including possible duplicates

= Not suitable for small active domains
e Particular approaches
= Classic hash join, Simple hash join, Partition hash join,
Grace hash join, and Hybrid hash join

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025 58

Classic Hashing

Classic hash join

¢ Build phase
= Smaller table (let it be R) is hashed into the system memory

— le., itis sequentially loaded into the memory, block by block
— Allits tuples are then emplaced into the hash container

e Hash function his assumed for this purpose

= |ts domain are values of the joining attribute A
= |ts range provides H distinct values

e Hash container internally contains H buckets
= |ts overall size will inevitably be somewhat larger than pgr
- Letussay M = [F- pr] pages for some small factor F
¢ Probe phase
= |tems from the larger table S are attempted to be joined

Build Phase

Build phase
e Tuples from the smaller table are hashed into the memory
= E.g., hash function h(A) = A mod 2 is assumed

I_H

T .

h(A) =0 h(A) =1

Memory

Hard disk

R

|25|14|38l42"57‘69‘13‘93"84‘57‘92‘6”43‘ ‘ ‘ “

- > >

Probe Phase

Probe phase
e Tuples from the larger table are attempted to be joined

([
[se[ss[]| [s7]eo] 5]
" o [Elaels] o [ws
[s2[e[T J|[fsr]e]]
R(A) =0 h(4) =1
Memory
Hard disk
S ‘87|14|65|19"28‘57‘6‘44"72‘35‘91‘16"14‘37‘93‘28”91‘28‘ ‘ “
- > >
rC1 -~k /

Algorithm

Build phase

1 foreach block R from R do
2 read RintoZ

3 foreach item rin Z do

4 calculate hash value h < h(r.A)
5 add rinto bucket i in H

Algorithm

Probe phase

1 foreach block Sfrom S do

2 read Sinto Z

3 foreach item sin Z do

4 calculate hash value h < h(s.A)

5 foreach item rin bucket /. in H do

6 if 7and scan be joined then

7 join 7and s and put the result to O

8 L if O is full then write O to 7 and empty O

9 if O is not empty then write O to 7 and empty O

Observations

Memory layout
e Build phase: M+ 1
= Hash container 7{: M = [F - pr| pages
= Input buffer Z: 1 page

Hash container H Input buffer 7
M pages 1 page

* Probe phase: M+ 1+1
= Hash container 7{: M pages (preserved from the build phase)
= Input buffer Z: 1 page

= : 1 page
EN-N -8 -
%(—/ —— ——
Hash container Input bufferZ Output buffer O
M pages 1 page 1 page

Observations

Time complexity
* Build and probe phases
" Cpuild = PR
" Cprobe = PS
* Overall cost
" CCH = Cbuild + Cprobe = PR + DS
Summary
* Interesting approach as for its efficiency

= However, usable only when the smaller table can entirely be
hashed into the system memory...

Partition Hashing

Partition hash join
* Basic principle
= Both tables are first partitioned
— Using partition function p
= Pairs of the corresponding partitions are then joined together
— Using the classic hash join approach
— Or actually even nested loops if desired

Overall procedure

1 split R and create partitions Ry, ..., Rp
2 split S and create partitions Sy, ..., Sp

3 foreach partition p € {0,..., P— 1} do
4 | join partitions R, and S,,

Partition Phase

Partition phase (for table R)
* Tuples of a given table are split to disjoint partitions

=

Memory

Hard disk
\4

R

|89‘21‘46‘15‘ ‘68‘43‘78‘93‘

B Ro R1 R2 Rs

- > >

Join Phase

Partition phase
* Resulting partitions for our sample scenario

ma[[almnle W | | s [mnwa |

Rwase nesa vs | s | ssws |

7o [l 2 s 5 [l [

Rs ‘15‘43‘79‘35‘ ‘71‘55‘43‘ “ S3 HE ‘
Join phase

e Pairs of the corresponding partitions are then joined together
= Rgand Sy, R1 and Sy, ...

Algorithm

Partition phase
* Table R is assumed, partitioning of S is analogous

1 foreach block 1t from R do

2 read RintoZ

3 foreach item rinZ do

4 calculate partition value p < p(r.4)

5 add rinto partition buffer P,

6 if P, is full then write P, to R, and empty P,

7 foreach partition p € {0,..., P— 1} do
s | if P, is not empty then write P, to R, and empty P,

Observations

Memory layout
e Partition phase: 1 + P

= |nput buffer Z: 1 page
= Partition buffers 77: P pages

Input buffer Z Partition buffers P
1 page P pages

Time complexity
¢ Partitioning phase
" Csplit ¥ 2 PR+ 2 ps
* Overall cost (with classic hash join involved)

" CPH = Csplit + P Ccu & Csplit + P[% + p—ﬁg]“ 3 (pr + ps)

Query Evaluation

Sample Query

Database schema
* Movie (id, title, year, ...)
* Actor (movie, actor, character, ...)
= FK: Actor[movie] C Movie[id]
Sample query
e Actors and characters they played in movies filmed in 2000
= SQL expression

SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)

= RA expression

Ttitle,actor,character (U(year=2000)/\(id:movie) (MOVie X ACtOI’))

Sample Query

Sample query (cont’d)
e Actors and characters they played in movies filmed in 2000

® Ttitle,actor,character (J(VEar=2OOO)A(id:movie) (Movie X ACtOI‘))
Projection [title, actor, character]
Selection (year = 2000) A (id = movie)

Cross join

‘ Movie ‘ ‘ Actor ‘

Query Evaluation

Basic idea
e SQL query — RA query — evaluation plan — query result
Evaluation process

e (1) Scanning [scanner]
= Lexical analysis is performed over the input SQL expression
— Lexemes are recognized and then tokens generated

* (2) Parsing [parser]
= Syntactic analysis is performed
— Derivation tree is constructed according to the SQL grammar
¢ (3) Translation
= Query tree with relational algebra operations is constructed

Query Evaluation

Evaluation process (cont’d)
e (4) Validation [validator]
= Semantic validity is checked
— Compliance of relation schemas with intended operations
e (5) Optimization [optimizer]
= Alternative evaluation plans are devised and compared

— In order to find the most efficient plan
— Based on their evaluation cost estimates

e (6) Code generation [generator]
= Execution code is generated for the chosen plan
* (7) Execution [processor]

= Intended query is finally evaluated
— And the yielded result provided to the user

Query Evaluation

Query tree
* Internal tree structure

= Leaf nodes = input tables
= Inner nodes = individual RA operations (o, 7, X, X, ...)

* Root node represents the entire query
= Nodes are evaluated from leaves toward the root
Query evaluation plan
* Query tree
e For each inner node...

= Calculated statistics (number of tuples, blocking factor, ...)
= Selected algorithm (limited by context and available memory)
= Estimated cost

e Overall cost

Sample Plan #1

Cross join
m1 = njr - n4 = 100 000 000 000
b = (bM . bA)/(bM + bA) =8
p1 = n1/by = 12 500 000 000
Nested loops

M; =25+1+1=27

& = par + (par/25) - pa = 10 010 000
¢y = p1 = 12500 000 000

Sorted file (year)
nas = 100 000

by =10

par = 10000

Vs year = 50

B tree index (year)
M M.year = 100

I year =3

Projection [title, actor, character]
ng = ng = 20000

b3 < 50

p3 = n3/bs =400

c5 = pa =2500

cj = p3 =400

N/ Selection (year = 2000) A (id = movie)
ng =np - (1/VM4yem') . (1/TLM) = 20000

by =b; =8

D2 =n2/b2 = 2500

c3 = p1 = 12 500 000 000
¢y = pa =2500

n4 = 1000 000
by =40

pa = 25000

Evaluation Plan Cost

Overall evaluation cost

e Let us first assume that all intermediate results are always
written to temporary files and so each involved operation...

= Reads its inputs from / writes its output to a hard drive

e Overall cost then equals to the sum of all the partial costs
Cost of Plan #1

* M= 25414 1 memory pages
c=[q+d]+ G+]+ [g]
o c¢=[pa+ (pa/25) - pa+ pi] + [p1 + po] + [p2]

c=|

[

10 010 000 + 12 500 000 000] + [12 500 000 000 + 2 500]+
2 500]

* ¢= 25010015000

Sample Query

Intuitive optimization
e Actors and characters they played in movies filmed in 2000
= SQL expression

SELECT title, actor, character
FROM Movie JOIN Actor ON (id = movie)
WHERE (year = 2000)

= RA expression

Ttitle,actor,character (U(year:2000) (MOVie M (id=movie) ACtOI’))

Sample Plan #2

Projection [title, actor, character]
ng = ng = 20 000

bg + 50

p3 = n3/b; = 400

c3 = py = 2500

c3 = p3 =400

Theta join [id = movie]
ni =n4 = 1000 000
by = (bar-ba)/(bar +ba) =8
P11 = n1/b1 = 125000

Nested loops

My =25+1+1=27

¢f = pu + (pn/25) - p4 = 10010 000
¢¥ = p; = 125000

Selection (year = 2000)
x/. 1y = ny - (1/Vaz year) = 20 000

by =by =8

p2 = n2/by = 2500

¢§ = p; =125000

Sorted file (year) 8 = py =2500
nyr = 100 000

by = 10

par = 10000

VM.year =50 | Movie | | Actor | Heap file

BT tree index (year) n4 = 1000 000
MM year = 100 \/ bs = 40

IM_yem =3 pa = 25000

Sample Plan #2

Cost of Plan #2

Again M = 25 + 1 + 1 memory pages
c=[d+dl+[a+ &+ [d]

¢ = [pm+ (Pm/25) - pa + p1] + [p1 + p2) + [p2]

¢ = [10 010 000 + 125 000] 4 [125 000 + 2 500] + [2 500]
c= 10265000

= That is approximately 2 400 times better than the first plan

Pipelining

Pipelining mechanism
* Intermediate results are passed between the operations
directly without the usage of temporary files on a disk
= And so just within the system memory
— It may even be possible to do it in-place without extra pages

e Unfortunately, such an approach is not always possible...

Cost of Plan #2 with pipelining
e Still M =25+ 1+ 1 memory pages

o« o= [+ X+ DX+ W+ X

= Joined tuples are filtered and projected immediately in-place
e ¢=10010000

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025

82

Query Optimization

Objective = finding the most optimal query evaluation plan
* Itis not possible to consider all plans, though
= Simply because there are far too many of them
= And so pruning and heuristics need to be incorporated
Optimization strategies
e Algebraic
= Proposal of alternative plans using query tree transformations
e Statistical
= Estimation of costs and result sizes based on available statistics
e Syntactic
= Manual modification of query expressions by users themselves

— In order to involve plans that would otherwise be unreachable
— Breaches the principle of declarative querying, though

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025 83

Statistical Optimization

Objective
» Capability of calculating necessary result characteristics...
= Of both the final result as well as all intermediate ones
— lLe., all individual nodes within a given evaluation plan tree
e ... so that the overall cost can be estimated
= And thus alternative plans mutually compared
Basic statistics
* Data file for table R

= nr number of tuples, sy tuple size, br blocking factor
" pr number of pages
= Hashed file: Hr number of buckets, C'r bucket size

¢ Index file for attribute A from table R
= Bt tree: I 4 tree height, pr 4 number of leaf nodes

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025

84

Statistical Optimization

Additional statistics
* Provide deeper insight into the active domain

= May even be implicitly derivable from index structures
= Unfortunately, they may also be missing or unavailable

— Especially as for intermediate results
e Vpk 4 number of distinct values
* ming 4 and maxp 4 minimal and maximal values

¢ Histograms
= Provide even more accurate understanding of the domain
— And so better estimates

= Especially useful for non-uniform distributions

Size Estimates: Selection

Selection: T'= 0,(E)
Tuple size

¢ ST = SE

= Tuples are just filtered out and so their size remains untouched

Blocking factor

* br=bg
Number of tuples

* Basicidea: ny = [ng- 7,

e 1, € [0, 1] is an estimated reduction factor

= Describes how much the original tuples will be reduced

— Depends on a particular condition ¢
— As well as particular available statistics...

Size Estimates: Projection

Projection: T'= 7,, . 4. (F)
Tuple size
e sp is simply calculated using sizes of all preserved attributes
Blocking factor
e bp=|B/sr]
Number of tuples

* Default SQL projection without the DISTINCT modifier
= |.e., removal of potential duplicates is not performed
" ny=mng

* With duplicates removal enabled
= np = ng if at least one key of F'is preserved

Size Estimates: Joins

Inner joins: T'= Ep x Egor Egr M Egor Ep X, Eg
Tuple size
® S7 A Sp+ Sg
= Less for natural join since shared attributes are not repeated
Blocking factor

s |~ (] = L) = [
re ST - SR + Sg - B/bR+B/bS h br + bs

= Can be calculated exactly from the actual resulting tuple size
= As well as estimated just using the original blocking factors

Number of tuples
° np= [ng-ns-r,| with r, € [0, 1] for joining condition ¢
= Similar approach with reduction factors as in selections

Algebraic Optimization

Objective
e Capability of finding alternative query evaluation plans
= Based on various equivalence rules
— E.g.: commutativity of selection, associativity of inner joins, ...

e Ultimate challenge

= Space of all possible plans may be enormous
= And so significant pruning must be involved

Basic strategy for SPJ queries = select-project-join queries

* They allow to be approached at two separate levels...

= Single-relation plans = best access method for each table
= Multi-relation plans = best join plan for all the tables

e But still an NP-complete problem

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025 89

Examples
Sample transformations
© 7"'t'itle,actor,character(O (year=2000) A (id=movie) (MOVie X ACtOF)) // #1
© 7""citle,actor,character(O (id=movie) U(year:2000) (MOVie X ACtOI’)))
¢ Ttitle,actor,character (U(year 2000) O (id=movie) (MOVie X ACtOI‘)))
© 7Tt'itle,actor,character(O (year=2000) (MOVIE M(|d movie) ACtOF)) // #2
® Ttitle,actor,character (U(year:2000)(M0Vie) |>q(id:movie) ACtOF)

® Tltitle,actor,character <7Tid,title (U(year:QOOO) (MOVie)) X (id=movie)

7T'movie,actor,character(ACtor)) // #3

Sample Plan #3

Theta join [id = movie]
Projection [title, actor, character] — 1y =13+ (1/Var year) = 20 000
n5 = n4 = 20 000 by = (by - b3)/(bs + b3) ~ 35
bs < 50 Nested loops
p5:n5/b5:400 My=py+1+1=27
ci = ps =400
Projection [movie, actor, character]
Projection [id, title] ;:3 = ZSA = 1000 000
=n; = «—

ny = ny; = 2000 \ ci_ = 25000
by + 80 I =pa=

Heap file

/ n4 = 1000 000
by =40

P2 = na/by =25

Sorted file (year)

nar = 100 000 000
by =10 pa

par = 10000

Vit year =50 Selection (year = 2000)

ny=mny- (1/VM,year) = 2000

by =by =10

p1 = n1/bi =200

cf = IM.year +Dpum - (I/VM.year) =203

B tree index (year
MM year = 100
IM,year =3

Sample Plan #3

Cost of Plan #3 with pipelining

e M=25+1+ 1 memory pages for buffers Z;, Z, and O
= |.e., still the same amount of system memory pages used

ce=[d X+ XX+ 0 X+ DX+
= 7 is used for index traversal and then reading of movies
= All filtered and projected movies are put into Z;
= Actors are read into Z, their projection is postponed
= Joined tuples are put into O and projected

o ¢=Iuyear + prr - (1) Visyear)] + [14]

e ¢=[203] + |]

o ¢=25203
= That is approximately 400 times better than the second plan

— And so almost 1 million times better than the first plan

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025

92

Explain Statements

EXPLAIN statement

* Allows to retrieve the evaluation plan for a given query
= When ANALYZE modifier is provided...
— Query is also executed and the actual run times are returned

-~ @D~ —~ e~

ANALYZE

Example

e EXPLAIN
SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)

Observations

False assumptions and simplifications

Variable size of tuples

Unused slots and inner fragmentation within blocks
Overflow areas in sorted / hashed files

Outer fragmentation of files on a hard drive

Impact of the caching manager

Extent of available statistics and their lazy maintenance
Non-uniform distribution of data / queries
Independence of conditions in reduction factors

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 9. and 16. 12. 2025 94

Conclusion

Evaluation algorithms
* Access methods
e Sorting
= External merge sort algorithm
e Joining
= Binary nested loops join with / without zig-zag
= Sort-merge join
= Classic / partition hash join
Query evaluation and optimization
* Evaluation plans
= Cost estimates, pipelining

 Statistical / algebraic optimization

	Outline
	Introduction
	Access Methods
	File Organization
	Index Structures
	Examples

	External Sort
	Basic Approach

	Nested Loops Join
	Binary Nested Loops

	Sort-Merge Join
	Basic Approach

	Hash Join
	Classic Hashing
	Partition Hashing

	Query Evaluation
	Evaluation Process
	Statistical Optimization
	Size Estimates
	Algebraic Optimization
	Query Evaluation

	Conclusion

