NIE-PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/

Lecture 7

Key-Value Stores: RiakKV

Martin Svoboda
martin.svoboda@fit.cvut.cz

11. 11. 2025

Charles University, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Information Technology

http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/
mailto:martin.svoboda@fit.cvut.cz

Lecture Outline

Key-value stores

* Introduction
RiakKV

* Data model
HTTP interface
CRUD operations
Data types
Search 2.0
Internal details

Key-Value Stores

Data model
* The most simple NoSQL database type
= Works as a simple hash table (mapping)
* Key-value pairs
= Key (id, identifier, primary key)
= Value: binary object, black box for the database system

Query patterns
 Create, update or remove value for a given key
* Get value for a given key
Characteristics
* Simple model = great performance, easily scaled, ...
* Simple model = not for complex queries nor complex data

NIE-PDB: Advanced Database Systems | Lecture 7: Key-Value Stores: RiakkV | 11. 11. 2025

Key Management

How the keys should actually be designed?
* Real-world identifiers
= E.g. e-mail addresses, login names, ...

* Automatically generated values
= Auto-increment integers
— Not suitable in peer-to-peer architectures!
= Complex keys

— Multiple components / combinations of
time stamps, cluster node identifiers, ...
— Used in practice instead

Query Patterns

Basic CRUD operations
* Only when a key is provided
* = knowledge of the keys is essential

= |t might even be difficult for a particular database system
to provide a list of all the available keys!

Accessing the contents of the value part is not possible in general
e But we could instruct the database how to parse the values
* ...so that we can index them based on certain search criteria
Batch / sequential processing
* MapReduce

NIE-PDB: Advanced Database Systems | Lecture 7: Key-Value Stores: RiakkV | 11. 11. 2025

Other Functionality

Expiration of key-value pairs

* Objects are automatically removed from the database
after a certain interval of time

o Useful for user sessions, shopping carts etc.
Links between key-value pairs

* Values can be mutually interconnected via links

* These links can be traversed when querying
Collections of values

* Not only ordinary values can be stored, but also their
collections (e.g. ordered lists, unordered sets, ...)

Particular functionality always depends on the store we use!

NIE-PDB: Advanced Database Systems | Lecture 7: Key-Value Stores: RiakkV | 11. 11. 2025

Riak Key-Value Store

sriak

RiakKV

Key-value store
[]
e Features
= QOpen source, incremental scalability, automatic sharding,

peer-to-peer replication, high availability, fault tolerance, ...

Originally developed by Basho Technologies

Implemented in Erlang

= General-purpose functional programming language and
runtime system with garbage collection

— Its main strength is concurrency and distribution

Operating systems: Linux, Mac OS X, ... (not Windows)

Initial release in 2009
= Version we cover is 3.0.10 (May 2022)

NIE-PDB: Advanced Database Systems | Lecture 7: Key-Value Stores: RiakkV | 11. 11. 2025

https://www.tiot.jp/en/solutions/riak/

Data Model

Dataspace structure

Instance (— bucket types) — buckets — objects

e Bucket type
= QOptional logical collection of buckets
— When not stated explicitly, the default type is assumed
= Primarily allows for shared configuration of buckets
— But also forms a namespace for buckets
— As well as allows to define user permissions
e Bucket
= Logical collection of key-value objects
= Allows to override inherited bucket type properties
— E.g., replication factor, read / write quora, ...

NIE-PDB: Advanced Database Systems | Lecture 7: Key-Value Stores: RiakkV | 11. 11. 2025

Data Model

Dataspace structure (cont’d)
e Object = one key-value pair
= Key: Unicode string unique within a bucket
= Value: basically anything (text, binary object, image, ...)
* Each object is also associated with additional metadata
= Especially content type
— l.e., data format of the value part
— Media types (MIME types) are used for this purpose
— E.g.: text/plain, application/json, image/jpeg, ..
= But also certain internal metadata
— Causal context (vector clock), timestamp of the last
modification, ...

Data Model: Design Questions

Possible data modeling strategies

e Multiple buckets
= Each for objects of just a single entity type

— E.g., one bucket for actors, one for movies,
each actor and movie has its own object

= Allows for easier key management

¢ Single bucket
= Serves for objects of various entity types

— E.g., one bucket for both actors and movies,
each actor and movie still has its own object

= Structured keys might thus help

— Distinct prefix can be used for each entity type
— E.g.,actor_trojan, movie_medvidek

Riak Usage: Querying

Basic CRUD operations

* Create, Read, Update, and Delete
= All based on a key look-up

Extended functionality
e Links — relationships between objects and their traversal
e Search 2.0 — full-text queries accessing values of objects
¢ MapReduce

Riak Usage: Interfaces

Application interfaces
e HTTP API
= Requests are submitted as HTTP requests with appropriately
selected / constructed methods, URLs, headers, and data

e Protocol Buffers API

¢ Erlang API

Client libraries for a variety of programming languages
o Official: Java, Ruby, Python, C#, PHP, ...
e Community: C, C++, Haskell, Perl, Python, Scala, ...

HTTP API

cURL = tool for sending requests and receiving responses via HTTP
* —u user:password (alternatively also --user)
= User credentials to be used for server authentication
e -X command (--request)
= Request method to be used (GET, PUT, ...)
e -H header (--header)
= Extra headers to be included when sending the request
e -d data (--data)
= Data to be sent to the server
e -i(--include)
= Whether response headers should also be printed

Basic Operations

CRUD Operations

Basic object operations
e Create: POST or PUT methods
= Inserts a key-value pair into a given bucket
* Read: GET method
= Retrieves a key-value pair from a given bucket
e Update: PUT method
= Updates a key-value pair in a given bucket
e Delete: DELETE method
= Removes a key-value pair from a given bucket

CRUD Operations

Generic URL pattern for all basic object operations

AW wew—s @»-»@»-»@».»@».T

(

L@ parameter »@—»mjj

Optional parameters
* Allow to override bucket-level properties for a given request
= r,w: read / write quorum to be attained

* Permitted parameters depend on the particular operation

CRUD Operations: Create and Update

Inserts / updates a key-value pair in a given bucket

* Key is specified = PUT method
= Transparently inserts / updates (replaces) a given object
— lLe., when updating, everything really must be specified again

e Key is missing = POST method (insertion only)
= Key will be generated automatically and returned via a header
— E.g.: 4zmJhCNhM4h6mUJVw35Ck0uNZ28

* Buckets as such are created transparently, bucket types not
Example

curl -i -X PUT \
-H 'Content-Type: text/plain' \
-d 'Ivan Trojan, 1964' \
http://localhost:8098/buckets/actors/keys/trojan

CRUD Operations: Read

Retrieves a key-value pair from a given bucket
* Method: GET
Example

curl -i -X GET \
http://localhost:8098/buckets/actors/keys/trojan

Content-Type: text/plain

Content-Length: 17

X-Riak-Vclock: a85hYGBgzGDKBVI8XxW02dii9T4wMKgLZjA1MuWxMti+WXKHLwsA
Last-Modified: Sun, 25 Sep 2022 15:14:05 GMT

’Ivan Trojan, 1964 ‘

CRUD Operations: Delete

Removes a key-value pair from a given bucket

* Method: DELETE

* When a given object does not exist, it does not matter
Example

curl -i -X DELETE \
http://localhost:8098/buckets/actors/keys/trojan

Bucket Operations

List of all existing buckets
e |.e., buckets with at least one existing object
e Should not be used in production environments
= Because of inefficiency, every cluster node needs to be involved

Awow—wow—walGll SO _Sof o

Example

‘curl -i -X GET http://localhost:8098/buckets?buckets=true

Content-Type: application/json ‘

’{ "buckets" : ["actors", "movies"] } ‘

Bucket Operations

List of all existing keys in a given bucket
* Should not be used in production environments, once again

To-amo-a O S @+-j

L@*-*@*.*@*.»

Example

curl -i -X GET http://localhost:8098/buckets/actors/keys?keys=true ‘

Content-Type: application/json ‘

’{ "keys" : ["trojan", "machacek", "schneiderova", "sverak"] }

Bucket Properties

Setting and retrieval of bucket properties

e e O O-EB-O-am-

¢ Retrieval = GET method
= Lists current values of all bucket properties
* Update = PUT method

= Updates values of selected bucket properties
— l.e., values of not mentioned properties are preserved intact

* Reset = DELETE method
= Resets all or just selected bucket properties
— lLe., removes them or replaces them with bucket type defaults

Bucket Properties: Examples

Update of selected properties

curl -i -X PUT \
-H 'Content-Type: application/json' \
-d 1{ "pIOPS" : { "n val" : 3’ LET ALY "all", LESLUE | } }v \
http://localhost:8098/buckets/actors/props

Reset of selected properties

curl -i -X DELETE \
-H 'Content-Type: application/json' \
-d '{ "props" : { "search_index" : "" } }' \
http://localhost:8098/buckets/actors/props

Reset of all properties

curl -i -X DELETE \
http://localhost:8098/buckets/actors/props

Bucket Properties

Important properties

n_val: replication factor
r / w: read / write quorum
= Particular value, al11 (all replicas), quorum (n_val/2 + 1)
search_index
= Name of the associated search indey, if any
datatype

= Name of the associated data type, if any
= E.g.: counter, set, map, ...

allow_mult
= Whether to allow sibling objects to be created

Data Types

Motivation

Replica conflict
 Situation when not all replicas of a given object are identical
= |.e., two or even more of them are mutually inconsistent
Riak is an AP system =- such conflicts are unavoidable
* And so they need to be resolved somehow...
= Either automatically or manually
e Until now we only worked with ordinary objects

= With atomic values only
= And both resolution strategies possible

e But we also have an alternative in a form of data type objects
= Inspired by the concept of CRDTs

NIE-PDB: Advanced Database Systems | Lecture 7: Key-Value Stores: RiakkV | 11. 11. 2025 27

CRDTs

Convergent Replicated Data Types

* Generic concept introducing a couple of data types
= Each useful for a different real-world use case

— G-Counter (Grow-only Counter), PN-Counter (Positive-Negative
Counter), G-Set (Grow-only Set), ...

* Particular CRDT definition involves a description of...

= Permitted content — can be atomic as well as structured

= Permitted operations
= Convergence rule

— Specifically tailored mechanism used for conflict resolution
CRDTs implemented in Riak
e Counter, set, map, register, flag, ...
= Not all of them can be used at the top level, though

Data Types: Counters

Counter

¢ |Integer counter

= Both positive and negative values are permitted

= When a new counter is first used, its value is initialized to O
e Qperations

= Increment / decrement by a given value

— le., itis not possible to set the counter to a particular value
— Just relative changes are permitted

e Convergence rule
= All requested increments / decrements are eventually applied

Data Types: Sets

Set

* Unordered collection of unique binary values

= E.g., strings

= When a new set is first used, it is initialized as an empty set
e Qperations

= Addition / removal of one or more elements
e Convergence rule
= Addition wins over removal
— At the level of individual elements

Data Types: Maps

Map
* Unordered collection of embedded name-value pairs

= Names are strings
= Values can be anything

— l.e., registers, flags, but also counters, sets and even maps
— Complex data structures can therefore be easily created

= Names must be suffixed according to the types of values
— E.g., field_register, field_flag, ..
e Operations
= Addition / update / removal of a given element
e Convergence rule

= Addition / update wins over removal
= Values themselves are treated recursively based on their types

NIE-PDB: Advanced Database Systems | Lecture 7: Key-Value Stores: RiakkV | 11. 11. 2025

31

Data Types: Registers & Flags

Register
* Allows to store any binary value (e.g., string)
e Convergence rule
= The most chronologically recent value wins
e Registers can only be stored within maps
= |.e., not at the top level for entire objects
Flag
* Boolean value
= enable (true), and disable (false)
e Convergence rule: enable wins over disable
* Flags can only be stored within maps, too

Usage of Data Types

Activation

* Via bucket type properties (i.e., not individual buckets)
= Property datatype is set to the desired data type
— Possible values: counter, set, map, ...

= Property allow_mult must be enabled
Usage
» Different URL pattern for requests is assumed
= Keyword datatypes is expected instead of keys

Cuckets) -~ (1~ Cousker)-~ (1)~ (atatypes)~(1)~(ey)

To-aoa O

Example: Counters

Initialization / update
e Operations increment and decrement can be used
= Both actually with positive / negative values

curl -i -X POST \
-H 'Content-Type: application/json' \
-d '{ "increment" : 0 }' \
http://localhost:8098/types/counters/buckets/movies/datatypes/en

Retrieval

curl -i -X GET \
http://localhost:8098/types/counters/buckets/movies/datatypes/cs

Content-Type: application/json ‘

’{ "type" : "counter", "value" : 4 } ‘

Search 2.0

Riak Search 2.0 (Yokozuna)
¢ Full-text search over object values
e Uses Apache Solr
= Distributed, scalable, failure tolerant, real-time search platform
Mechanisms
* Indexation
= Triggered whenever Riak object is changed (inserted, ...)

. . tract: h .
= Riak object 0L solr document — =2 Solr index

° Querying
= Riak search query — Solr search query — Solr response

— List of matching Solr documents with scores
— Each providing identification of the associated source object

Extractors

Extractor = parser for object values
* Produces fields to be indexed
¢ Chosen automatically based on a content type
= E.g.: application/json = JSON extractor
Available extractors
e For common data formats...
= Plain text, XML, JSON, noop (unknown content type)
* For Riak data types...

= Counter (application/riak_counter)
= Set (application/riak_set)
* Map (application/riak_map)

User-defined custom extractors (implemented in Erlang)

Extractors: Plain Text

Plain text extractor (text/plain)
* Single field with the whole value content is extracted
Example

Dira u Hanusovic, 2014 ‘

[

{ <<"text">>, <<"Dira u Hanusovic, 2014">> }

]

Extractors: XML

XML extractor (text/xml, application/xml)

* One field is extracted for each simple element or attribute
= But only when enabled, i.e., its name contains a type suffix
* Available type suffixes
= Single-value
— _s (string), _i (integer), _f (float), _b (boolean), ...
= Multi-value

— When multiple values are expected
— E.g., for several sibling elements of the same name

— _ss (strings), _is (integers), _fs (floats), _bs (booleans), ...

* Dot notation is used for flattened names of extracted fields

= . for embedded elements (e.g., movie.title_s)
= @ for attributes (e.g., movie@year_ i)

NIE-PDB: Advanced Database Systems | Lecture 7: Key-Value Stores: RiakkV | 11. 11. 2025

39

Extractors: XML

Example

<?xml version="1.1" encoding="UTF-8"7>
<movie year_i="2014" language="cs">
<title_s>Dira u Hanusovic</title_s>
<details>
<length>102</length>
<rating_s>+**</rating_s>
</details>
<genre_ss>comedy</genre_ss>
<genre_ss>drama</genre_ss>
<movie>

{ <<"movie@year_i">>, <<"2014">> },

{ <<"movie.title_s">>, <<"Dira u Hanusovic">> },

{ <<"movie.details.rating_s">>, <<"#*">> },

{ <<"movie.genre_ss">>, [<<"comedy">>, <<"drama">>] }

Extractors: JSON

JSON extractor (application/json)
e Similar principles as the XML extractor applies

Example
{
"title_s" : "Dira u Hanusovic",
"language" : "cs",
"year_i" : 2014,
"details" : { "length" : 102, "rating_s" : "x*" },
"genre_ss" : ["comedy", "drama"]
}
[
{ <<"title_s">>, <<"Dira u Hanusovic">> },
{ <«<Myear_i">>, <<"2014">> },
{ <<"details.rating_s">>, <<"**">> },
{ <<"genre_ss">>, [<<"comedy">>, <<"drama">>] }
]

Indexing Schema

Solr document
» Extracted fields + auxiliary fields
= _yz_rt (bucket type), _yz_rb (bucket), _yz_rk (key), ...
— Allow for the identification of the source Riak object
Solr schema
e Describes how values of fields are indexed within Solr
= Values are analyzed, tokenized, and filtered
— E.g., stop words removed, stemmers applied, ...
= Triples (token value, field name, document id) are indexed
e _yz_default = default predefined schema
= Suitable for debugging
— Does not support specific national characters, ...
= Custom schemas can also be created

Index Initialization

Step 1: index creation
* Default (_yz_default) schema is assumed when not specified

(-~ Geaten) (- Gnderd-~ (1)~ (inder) -~

Example

curl -i -X PUT \
-H 'Content-Type: application/json' \
-d '{ "schema" : "_yz_default" }' \
http://localhost:8098/search/index/imovies

curl -i -X PUT \
http://localhost:8098/search/index/imovies

Index Initialization

Step 2: index association
¢ Index must then be associated with particular buckets
= Via search_index bucket property

* Note that the already existing objects will not be indexed
Example

curl -i -X PUT \
-H 'Content-Type: application/json' \
-d '{ "props" : { "search_index" : "imovies" } }' \
http://localhost:8098/buckets/actors/props

Search Requests

Search queries

~0- G -0-ED-0-EB-® - DO @y
@

&

e Parameters

= q: search query conditions to be satisfied

= wt: response writer to be used, i.e., data format of the result
— E.g.: json, csv, xml, php, ...

= sort: ordering criteria
— Document scores or both single-/multi-value fields can be used
— By default (when not specified), score desc is assumed
— Multiple criteria are separated by commas
— E.g.:year_i desc,title_s asc

start / rows: pagination of matching documents

Search Conditions

Term searches

* Value of a given field must be equal to the provided term
= |n case of a multi-value field, at least one of its values

e E.g.:title s:Samotari

Phrase searches
e Group of more terms needs to be wrapped by double quotes
e E.g.:title s:"Dira u Hanusovic"

Wildcard searches

¢ Available wildcards

= ? matches exactly one arbitrary character
= * matches zero ore more arbitrary characters

e E.g.:title s:*Bob?le matching Bobule, 2Bobule, ...

Search Conditions

Range searches
* Range of values between a pair of bounds

= [and] denote inclusive bounds, { and } exclusive bounds
= x denotes positive / negative infinity

e E.g.iyear i:[2015 TO *}
Logical expressions
¢ Logical connectives can be used for more complex queries

= AND for conjunction, OR disjunction and NOT negation
= Auxiliary parentheses () can also be utilised

e E.g.: genre ss:action OR genre ss:fantasy

Search Requests

URL encoding issues
e Step 1: preparing the intended search condition
= E.g.:title_s:*Bobule OR (year_ i:[2020 TO *} AND
stars_s:*\x*)
= Undesired Solr metacharacters are deactivated by escaping
- Eg::5,%7,(G), 1,41
e Step 2: encoding unsafe and reserved URL characters

= Each needs to be replaced with the corresponding code
= At least those necessary...
— E.g.: space %20, " %22, \ %5C, : %3A, * %24, ? %3F, (%28,
) %29, [%5B,1 %5D, { %7B, } %7D, ...
= E.g.: title_s%3A%2ABobule’,200R%20%28year _i%3A%5B20
20%20T0%20%2A%7D%20AND%20stars _s%3A%5C%H2A%5Ch2A%29

Search Requests

URL encoding issues (cont’d)

e Step 3: preparing curl request
= Undesired shell metacharacters also need to be suppressed
- Eg: &7, ..
= E.g.: .\&g=..instead of ..&q=..

Example

curl -i -X GET \
http://localhost:8098/search/query/imovies\?wt=json\&q=year_i%3A2020

Internal Details

Architecture

Sharding + peer-to-peer replication architecture
* Any node can serve any read or write user request
* Physical nodes run (several) virtual nodes (vnodes)
= Nodes can be added and removed from the cluster dynamically
CAP properties
e AP system: availability + partition tolerance
= |.e., availability is preferred to consistency
» Strong consistency can also be achieved

= When activated within the whole cluster
= And appropriate quora are set:

— w > n_val/2 for write quorum
— r >n_val — wfor read quorum

= However, such an approach is deprecated

NIE-PDB: Advanced Database Systems | Lecture 7: Key-Value Stores: RiakkV | 11. 11. 2025 51

Riak Ring

Replica placement strategy
e Consistent hashing function
= Consistent = does not change when cluster changes
= Domain: pairs of a bucket name and object key
= Range: 160-bit integer space = Riak Ring
Riak Ring
e The whole ring is split into equally-sized disjoint partitions
= Physical nodes are mutually interleaved
= reshuffling when cluster changes is less demanding

e Each virtual node is responsible for exactly one partition
Example
* Cluster with 4 physical nodes, each running 8 virtual nodes
= |.e. 32 partitions altogether

NIE-PDB: Advanced Database Systems | Lecture 7: Key-Value Stores: RiakkV | 11. 11. 2025 52

Riak Ring

2I60 0

node 0

a ring with 32 partitions «~2160/4
node 2

node 3

1
2160/

Source: http://docs.basho.com/

Riak Ring

Replica placement strategy
e The first replica...
= |ts location is directly determined by the hash function
* All the remaining replicas...
= Placed to the consecutive partitions in a clockwise direction
What if a virtual node is failing?
e Hinted handoff
= Failing nodes are simply skipped,
neighboring nodes temporarily take responsibility
= When resolved, replicas are handed off to the proper locations

e Motivation: high availability

NIE-PDB: Advanced Database Systems | Lecture 7: Key-Value Stores: RiakkV | 11. 11. 2025

54

Request Handling

Read and write requests can be submitted to any node
* This nodes is called a coordinating node
* Hash function is calculated, i.e. replica locations determined
* Internal requests are sent to all the corresponding nodes

* Then the coordinating node waits
until sufficient number of responses is received

e Result / failure is returned to the user

But what if the cluster changes?

* The value of the hash function does not change,
only the partitions and their mapping to virtual nodes change

* However, the Ring knowledge a given node has might be obsolete!

NIE-PDB: Advanced Database Systems | Lecture 7: Key-Value Stores: RiakkV | 11. 11. 2025

55

Lecture Conclusion

RiakKV

* Highly available distributed key-value store

¢ Sharding with peer-to-peer replication architecture

* Riak Ring with consistent hashing for replica placement
Query functionality

¢ Basic CRUD operations

* Search 2.0 full-text based on Apache Solr

	Outline
	Introduction
	RiakKV
	Data Model
	Interfaces
	CRUD Operations
	Bucket Operations
	Bucket Properties
	Data Types
	Search 2.0
	Internal Details

	Conclusion

