NIE-PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/

Lecture 6

MapReduce, Apache Hadoop

Martin Svoboda
martin.svoboda@fit.cvut.cz

4. 11. 2025

Charles University, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Information Technology

http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/
mailto:martin.svoboda@fit.cvut.cz

Lecture Outline

MapReduce
* Programming model and implementation
* Motivation, principles, details, ...

Apache Hadoop
e HDFS — Hadoop Distributed File System
* MapReduce

Programming Models

What is a programming model?
* Abstraction of an underlying computer system
= Describes a logical view of the provided functionality
= Offers a public interface, resources or other constructs
= Allows for the expression of algorithms and data structures
= Conceals physical reality of the internal implementation
= Allows us to work at a (much) higher level of abstraction

e The point s
how the intended user thinks in order to solve their tasks
and not necessarily how the system actually works

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

Programming Models

Examples
e Traditional von Neumann model

= Architecture of a physical computer with several components
such as a central processing unit (CPU), arithmetic-logic unit
(ALU), processor registers, program counter, memory unit, etc.
= Execution of a stream of instructions

¢ Java Virtual Machine (JVM)
Do not confuse programming models with

e Programming paradigms (procedural, functional, logic, modular,
object-oriented, recursive, generic, data-driven, parallel, ...)

e Programming languages (Java, C++, ...)

Parallel Programming Models

Process interaction
Mechanisms of mutual communication of parallel processes

e Shared memory — shared global address space, asynchronous read
and write access, synchronization primitives

e Message passing
e Implicit interaction

Problem decomposition
Ways of problem decomposition into tasks executed in parallel

e Task parallelism — different tasks over the same data
e Data parallelism — the same task over different data
¢ Implicit parallelism

MapReduce

MapReduce Framework

What is MapReduce?
* Programming model + implementation
* Developed by Google in 2008

Google:

A simple and powerful interface that enables automatic par-
allelization and distribution of large-scale computations,
combined with an implementation of this interface that
achieves high performance on large clusters of commodity
PCs.

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

History and Motivation

Google PageRank problem (2003)

* How to rank tens of billions of web pages by their importance

= ... efficiently in a reasonable amount of time

= ... when data is scattered across thousands of computers
= ... data files can be enormous (terabytes or more)

= ... data files are updated only occasionally (just appended)
= ... sending the data between compute nodes is expensive
= ... hardware failures are rule rather than exception

* Centralized index structure was no longer sufficient
* Solution

= Google File System — a distributed file system
= MapReduce — a programming model

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

MapReduce Framework

MapReduce programming model
e Cluster of commodity personal computers (nodes)

= Each running a host operating system, mutually interconnected
within a network, communication based on IP addresses, ...

* Data is distributed among the nodes

» Tasks executed in parallel across the nodes
Classification

* Process interaction: message passing

* Problem decomposition: data parallelism

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

Basic Idea

Divide-and-conquer paradigm

* Breaks down a given problem into simpler sub-problems

» Solutions of the sub-problems are then combined together
Two core functions

* Map function
= Generates a set of so-called intermediate key-value pairs

* Reduce function
= Reduces values associated with a given intermediate key

And that’s all!

Basic Idea

And that’s really all!

It means.
* We only need to implement Map and Reduce functions

* Everything else such as

input data distribution,

scheduling of execution tasks,
monitoring of computation progress,
inter-machine communication,
handling of machine failures,

is managed automatically by the framework!

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

11

Model Description

Map function
* Input: input key-value pair = input record
o Qutput: list of intermediate key-value pairs

= Usually from a different domain
= Keys do not have to be unique
= Duplicate pairs are permitted

* (key, value) — list of (key, value)
Reduce function
e Input: intermediate key + list of (all) values for this key

e Qutput: possibly smaller list of values for this key
= Usually from the same domain

o (key, list of values) — (key, list of values)

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 12

Example: Word Frequency

/%%
* Map function
* Q@param key Document identifier
* @param value Document contents
*/
map(String key, String value) {
foreach word w in value: emit(w, 1);

}

/%%
* Reduce function
* Qparam key Particular word
* Qparam values List of count values generated for this word
*/
reduce(String key, Iterator values) {
int result = 0;
foreach v in values: result += v;
emit (key, result);

}

Logical Phases

| >

| Map I Shuffle I > Reduce I >

Stésti
Medvidek | 1

[

Medvidek
Medvidek
Medvidek

Samotafi | 1

Medvidek | 1 Pupendo
Medvidek
[escecrupence }=—" 715 [veaige |
Samotafi
-Pupendo
Samotafi | 1 > Samotafi
Yy |1 Somata
Samotafi | 1 Samotafi

Samotari

o ="
Stasti 1 AN
Stésti

Medvidek | 1
Samotafi | 1 Zelary
Zelary 1 Zelary

--- Input Records -----—- -I ------ » Intermediate Key-Value Pairs --—-—---- -I-----> Output File

Logical Phases

Mapping phase
* Map function is executed for each input record
* Intermediate key-value pairs are emitted
Shuffling phase

* Intermediate key-value pairs are grouped and sorted
according to the keys

Reducing phase
* Reduce function is executed for each intermediate key
e Output key-value pairs are generated

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 15

Cluster Architecture

Master-slave architecture
* Two types of nodes, each with two basic roles
* Master

= Manages the execution of MapReduce jobs
— Schedules individual Map / Reduce tasks to idle workers

= Maintains metadata about input / output files
— These are stored in the underlying distributed file system
* Slaves (workers)
= Physically store the actual data contents of files

— Files are divided into smaller parts called splits
— Each split is stored by one / or even more particular workers

= Accept and execute assigned Map / Reduce tasks

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

16

Cluster Architecture

Worker W3

Worker W1

Worker W4

Worker W2

MapReduce Job Submission

Master MapReduce Job
Submission
Worker W3
Worker W1
Worker W4

Worker W2

MapReduce Job Submission

Submission of MapReduce jobs
* Jobs can only be submitted to the master node

e Client provides the following:

= Implementation of (not only) Map and Reduce functions
= Description of input file (or even files)
= Description of output directory

Localization of input files
e Master determines locations of all involved splits
= |.e. workers containing these splits are resolved

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

19

Input Splits Localization

Master ‘
E Worker W3
-’ Split S2 ’

Worker W1

splits1

split 52 Worker W4

Worker W2

Input Splits Localization

!
.

Worker W1

splits1

Split 52 i Worker W4

—J ‘

Worker W2

Map Task Assignment

Master

Bl Worker W3
Map Tasks
Assignment
Worker W1
Worker W4

Split 52

Worker W2

Map Task Execution

Map Task = processing of 1 split by 1 worker
* Assigned by the master to an idle worker that is (preferably)
already containing (physically storing) a given split
Individual steps...
e Input reader is used to parse contents of the split
= |.e. input records are generated
* Map function is applied on each input record
= Intermediate key-value pairs are emitted
* These pairs are stored locally and organized into regions

= Either in the system memory,

or flushed to a local hard drive when necessary
= Partition function is used to determine the intended region

— Intermediate keys (not values) are used for this purpose
— E.g. hash of the key modulo the overall number of reducers

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

23

Input Parsing

Parsing phase

* Each split is parsed so that input records are retrieved
(i.e. input key-value pairs are obtained)

Parse | >
| [
Splits1 | -/_
--------------- Input File -----------|-------~> Input Records -----

Map Phase

I >» Map I > Partition I >
Region R1
'y| Medvidek
Srasti | 1 | yidedvidel ':::::Lec:(
Medvidek | 1
; P - Samotan
A samotafi
/> Medvidek | 1 S v
> fupendoll g Samotari
[[somots Zcary samotst_|< ’
kﬁ Samotafi | 1
Zelary |1 = Region R2
tésti
Samotafi | 1 *t st
Zelary

Map Phase

Region R1

Medvidek Master
Medvidek

Region R2 p
H
i et .] Worker W3
Samotafi
SamotaFi | Zelary .
Worker W1
Region R1 !
Medvidek i
i Worker W4

SamotaFi [
Samotafi i

Worker W2

Map Task Confirmation

Region R1

Medvidek
Medvidek

Samotafi

Master

Worker W3
Samotafi

Samotafi

Map Tasks
Confirmation

Worker W1

Medvidek i
Worker W4
Samotafi (I}

Worker W2

Reduce Task Assignment

Region R1

Medvidek Master
Medvidek

Samotafi

Worker W3
Samotafi

Samotafi o

Worker W1

Reduce Tasks
Assignment

‘

Samotafi [
Samotafi i

! Region R2

‘

Worker W2

Reduce Task Execution

Reduce Task = reduction of selected key-value pairs by 1 worker
* Goal: processing of all emitted intermediate key-value pairs
belonging to a particular region
Individual steps...
* Intermediate key-value pairs are first acquired

= All relevant mapping workers are addressed
= Data of corresponding regions are transfered (remote read)

* Once downloaded, they are locally merged
= |.e. sorted and grouped based on keys

* Reduce function is applied on each intermediate key

* Output key-value pairs are emitted and stored (output writer)
= Note that each worker produces its own separate output file

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

29

Region Data Retrieval

Region R1

Medvidek Master
Medvidek

Pupendo

Samotafi Worker W3
Intermediate
Key-Value Pairs

Request

Samotafi

Keys K1

Samotafi

Worker W1

! Region R2

'

Worker W2

‘

Samotafi [
Samotafi (N

Worker W4

Keys K2

Region Data Retrieval

. Region R1

Medvidek 1
Medvidek |

Pupendo

Samotafi

Samotafi

Master

Worker W3
Intermediate
Key-Value Pairs S

Samotafi

Transfer Keys K1

Samotafi
Samotafi

Worker W1

Region R2

.
| A
=

Worker W2

Reduce Phase

I > Merge I > Reduce I >

Region R1
from Medvidek
Worker W1 Medvidek

Samotafi

Medvidek
Medvidek
Medvidek

Samotafi

Output O1

Samotafi

Samotafi

Reglon
Worker W2
Samotafi l
Samotafi

Samotafi

Samotafi
Samotafi

Samotafi

/

Reduce Phase

Master

Worker W3

Output 01

P
i
p

Medvidek !

i

|
i

|
!

Worker W1

Worker W4

Output 02

Horkertz ?

Reduce Task Confirmation

Master

Worker W3

Output 01

d

d

i

Medvidek !

" i
i

i

i

Reduce Tasks
Confirmation

Worker W1

Output 02

forkerne ?

MapReduce Job Termination

MapReduce Job

M r P
aste Termination

Worker W3

iy
Output 01 !
i

Medvidek]

i

i

i

i

Worker W1

Output 02

Horkertz ?

Combine Function

Optional Combine function
* Objective
= Decrease the amount of intermediate data
i.e. decrease the amount of data that is needed to be
transferred from Mappers to Reducers
* Analogous purpose and implementation to Reduce function
» Executed locally by Mappers
* However, only applicable when the reduction is...

= Commutative
= Associative

= Idempotent: f(f(z)) = f(z)

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

36

Improved Map Phase

------ |»----> Partition ------|---““"> Combine I >

Stésti

-

xEl: _________________________
Medvidek >‘\ Region R1
4
—— oo Pupenco [}
Pupendo —
:

Samotafi

Samotéfi

Medvidek | 1 o
Samotafi

Pupendo | 1 .
Samotafi

Samotafi | 1

Zelary 1 — Region R2
— Stésti > Stésti .
Samotdfi | 1

Improved Reduce Phase

Master

Region R2

Worker W3
Intermediate
Key-Value Pairs
Transfer

Keys K1

Worker W1

Worker W4

Keys K2

Worker W2

Improved Reduce Phase

i > Merge I > Reduce I >
Region R1
from
Worker W1
Output 01
Region R1
from LB P 5 samotdfi 200000 e
Worker W2

Functions Overview

Input reader
* Parses a given input split and prepares input records
Map function
Partition function
* Determines a particular Reducer for a given intermediate key
Compare function
* Mutually compares two intermediate keys
Combine function
Reduce function
Output writer
* Writes the output of a given Reducer

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 40

Advanced Aspects

Counters

* Allow to track the progress of a MapReduce job in real time
= Predefined counters
— E.g. numbers of launched / finished Map / Reduce tasks,
parsed input key-value pairs, ...
= Custom counters (user-defined)

— Can be associated with any action that a Map or Reduce
function does

Advanced Aspects

Fault tolerance
* When a large number of nodes process a large number of data
= fault tolerance is necessary

Worker failure
* Master periodically pings every worker; if no response is received in
a certain amount of time, master marks the worker as failed
e All its tasks are reset back to their initial idle state and become
eligible for rescheduling on other workers

Master failure
e Strategy A — periodic checkpoints are created; if master fails,
a new copy can then be started
e Strategy B — master failure is considered to be highly unlikely;
users simply resubmit unsuccessful jobs

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 42

Advanced Aspects

Stragglers

e Straggler = node that takes unusually long time to complete
a task it was assigned
* Solution
= When a MapReduce job is close to completion, the master
schedules backup executions of the remaining in-progress tasks
= A given task is considered to be completed whenever either
the primary or the backup execution completes

Additional Examples

URL access frequency
e Input: HTTP server access logs
* Map: parses a log, emits (accessed URL, 1) pairs
* Reduce: computes and emits the sum of the associated values
e Output: overall number of accesses to a given URL
Inverted index
* Input: text documents containing words
* Map: parses a document, emits (word, document ID) pairs
* Reduce: emits all the associated document IDs sorted
e Qutput: list of documents containing a given word

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

44

Additional Examples

Distributed sort
* Input: records to be sorted according to a specific criterion
* Map: extracts the sorting key, emits (key, record) pairs
* Reduce: emits the associated records unchanged
Reverse web-link graph
* Input: web pages with .. tags
* Map: emits (target URL, current document URL) pairs
* Reduce: emits the associated source URLs unchanged
* Output: list of URLs of web pages targeting a given one

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

45

Additional Examples

Reverse web-link graph

/%%
* Map function
* Qparam key Source web page URL
* @param value HTML contents of this web page
*/
map(String key, String value) {
foreach <a> tag t in value: emit(t.href, key);

}

/%%
* Reduce function
* Qparam key URL of a particular web page
* Qparam values List of URLs of web pages targeting this one
*/
reduce(String key, Iterator values) {
emit (key, values);

}

Use Cases: General Patterns

Counting, summing, aggregation

* When the overall number of occurrences of certain items or a
different aggregate function should be calculated

Collating, grouping

e When all items belonging to a certain group should be found,
collected together or processed in another way

Filtering, querying, parsing, validation

* When all items satisfying a certain condition should be found,
transformed or processed in another way

Sorting

* When items should be processed in a particular order with respect
to a certain ordering criterion

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

47

Use Cases: Real-World Problems

Just a few real-world examples...

¢ Risk modeling, customer churn

 Recommendation engine, customer preferences
Advertisement targeting, trade surveillance
Fraudulent activity threats, security breaches detection
Hardware or sensor network failure prediction
Search quality analysis

Source: http://www.cloudera.com/

Apache Hadoop

%aap

Apache Hadoop

Open-source software framework

Distributed storage and processing of very large data sets
on clusters built from commodity hardware

= Implements a distributed file system
= Implements a MapReduce programming model

Derived from the original Google MapReduce and GFS
Developed by Apache Software Foundation
Implemented in Java

Operating system: cross-platform

Initial release in 2011
= Version we cover is 3.3.4 (August 2022)

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 50

http://hadoop.apache.org/

Apache Hadoop

Modules
* Hadoop Common
= Common utilities and support for other modules
» Hadoop Distributed File System (HDFS)
= High-throughput distributed file system
* Hadoop Yet Another Resource Negotiator (YARN)

= Cluster resource management
= Job scheduling framework

* Hadoop MapReduce
= YARN-based implementation of the MapReduce model

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

51

Apache Hadoop

Hadoop-related projects

Apache Cassandra — wide column store

Apache HBase — wide column store

Apache Hive — data warehouse infrastructure

Apache Avro — data serialization system

Apache Chukwa — data collection system

Apache Mahout — machine learning and data mining library
Apache Pig — framework for parallel computation and analysis

Apache ZooKeeper — coordination of distributed applications

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 52

Apache Hadoop

Real-world Hadoop users (year 2016)

* Facebook — internal logs, analytics, machine learning, 2 clusters
1100 nodes (8 cores, 12 TB storage), 12 PB
300 nodes (8 cores, 12 TB storage), 3 PB

¢ LinkedIn — 3 clusters
800 nodes (2 x4 cores, 24 GB RAM, 6x2 TB SATA), 9 PB
1900 nodes (2x6 cores, 24 GB RAM, 6x2 TB SATA), 22 PB
1400 nodes (2 x6 cores, 32 GB RAM, 6x2 TB SATA), 16 PB

* Spotify — content generation, data aggregation, reporting, analysis
1650 nodes, 43000 cores, 70 TB RAM, 65 PB, 20000 daily jobs

* Yahoo! — 40000 nodes with Hadoop, biggest cluster
4500 nodes (2x4 cores, 16 GB RAM, 4x 1 TB storage), 17 PB

Source: http://wiki.apache.org/hadoop/PoweredBy

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

53

HDFS

Hadoop Distributed File System

e

* Open-source, high quality, cross-platform, pure Java

Highly scalable, high-throughput, fault-tolerant

Master-slave architecture

Optimal applications
= MapReduce, web crawlers, data warehouses, ...

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

54

HDFS: File System

Logical view: Linux-based hierarchical file system
* Directories and files
» Contents of files is divided into blocks
= Usually 64 MB, configurable per file level
e User and group permissions
» Standard operations are provided
= Create, remove, move, rename, copy, ...
Namespace
e Contains names of all directories, files, and other metadata
= |.e. all data to capture the whole logical view of the file system

* Just a single namespace for the entire cluster

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

55

HDFS: Cluster Architecture

Master-slave architecture
e Master: NameNode

= Manages the namespace

= Maintains physical locations of file blocks
= Provides the user interface for all the operations

— Create, remove, move, rename, copy, ... file or directory
— Open and close file

= Regulates access to files by users
e Slaves: DataNodes

= Physically store file blocks within their underlying file systems
= Serve read/write requests from users

— lLe. user data never flows through the NameNode

= Have no knowledge about the namespace

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

56

HDFS: Replication

Replication = maintaining of multiple copies of each file block
* Increases read throughput, increases fault tolerance

* Replication factor (number of copies)
= Configurable per file level, usually 3
Replica placement
e Critical to reliability and performance
* Rack-aware strategy

= Takes the physical location of nodes into account
= Network bandwidth between the nodes on the same rack
is greater than between the nodes in different racks

e Common case (replication factor 3):
= Two replicas on two different nodes in a local rack
= Third replica on a node in a different rack

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

57

HDFS: API

Available application interfaces
e Java API
= Python access or C wrapper also available
e HTTP interface
= Browsing the namespace and downloading the contents of files
¢ FS Shell — command line interface

= Intended for the user interaction
= Bash-inspired commands
= E.g.

— hadoop fs -1ls /

— hadoop fs -mkdir /mydir

Hadoop MapReduce

Hadoop MapReduce

* MapReduce programming model implementation
e Requirements
= HDFS
— Input and output files for MapReduce jobs
= YARN

— Underlying distribution, coordination, monitoring and
gathering of the results

Cluster Architecture

Master-slave architecture
e Master: JobTracker

= Provides the user interface for MapReduce jobs

= Fetches input file data locations from the NameNode
= Manages the entire execution of jobs

— Provides the progress information
= Schedules individual tasks to idle TaskTrackers
— Map, Reduce, ... tasks
— Nodes close to the data are preferred
— Failed tasks or stragglers can be rescheduled
» Slave: TaskTracker
= Accepts tasks from the JobTracker
= Spawns a separate JVM for each task execution
= Indicates the available task slots via HearBeat messages

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

60

Execution Schema

program) | Submit Job >

AssignTasktrackers
Co-ordinate map and reduce phases
Provide Job progress info

Task
Tracker

Map Phase Reduce Phase

Java Interface

Mapper class
* Implementation of the map function
* Template parameters

= KEYIN, VALUEIN — types of input key-value pairs
= KEYOUT, VALUEOUT - types of intermediate key-value pairs

* Intermediate pairs are emitted via context.write(k, v)

class MyMapper extends Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@0verride
public void map(KEYIN key, VALUEIN value, Context context)
throws IOException, InterruptedException
{
// Implementation
}
}

Java Interface

Reducer class
* Implementation of the reduce function
* Template parameters

= KEYIN, VALUEIN — types of intermediate key-value pairs
= KEYOUT, VALUEQOUT - types of output key-value pairs

e Output pairs are emitted via context.write(k, v)

class MyReducer extends Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@0verride
public void reduce(KEYIN key, Iterable<VALUEIN> values, Context context)
throws IOException, InterruptedException
{
// Implementation
}
}

Example

Word Frequency
e Input: Documents with words
= Files located at /home/input HDFS directory
* Map: parses a document, emits (word, 1) pairs
* Reduce: computes and emits the sum of the associated values

e Qutput: overall number of occurrences for each word
= Qutput will be written to /home/output

MapReduce job execution

hadoop jar wc.jar WordCount /home/input /home/output

Example: Mapper Class

public class WordCount {

public static class MyMapper
extends Mapper<Object, Text, Text, IntWritable>
{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@0verride
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException
{
StringTokenizer itr = new StringTokenizer (value.toString());
while (itr.hasMoreTokens()) {
word.set (itr.nextToken());
context.write(word, one);
}
}
}

Example: Reducer Class

public class WordCount {
public static class lMyReducer
extends Reducer<Text, IntWritable, Text, IntWritable>
{
private IntWritable result = new IntWritable();
@0verride
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException
{
int sum = O;
for (IntWritable val : values) {
sum += val.get();
¥
result.set (sum) ;
context.write(key, result);
}
}
}

Lecture Conclusion

MapReduce criticism
* MapReduce is a step backwards

= Does not use database schema
= Does not use index structures
= Does not support advanced query languages

= Does not support transactions, integrity constraints, views, ...

= Does not support data mining, business intelligence, ...
* MapReduce is not novel

= |deas more than 20 years old and overcome
= Message Passing Interface (MPI), Reduce-Scatter

The end of MapReduce?

NIE-PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025

68

	Outline
	Programming Models
	MapReduce
	Programming Model
	Example
	Logical Phases
	Cluster Architecture
	Job Submission
	Mapping Phase
	Reducing Phase
	Combine Function
	Advanced Aspects
	Additional Examples
	Use Cases

	Apache Hadoop
	Projects and Users

	Hadoop DFS
	Hadoop MapReduce
	Java Interface
	Example

	Conclusion

