
NIE‐PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE‐PDB/

Lecture 6

MapReduce, Apache Hadoop
Martin Svoboda
martin.svoboda@fit.cvut.cz

4. 11. 2025

Charles University, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Information Technology

http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/
mailto:martin.svoboda@fit.cvut.cz

Lecture Outline
MapReduce

• Programming model and implementation
• Motivation, principles, details, …

Apache Hadoop
• HDFS – Hadoop Distributed File System
• MapReduce

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 2

Programming Models
What is a programming model?

• Abstraction of an underlying computer system
Describes a logical view of the provided functionality
Offers a public interface, resources or other constructs
Allows for the expression of algorithms and data structures
Conceals physical reality of the internal implementation
Allows us to work at a (much) higher level of abstraction

• The point is
how the intended user thinks in order to solve their tasks
and not necessarily how the system actually works

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 3

Programming Models
Examples

• Traditional von Neumann model
Architecture of a physical computer with several components
such as a central processing unit (CPU), arithmetic‐logic unit
(ALU), processor registers, program counter, memory unit, etc.
Execution of a stream of instructions

• Java Virtual Machine (JVM)
• …

Do not confuse programming models with
• Programming paradigms (procedural, functional, logic, modular,

object‐oriented, recursive, generic, data‐driven, parallel, …)
• Programming languages (Java, C++, …)

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 4

Parallel Programming Models
Process interaction

Mechanisms of mutual communication of parallel processes
• Shared memory – shared global address space, asynchronous read

and write access, synchronization primitives
• Message passing
• Implicit interaction

Problem decomposition
Ways of problem decomposition into tasks executed in parallel

• Task parallelism – different tasks over the same data
• Data parallelism – the same task over different data
• Implicit parallelism

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 5

MapReduce

MapReduce Framework
What is MapReduce?

• Programming model + implementation
• Developed by Google in 2008

Google:
A simple and powerful interface that enables automatic par‐
allelization and distribution of large‐scale computations,
combined with an implementation of this interface that
achieves high performance on large clusters of commodity
PCs.

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 7

History and Motivation
Google PageRank problem (2003)

• How to rank tens of billions of web pages by their importance
… efficiently in a reasonable amount of time
… when data is scattered across thousands of computers
… data files can be enormous (terabytes or more)
… data files are updated only occasionally (just appended)
… sending the data between compute nodes is expensive
… hardware failures are rule rather than exception

• Centralized index structure was no longer sufficient
• Solution

Google File System – a distributed file system
MapReduce – a programming model

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 8

MapReduce Framework
MapReduce programming model

• Cluster of commodity personal computers (nodes)
Each running a host operating system, mutually interconnected
within a network, communication based on IP addresses, …

• Data is distributed among the nodes
• Tasks executed in parallel across the nodes

Classification
• Process interaction: message passing
• Problem decomposition: data parallelism

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 9

Basic Idea
Divide‐and‐conquer paradigm

• Breaks down a given problem into simpler sub‐problems
• Solutions of the sub‐problems are then combined together

Two core functions
• Map function

Generates a set of so‐called intermediate key‐value pairs
• Reduce function

Reduces values associated with a given intermediate key
And that’s all!

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 10

Basic Idea
And that’s really all!
It means...

• We only need to implementMap and Reduce functions
• Everything else such as

input data distribution,
scheduling of execution tasks,
monitoring of computation progress,
inter‐machine communication,
handling of machine failures,
…

is managed automatically by the framework!

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 11

Model Description
Map function

• Input: input key‐value pair = input record
• Output: list of intermediate key‐value pairs

Usually from a different domain
Keys do not have to be unique
Duplicate pairs are permitted

• (key, value) → list of (key, value)
Reduce function

• Input: intermediate key + list of (all) values for this key
• Output: possibly smaller list of values for this key

Usually from the same domain
• (key, list of values) → (key, list of values)

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 12

Example: Word Frequency
/**
* Map function
* @param key Document identifier
* @param value Document contents
*/

map(String key, String value) {
foreach word w in value: emit(w, 1);

}

/**
* Reduce function
* @param key Particular word
* @param values List of count values generated for this word
*/

reduce(String key, Iterator values) {
int result = 0;
foreach v in values: result += v;
emit(key, result);

}

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 13

Logical Phases

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 14

Logical Phases
Mapping phase

• Map function is executed for each input record
• Intermediate key‐value pairs are emitted

Shuffling phase
• Intermediate key‐value pairs are grouped and sorted

according to the keys
Reducing phase

• Reduce function is executed for each intermediate key
• Output key‐value pairs are generated

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 15

Cluster Architecture
Master‐slave architecture

• Two types of nodes, each with two basic roles
• Master

Manages the execution of MapReduce jobs
– Schedules individual Map / Reduce tasks to idle workers
– …

Maintains metadata about input / output files
– These are stored in the underlying distributed file system

• Slaves (workers)
Physically store the actual data contents of files

– Files are divided into smaller parts called splits
– Each split is stored by one / or even more particular workers

Accept and execute assigned Map / Reduce tasks

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 16

Cluster Architecture

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 17

MapReduce Job Submission

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 18

MapReduce Job Submission
Submission of MapReduce jobs

• Jobs can only be submitted to the master node
• Client provides the following:

Implementation of (not only)Map and Reduce functions
Description of input file (or even files)
Description of output directory

Localization of input files
• Master determines locations of all involved splits

I.e. workers containing these splits are resolved

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 19

Input Splits Localization

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 20

Input Splits Localization

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 21

Map Task Assignment

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 22

Map Task Execution
Map Task = processing of 1 split by 1 worker

• Assigned by the master to an idle worker that is (preferably)
already containing (physically storing) a given split

Individual steps…
• Input reader is used to parse contents of the split

I.e. input records are generated
• Map function is applied on each input record

Intermediate key‐value pairs are emitted
• These pairs are stored locally and organized into regions

Either in the system memory,
or flushed to a local hard drive when necessary
Partition function is used to determine the intended region

– Intermediate keys (not values) are used for this purpose
– E.g. hash of the key modulo the overall number of reducers

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 23

Input Parsing
Parsing phase

• Each split is parsed so that input records are retrieved
(i.e. input key‐value pairs are obtained)

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 24

Map Phase

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 25

Map Phase

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 26

Map Task Confirmation

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 27

Reduce Task Assignment

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 28

Reduce Task Execution
Reduce Task = reduction of selected key‐value pairs by 1 worker

• Goal: processing of all emitted intermediate key‐value pairs
belonging to a particular region

Individual steps…
• Intermediate key‐value pairs are first acquired

All relevant mapping workers are addressed
Data of corresponding regions are transfered (remote read)

• Once downloaded, they are locally merged
I.e. sorted and grouped based on keys

• Reduce function is applied on each intermediate key
• Output key‐value pairs are emitted and stored (output writer)

Note that each worker produces its own separate output file

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 29

Region Data Retrieval

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 30

Region Data Retrieval

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 31

Reduce Phase

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 32

Reduce Phase

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 33

Reduce Task Confirmation

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 34

MapReduce Job Termination

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 35

Combine Function
Optional Combine function

• Objective
Decrease the amount of intermediate data
i.e. decrease the amount of data that is needed to be
transferred from Mappers to Reducers

• Analogous purpose and implementation to Reduce function
• Executed locally by Mappers
• However, only applicable when the reduction is…

Commutative
Associative
Idempotent: f(f(x)) = f(x)

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 36

Improved Map Phase

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 37

Improved Reduce Phase

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 38

Improved Reduce Phase

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 39

Functions Overview
Input reader

• Parses a given input split and prepares input records
Map function
Partition function

• Determines a particular Reducer for a given intermediate key
Compare function

• Mutually compares two intermediate keys
Combine function
Reduce function
Output writer

• Writes the output of a given Reducer

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 40

Advanced Aspects
Counters

• Allow to track the progress of a MapReduce job in real time
Predefined counters

– E.g. numbers of launched / finished Map / Reduce tasks,
parsed input key‐value pairs, …

Custom counters (user‐defined)
– Can be associated with any action that a Map or Reduce

function does

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 41

Advanced Aspects
Fault tolerance

• When a large number of nodes process a large number of data
⇒ fault tolerance is necessary

Worker failure
• Master periodically pings every worker; if no response is received in

a certain amount of time, master marks the worker as failed
• All its tasks are reset back to their initial idle state and become

eligible for rescheduling on other workers
Master failure

• Strategy A – periodic checkpoints are created; if master fails,
a new copy can then be started

• Strategy B – master failure is considered to be highly unlikely;
users simply resubmit unsuccessful jobs

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 42

Advanced Aspects
Stragglers

• Straggler = node that takes unusually long time to complete
a task it was assigned

• Solution
When a MapReduce job is close to completion, the master
schedules backup executions of the remaining in‐progress tasks
A given task is considered to be completed whenever either
the primary or the backup execution completes

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 43

Additional Examples
URL access frequency

• Input: HTTP server access logs
• Map: parses a log, emits (accessed URL, 1) pairs
• Reduce: computes and emits the sum of the associated values
• Output: overall number of accesses to a given URL

Inverted index
• Input: text documents containing words
• Map: parses a document, emits (word, document ID) pairs
• Reduce: emits all the associated document IDs sorted
• Output: list of documents containing a given word

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 44

Additional Examples
Distributed sort

• Input: records to be sorted according to a specific criterion
• Map: extracts the sorting key, emits (key, record) pairs
• Reduce: emits the associated records unchanged

Reverse web‐link graph
• Input: web pages with … tags
• Map: emits (target URL, current document URL) pairs
• Reduce: emits the associated source URLs unchanged
• Output: list of URLs of web pages targeting a given one

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 45

Additional Examples
Reverse web‐link graph
/**
* Map function
* @param key Source web page URL
* @param value HTML contents of this web page
*/

map(String key, String value) {
foreach <a> tag t in value: emit(t.href, key);

}

/**
* Reduce function
* @param key URL of a particular web page
* @param values List of URLs of web pages targeting this one
*/

reduce(String key, Iterator values) {
emit(key, values);

}

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 46

Use Cases: General Patterns
Counting, summing, aggregation

• When the overall number of occurrences of certain items or a
different aggregate function should be calculated

Collating, grouping
• When all items belonging to a certain group should be found,

collected together or processed in another way
Filtering, querying, parsing, validation

• When all items satisfying a certain condition should be found,
transformed or processed in another way

Sorting
• When items should be processed in a particular order with respect

to a certain ordering criterion

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 47

Use Cases: Real‐World Problems
Just a few real‐world examples…

• Risk modeling, customer churn
• Recommendation engine, customer preferences
• Advertisement targeting, trade surveillance
• Fraudulent activity threats, security breaches detection
• Hardware or sensor network failure prediction
• Search quality analysis
• …

Source: http://www.cloudera.com/

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 48

Apache Hadoop

Apache Hadoop
Open‐source software framework

• http://hadoop.apache.org/
• Distributed storage and processing of very large data sets

on clusters built from commodity hardware
Implements a distributed file system
Implements aMapReduce programming model

• Derived from the original Google MapReduce and GFS
• Developed by Apache Software Foundation
• Implemented in Java
• Operating system: cross‐platform
• Initial release in 2011

Version we cover is 3.3.4 (August 2022)

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 50

http://hadoop.apache.org/

Apache Hadoop
Modules

• Hadoop Common
Common utilities and support for other modules

• Hadoop Distributed File System (HDFS)
High‐throughput distributed file system

• Hadoop Yet Another Resource Negotiator (YARN)
Cluster resource management
Job scheduling framework

• HadoopMapReduce
YARN‐based implementation of the MapReduce model

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 51

Apache Hadoop
Hadoop‐related projects

• Apache Cassandra – wide column store
• Apache HBase – wide column store
• Apache Hive – data warehouse infrastructure
• Apache Avro – data serialization system
• Apache Chukwa – data collection system
• ApacheMahout – machine learning and data mining library
• Apache Pig – framework for parallel computation and analysis
• Apache ZooKeeper – coordination of distributed applications
• …

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 52

Apache Hadoop
Real‐world Hadoop users (year 2016)

• Facebook – internal logs, analytics, machine learning, 2 clusters
1100 nodes (8 cores, 12 TB storage), 12 PB
300 nodes (8 cores, 12 TB storage), 3 PB

• LinkedIn – 3 clusters
800 nodes (2×4 cores, 24 GB RAM, 6×2 TB SATA), 9 PB
1900 nodes (2×6 cores, 24 GB RAM, 6×2 TB SATA), 22 PB
1400 nodes (2×6 cores, 32 GB RAM, 6×2 TB SATA), 16 PB

• Spotify – content generation, data aggregation, reporting, analysis
1650 nodes, 43000 cores, 70 TB RAM, 65 PB, 20000 daily jobs

• Yahoo! – 40000 nodes with Hadoop, biggest cluster
4500 nodes (2×4 cores, 16 GB RAM, 4×1 TB storage), 17 PB

Source: http://wiki.apache.org/hadoop/PoweredBy

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 53

HDFS
Hadoop Distributed File System

• Open‐source, high quality, cross‐platform, pure Java
• Highly scalable, high‐throughput, fault‐tolerant
• Master‐slave architecture
• Optimal applications

MapReduce, web crawlers, data warehouses, …

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 54

HDFS: File System
Logical view: Linux‐based hierarchical file system

• Directories and files
• Contents of files is divided into blocks

Usually 64 MB, configurable per file level
• User and group permissions
• Standard operations are provided

Create, remove, move, rename, copy, …
Namespace

• Contains names of all directories, files, and other metadata
I.e. all data to capture the whole logical view of the file system

• Just a single namespace for the entire cluster

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 55

HDFS: Cluster Architecture
Master‐slave architecture

• Master: NameNode
Manages the namespace
Maintains physical locations of file blocks
Provides the user interface for all the operations

– Create, remove, move, rename, copy, … file or directory
– Open and close file

Regulates access to files by users
• Slaves: DataNodes

Physically store file blocks within their underlying file systems
Serve read/write requests from users

– I.e. user data never flows through the NameNode
Have no knowledge about the namespace

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 56

HDFS: Replication
Replication = maintaining ofmultiple copies of each file block

• Increases read throughput, increases fault tolerance
• Replication factor (number of copies)

Configurable per file level, usually 3
Replica placement

• Critical to reliability and performance
• Rack‐aware strategy

Takes the physical location of nodes into account
Network bandwidth between the nodes on the same rack
is greater than between the nodes in different racks

• Common case (replication factor 3):
Two replicas on two different nodes in a local rack
Third replica on a node in a different rack

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 57

HDFS: API
Available application interfaces

• Java API
Python access or C wrapper also available

• HTTP interface
Browsing the namespace and downloading the contents of files

• FS Shell – command line interface
Intended for the user interaction
Bash‐inspired commands
E.g.:

– hadoop fs -ls /
– hadoop fs -mkdir /mydir

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 58

Hadoop MapReduce
HadoopMapReduce

• MapReduce programming model implementation
• Requirements

HDFS
– Input and output files for MapReduce jobs

YARN
– Underlying distribution, coordination, monitoring and

gathering of the results

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 59

Cluster Architecture
Master‐slave architecture

• Master: JobTracker
Provides the user interface forMapReduce jobs
Fetches input file data locations from the NameNode
Manages the entire execution of jobs

– Provides the progress information
Schedules individual tasks to idle TaskTrackers

– Map, Reduce, … tasks
– Nodes close to the data are preferred
– Failed tasks or stragglers can be rescheduled

• Slave: TaskTracker
Accepts tasks from the JobTracker
Spawns a separate JVM for each task execution
Indicates the available task slots via HearBeat messages

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 60

Execution Schema

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 61

Java Interface
Mapper class

• Implementation of themap function
• Template parameters

KEYIN, VALUEIN – types of input key‐value pairs
KEYOUT, VALUEOUT – types of intermediate key‐value pairs

• Intermediate pairs are emitted via context.write(k, v)

class MyMapper extends Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@Override
public void map(KEYIN key, VALUEIN value, Context context)

throws IOException, InterruptedException
{

// Implementation
}

}

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 62

Java Interface
Reducer class

• Implementation of the reduce function
• Template parameters

KEYIN, VALUEIN – types of intermediate key‐value pairs
KEYOUT, VALUEOUT – types of output key‐value pairs

• Output pairs are emitted via context.write(k, v)

class MyReducer extends Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@Override
public void reduce(KEYIN key, Iterable<VALUEIN> values, Context context)

throws IOException, InterruptedException
{

// Implementation
}

}

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 63

Example
Word Frequency

• Input: Documents with words
Files located at /home/input HDFS directory

• Map: parses a document, emits (word, 1) pairs
• Reduce: computes and emits the sum of the associated values
• Output: overall number of occurrences for each word

Output will be written to /home/output

MapReduce job execution

hadoop jar wc.jar WordCount /home/input /home/output

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 64

Example: Mapper Class
public class WordCount {

…
public static class MyMapper

extends Mapper<Object, Text, Text, IntWritable>
{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException

{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
context.write(word, one);

}
}

}
…

}

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 65

Example: Reducer Class
public class WordCount {

…
public static class MyReducer

extends Reducer<Text, IntWritable, Text, IntWritable>
{

private IntWritable result = new IntWritable();
@Override
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException

{
int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
result.set(sum);
context.write(key, result);

}
}
…

}

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 66

Lecture Conclusion
MapReduce criticism

• MapReduce is a step backwards
Does not use database schema
Does not use index structures
Does not support advanced query languages
Does not support transactions, integrity constraints, views, …
Does not support data mining, business intelligence, …

• MapReduce is not novel
Ideas more than 20 years old and overcome
Message Passing Interface (MPI), Reduce‐Scatter

The end of MapReduce?

NIE‐PDB: Advanced Database Systems | Lecture 6: MapReduce, Apache Hadoop | 4. 11. 2025 68

	Outline
	Programming Models
	MapReduce
	Programming Model
	Example
	Logical Phases
	Cluster Architecture
	Job Submission
	Mapping Phase
	Reducing Phase
	Combine Function
	Advanced Aspects
	Additional Examples
	Use Cases

	Apache Hadoop
	Projects and Users

	Hadoop DFS
	Hadoop MapReduce
	Java Interface
	Example

	Conclusion

