NIE-PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/

Lecture 9

Wide Column Stores: Cassandra

Martin Svoboda
martin.svoboda@fit.cvut.cz

25. 11. 2025

Charles University, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Information Technology

http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/
mailto:martin.svoboda@fit.cvut.cz

Lecture Outline

Wide column stores
* Introduction
Apache Cassandra
* Data model

e Cassandra query language

= DDL statements
= DML statements

Wide Column Stores

Data model
e Column family
= Table is a collection of similar rows (not necessarily identical)
e Row
= Row is a collection of columns
— Should encompass a group of data that is accessed together
= Associated with a unique row key
e Column

= Column consists of a column name and column value
(and possibly other metadata records)
= Scalar values, but also flat sets, lists or maps may be allowed

Apache Cassandra

S

o

cassandra

Apache Cassandra

Column-family database

e Features
= QOpen-source, high availability, linear scalability, sharding
(spanning multiple datacenters), peer-to-peer configurable
replication, tunable consistency, MapReduce support

Developed by Apache Software Foundation
= QOriginally at Facebook

Implemented in Java

Operating systems: cross-platform

Initial release in 2008
= Version we cover is 4.0.6 (August 2022)

NIE-PDB: Advanced Database Systems | Lecture 9: Wide Column Stores: Cassandra | 25. 11. 2025

http://cassandra.apache.org/

Data Model

Database system structure

| Instance — keyspaces — tables — rows — columns

e Keyspace

Table (column family)
= Collection of (similar) rows
— Rows do not need to have exactly the same columns
= Table schema must be specified, yet can be modified later on
e Row

= Collection of columns
= Each row is uniquely identified by a compulsory primary key

Column
= Name-value pair + additional data

Data Model

Column values
* Empty value
" null
* Atomic values

= Native data types such as texts, integers, dates, ...
= Tuples

— Tuple of anonymous fields, each of any type (even different)
= User-defined types (UDT)

— Set of named fields of any type

¢ Collections
= Lists, sets, and maps

— Nested tuples, UDTs, or collections are also permitted,
however, currently only in a frozen mode

Data Model

Collections
¢ List = ordered collection of values

= This order is based on positions
= Values do not need to be unique

* Set = collection of unique values
= Values are internally ordered
* Map = collection of key-value pairs

= Keys must be unique
= Pairs are internally ordered based on keys

Sample Data

Table of actors

'trojan'
('lvan', 'Trojan") | 1964 || { 'samotari', 'medvidek’ }

(Jiri", '"Machacek') | 1966
{'medvidek’, 'vratnelahve', 'samotari' }
'schneiderova’

('Jitka', 'Schneiderova') || 1973 || { 'samotari' }

'sverak’
('zdenék’, 'Svérak') | 1936 || { 'vratnelahve'}

'machacek’

Sample Data

Table of movies

'samotari' title year ‘actors‘
'Samotafi' | 2000 null | ['comedy', 'drama']
' o title year
medvidek 'Medvidek' || ('Jan', 'Hrebejk') || 2007
actors
{length: 100} | {'trojan': 'lvan’, 'machacek’: 'Jirka' }

'vratnelahve' title year
'Vratné lahve' || 2006

'zelary' title || year actors
'Zelary' || 2003 {} ['romance’, 'drama’]

Data Model

Additional data associated with...
the whole column in case of atomic values, or
each individual element of a collection
* Time-to-live (TTL)
= After a certain period of time (number of seconds)
a given column / element is automatically deleted
* Timestamp (writetime)

= Timestamp of the last modification
= Assigned automatically or manually as well

* Both the records can be queried
= Unfortunately not in case of collections and their elements

NIE-PDB: Advanced Database Systems | Lecture 9: Wide Column Stores: Cassandra | 25. 11. 2025

11

Cassandra API

CQLSH

* Interactive command line shell

* bin/cqlsh

* Uses CQL (Cassandra Query Language)
Client drivers

¢ Provided by the community

¢ Available for various languages
= Java, Python, Ruby, PHP, C++, Scala, Erlang, ...

Query Language

CQL = Cassandra Query Language
* Declarative query language
= Inspired by SQL
* DDL statements

= CREATE KEYSPACE — creates a new keyspace
= CREATE TABLE — creates a new table
° DML statements
= SELECT - selects and projects rows from a single table
= INSERT - inserts rows into a table
= UPDATE — updates columns of rows in a table
= DELETE — removes rows from a table

DDL Statements

Keyspaces

CREATE KEYSPACE

»IIIPIIII«LC}GHPGEBJfIIIIIW

L>.+—(Cl:iption name)—-@—-l option value b—w

* Creates a new keyspace
e Replication option is mandatory
= SimpleStrategy (only one replication factor)
= NetworkTopologyStrategy
(individual replication factor for each data center)

CREATE KEYSPACE moviedb
WITH replication = {'class':

'SimpleStrategy', 'replication_factor': 3}

Keyspaces

USE
« Changes the current keyspace
~(UsE)-~(keyspace name)~

DROP KEYSPACE
* Removes a keyspace, all its tables, data etc.

o»(DrRoP)-~(_KEYSPACE)-~(_keyspace name) C

@@

ALTER KEYSPACE
* Modifies options of an existing keyspace

Tables

CREATE TABLE
* Creates a new table within the current keyspace
* Each table must have exactly one primary key specified

-~ (GREATE) ~(TRBLE)
-0 - (B

L(-' —

\»Q»—J o

J-@T

* None of the columns is compulsory (except the primary key)

Tables

Examples: tables for actors and movies

CREATE TABLE actors (
id TEXT PRIMARY KEY,
name TUPLE<TEXT, TEXT>,
year SMALLINT,
movies SET<TEXT>

)

CREATE TABLE movies (
id TEXT,
title TEXT,
director TUPLE<TEXT, TEXT>,
year SMALLINT,
actors MAP<TEXT, TEXT>,
genres LIST<TEXT>,
countries SET<TEXT>,
properties details,
PRIMARY KEY (id)

Primary Keys

Primary keys have two parts
e Compulsory partition key

= At least one column
= Defines how individual rows are distributed between shards

e Optional clustering columns

= Defines the order in which individual rows are locally stored by
each shard

Column-level primary key definition
* A given column (the only one) becomes the partition key
e There are no clustering columns

NIE-PDB: Advanced Database Systems | Lecture 9: Wide Column Stores: Cassandra | 25. 11. 2025 19

Primary Keys

Table-level primary key definition

¢ The first column / all columns in the embedded parentheses
become the partition key

* All the remaining ones (if any) form the clustering columns

~ D -GED-0

%@ @J \r—(column name jy
Lo-

Tables

DROP TABLE
* Removes a table together with all data it contains

o»((DROP)~((TABLE)~(table name)
T @@

TRUNCATE TABLE
* Preserves a table but removes all data it contains

o>(_ TRUNCATE table name)—>o
TABLE

ALTER TABLE
e Allows to alter, add or drop table columns

Data Types

Types of columns
¢ Native types
* Tuples
e Collection types: lists, sets, and maps
e User-defined types

e - ®
®
il
@00
@O -6

@AED~ (-~ wwe F-(O-{ope ()
user defined type

Native Data Types

Native types
* tinyint, smallint, int, bigint
= Signed integers (1B, 2B, 4B, 8B)
e varint
= Arbitrary-precision integer
¢ decimal
= Variable-precision decimal
float, double
= Floating point numbers (4B, 8B)

e boolean
= Boolean values true and false

Native Data Types

Native types
e text, varchar

= UTF8 encoded string
= Enclosed in single quotes (not double quotes)

— Escaping sequence: ''

°* ascii
= ASCIl encoded string
* date, time, timestamp

= Dates, times and timestamps
= E.g. '2016-12-05", '2016-12-05 09:15:00"', 1480929300

Native Data Types

Native types

* counter — 8B signed integer
= Only 2 operations supported: incrementing and decrementing
— lL.e. value of a counter cannot be set to a particular number
= Restrictions in usage

— Counters cannot be a part of a primary key

Either all table columns (outside the primary key) are counters,
or none of them

TTL is not supported

* blob —arbitrary bytes
e inet —IP address (both IPv4 and IPv6)

Tuple Data Types

Tuples
¢ Declaration

H-*@ &

e Literals

H.W'1 @~
©

= Eg. ('Jifi', 'Machacek')

Collection Data Types

Lists
¢ Declaration

~@ED-~({ope D
e Literals
- o
©

= Eg. ['comedy', 'drama']

Collection Data Types

Sets
* Declaration
@D~ (-{ope (D
e Literals
o @
@,

= E.g. { 'medvidek', 'vratnelahve', 'samotari' }

Collection Data Types

Maps
* Declaration
@D~ {wee |-O-{ope |-G~
e Literals

-® ®-
o=y
0

* E.g. { 'machacek': 'Robert Landa' }

User-Defined Data Types

User-defined types (UDT)
* Definition
°4IIIIDH‘ll.*Cllllb»C)*(lll:gtll!TC}»

= E.g. CREATE TYPE details (length SMALLINT,
annotation TEXT)

e Literals

~@ ®-
@»Tf
)
o/

* E.g. { length: 100 }

DML Statements

Selection

SELECT statement
* Selects matching rows from a single table

[SEEECT |- [FRoMehise}—~ . *

(
\[croevamse | -/ \-[omeRevamse] - \[Dwromse}-’
(

\. G - G

Selection

Clauses of SELECT statements

SELECT — columns or values to appear in the result

FROM — single table to be queried

WHERE — filtering conditions to be applied on table rows
GROUP BY — columns to be used for grouping of rows
ORDER BY — criteria defining the order of rows in the result
LIMIT — number of rows to be included in the result

Example

SELECT id, title, actors
FROM movies
WHERE year = 2000 AND genres CONTAINS 'comedy'

Selection

FROM clause

* Defines a single table to be queried
= From the current / selected keyspace

* l.e. joining of multiple tables is not possible

-~ @D~ - -

keyspace name

Selection

WHERE clause

* One or more relations a row must satisfy
in order to be included in the query result

Radi=<

* Only simple conditions can be expressed and
not all relations are allowed, e.g.:
= only primary key columns can be involved
unless secondary index structures exist
= non-equal relations on partition keys are not supported

Selection

WHERE clause: relations

column name ~
U J

==

olollelole

-@-® >—
O

D -

Selection

WHERE clause: relations
* Comparisons

== 1=K <=, =>, >
° IN

= Returns true when the actual value is one of the enumerated
e CONTAINS

= May only be used on collections (lists, sets, and maps)
= Returns true when a collection contains a given element

* CONTAINS KEY

= May only be used on maps
= Returns true when a map contains a given key

Selection

SELECT clause
¢ Defines columns or values to be included in the result

= * = all the table columns
= Aliases can be defined using AS

\»ﬂ

e DISTINCT — duplicate rows are removed

Selection

SELECT clause: selectors

)
(o]
@D 000
QR (- Ceaomrare (D)
@O~ (e)

« COUNT(*)

= Number of all the rows in a group (see aggregation)
* WRITETIME and TTL
= Selects modification timestamp / remaining time-to-live
of a given column
= Cannot be used on collections and their elements
= Cannot be used in other clauses (e.g. WHERE)

Selection

ORDER BY clause
e Defines the order of rows returned in the query result
¢ Only orderings induced by clustering columns are allowed!

column name

LIMIT clause
¢ Limits the number of rows returned in the query result

o QD - ()~

Selection

GROUP BY clause
* Groups rows of a table according to certain columns
e Only groupings induced by primary key columns are allowed!

o>((GROUP BY)~—+(_column name)
(e

* When a non-grouping column would be accessed directly in
the SELECT clause (i.e. without being wrapped by an aggregate
function), the first value encountered will always be returned

NIE-PDB: Advanced Database Systems | Lecture 9: Wide Column Stores: Cassandra | 25. 11. 2025

41

Selection

GROUP BY clause: aggregates

* Native aggregates
= COUNT (column)

— Number of all the values in a given column
— null values are ignored

= MIN(column), MAX (column)

— Minimal / maximal value in a given column
= SUM(column)

— Sum of all the values in a given column
= AVG(column)

— Average of all the values in a given column

* User-defined aggregates

Selection

ALLOW FILTERING modifier
e By default, only non-filtering queries are allowed

= |.e. queries where
the number of rows read ~ the number of rows returned
= Such queries have predictable performance

— They will execute in a time that is proportional
to the amount of data returned

e ALLOW FILTERING enables (some) filtering queries

Insertions

INSERT statement
* Inserts a new row into a given table

= When a row with a given primary key already exists,
it is updated

e Values of at least primary key columns must be set
* Names of columns must always be explicitly enumerated

QD - (70—

D)
Cherspacerame)~ T

L@&»CDW

(

DD (EE) - D o et |

Insertions

Example

INSERT INTO movies (id, title, director, year, actors, genres)

VALUES (
'stesti',
'Stésti’,
('Bohdan', 'Sléma'),
2005,
{ 'vilhelmova': 'Monika', 'liska': 'Tonik' },
['comedy', 'drama']

)

USING TTL 86400

Updates

UPDATE statement

* Updates existing rows within a given table
= When a row with a given primary key does not yet exist,
it is inserted

e At least all primary key columns must be specified
in the WHERE clause

@D

CITT
G -@- T

D T {3} l

—

Updates

UPDATE statement: assignments
* Describe modifications to be applied

e Allowed assignments:

= Value of a whole column is replaced
= Value of a list or map element is replaced

— Items of lists are numbered starting with 0

= Value of a user-defined type field is replaced

column name @» term [>o
cotumn name)~(D)-+[iem | (D)
Ccolumn name)»@—»(ﬁeld name)

Updates

Examples

UPDATE movies
SET
year = 2006,
director = ('Jan', 'Svérak'),
actors = { 'machacek': 'Robert Landa', 'sverak': 'Josef Tkaloun' 1},
genres = ['comedy' 1],
countries = { 'CZ' }
WHERE id = 'vratnelahve'

UPDATE movies

SET
actors['vilhelmova'] = 'Helenka',
genres[1] = 'comedy',

properties.length = 99
WHERE id = 'vratnelahve'

Updates

Examples: modification of collection elements

UPDATE movies

SET
actors = actors + { 'vilhelmova': 'Helenka' },
genres = ['drama'] + genres,
countries = countries + { 'SK' }

WHERE id = 'vratnelahve'

UPDATE movies

SET
actors = actors - { 'vilhelmova', 'landovsky' },
genres = genres - ['drama', 'sci-fi'],

countries = countries - { 'SK' }
WHERE id = 'vratnelahve'

Insertions and Updates

Update parameters
e TTL: time-to-live
= 0, null or simply missing for persistent values
e TIMESTAMP: writetime

TlMES%Gnteger)
T

AND

* Only newly inserted / updated values are really affected

Deletions

DELETE statement

* Removes the matching rows /
Preserves these rows but removes the selected columns /
Preserves these columns but removes elements of collections
or fields of UDT values

column name
Ceatumn e)-~(D-~{rem (D)
column name +©—> field name
)
o/

Lecture Conclusion

Cassandra
* Wide column store
Cassandra query language
e DDL statements

e DML statements
= SELECT, INSERT, UPDATE, DELETE

	Outline
	Introduction
	Cassandra
	Data Model
	Interfaces
	DDL Statements
	Data Types
	SELECT Statements
	INSERT Statements
	UPDATE Statements
	DELETE Statements

	Conclusion

