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Lecture Outline

MapReduce
* Programming model and implementation
* Motivation, principles, details, ...

Apache Hadoop
e HDFS — Hadoop Distributed File System
* MapReduce




Programming Models

What is a programming model?
* Abstraction of an underlying computer system
= Describes a logical view of the provided functionality
= Offers a public interface, resources or other constructs
= Allows for the expression of algorithms and data structures
= Conceals physical reality of the internal implementation
= Allows us to work at a (much) higher level of abstraction

e The point s
how the intended user thinks in order to solve their tasks
and not necessarily how the system actually works
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Programming Models

Examples
e Traditional von Neumann model

= Architecture of a physical computer with several components
such as a central processing unit (CPU), arithmetic-logic unit
(ALU), processor registers, program counter, memory unit, etc.
= Execution of a stream of instructions

¢ Java Virtual Machine (JVM)
Do not confuse programming models with

e Programming paradigms (procedural, functional, logic, modular,
object-oriented, recursive, generic, data-driven, parallel, ...)

e Programming languages (Java, C++, ...)



Parallel Programming Models

Process interaction
Mechanisms of mutual communication of parallel processes

e Shared memory — shared global address space, asynchronous read
and write access, synchronization primitives

e Message passing
e Implicit interaction

Problem decomposition
Ways of problem decomposition into tasks executed in parallel

e Task parallelism — different tasks over the same data
e Data parallelism — the same task over different data
¢ Implicit parallelism



MapReduce



MapReduce Framework

What is MapReduce?
* Programming model + implementation
* Developed by Google in 2008

Google:

A simple and powerful interface that enables automatic par-
allelization and distribution of large-scale computations,
combined with an implementation of this interface that
achieves high performance on large clusters of commodity
PCs.
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History and Motivation

Google PageRank problem (2003)

* How to rank tens of billions of web pages by their importance

= ... efficiently in a reasonable amount of time

= ... when data is scattered across thousands of computers
= ... data files can be enormous (terabytes or more)

= ... data files are updated only occasionally (just appended)
= ... sending the data between compute nodes is expensive
= ... hardware failures are rule rather than exception

* Centralized index structure was no longer sufficient
* Solution

= Google File System — a distributed file system
= MapReduce — a programming model
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MapReduce Framework

MapReduce programming model
e Cluster of commodity personal computers (nodes)

= Each running a host operating system, mutually interconnected
within a network, communication based on IP addresses, ...

* Data is distributed among the nodes

» Tasks executed in parallel across the nodes
Classification

* Process interaction: message passing

* Problem decomposition: data parallelism
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Basic Idea

Divide-and-conquer paradigm

* Breaks down a given problem into simpler sub-problems

» Solutions of the sub-problems are then combined together
Two core functions

* Map function
= Generates a set of so-called intermediate key-value pairs

* Reduce function
= Reduces values associated with a given intermediate key

And that’s all!




Basic Idea

And that’s really all!

It means.
* We only need to implement Map and Reduce functions

* Everything else such as

input data distribution,

scheduling of execution tasks,
monitoring of computation progress,
inter-machine communication,
handling of machine failures,

is managed automatically by the framework!
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Model Description

Map function
* Input: input key-value pair = input record
o Qutput: list of intermediate key-value pairs

= Usually from a different domain
= Keys do not have to be unique
= Duplicate pairs are permitted

* (key, value) — list of (key, value)
Reduce function
e Input: intermediate key + list of (all) values for this key

e Qutput: possibly smaller list of values for this key
= Usually from the same domain

o (key, list of values) — (key, list of values)
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Example: Word Frequency

/%%
* Map function
* Q@param key Document identifier
* @param value Document contents
*/
map(String key, String value) {
foreach word w in value: emit(w, 1);

}

/%%
* Reduce function
* Qparam key Particular word
* Qparam values List of count values generated for this word
*/
reduce(String key, Iterator values) {
int result = 0;
foreach v in values: result += v;
emit (key, result);

}




Logical Phases

| >

| Map I Shuffle I > Reduce I >

Stésti
Medvidek | 1

[

Medvidek
Medvidek
Medvidek

Samotafi | 1

Medvidek | 1 Pupendo
Medvidek
[ escecrupence }=—" 715 [veaige |
Samotafi
-Pupendo
Samotafi | 1 > Samotafi
Yy |1 Somata
Samotafi | 1 Samotafi

Samotari

o ="
Stasti 1 AN
Stésti

Medvidek | 1
Samotafi | 1 Zelary
Zelary 1 Zelary

--- Input Records -----—- -I ------ » Intermediate Key-Value Pairs --—-—---- -I-----> Output File




Logical Phases

Mapping phase
* Map function is executed for each input record
* Intermediate key-value pairs are emitted
Shuffling phase

* Intermediate key-value pairs are grouped and sorted
according to the keys

Reducing phase
* Reduce function is executed for each intermediate key
e Output key-value pairs are generated
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Cluster Architecture

Master-slave architecture
* Two types of nodes, each with two basic roles
* Master

= Manages the execution of MapReduce jobs
— Schedules individual Map / Reduce tasks to idle workers

= Maintains metadata about input / output files
— These are stored in the underlying distributed file system
* Slaves (workers)
= Physically store the actual data contents of files

— Files are divided into smaller parts called splits
— Each split is stored by one / or even more particular workers

= Accept and execute assigned Map / Reduce tasks
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Cluster Architecture
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MapReduce Job Submission
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MapReduce Job Submission

Submission of MapReduce jobs
* Jobs can only be submitted to the master node

e Client provides the following:

= Implementation of (not only) Map and Reduce functions
= Description of input file (or even files)
= Description of output directory

Localization of input files
e Master determines locations of all involved splits
= |.e. workers containing these splits are resolved
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Input Splits Localization
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Input Splits Localization

!
.

Worker W1

splits1

Split 52 i Worker W4

—J ‘

Worker W2




Map Task Assignment
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Map Task Execution

Map Task = processing of 1 split by 1 worker
* Assigned by the master to an idle worker that is (preferably)
already containing (physically storing) a given split
Individual steps...
e Input reader is used to parse contents of the split
= |.e. input records are generated
* Map function is applied on each input record
= Intermediate key-value pairs are emitted
* These pairs are stored locally and organized into regions

= Either in the system memory,

or flushed to a local hard drive when necessary
= Partition function is used to determine the intended region

— Intermediate keys (not values) are used for this purpose
— E.g. hash of the key modulo the overall number of reducers
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Input Parsing

Parsing phase

* Each split is parsed so that input records are retrieved
(i.e. input key-value pairs are obtained)
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Map Phase
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Map Phase
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Map Task Confirmation
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Reduce Task Assignment
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Reduce Task Execution

Reduce Task = reduction of selected key-value pairs by 1 worker
* Goal: processing of all emitted intermediate key-value pairs
belonging to a particular region
Individual steps...
* Intermediate key-value pairs are first acquired

= All relevant mapping workers are addressed
= Data of corresponding regions are transfered (remote read)

* Once downloaded, they are locally merged
= |.e. sorted and grouped based on keys

* Reduce function is applied on each intermediate key

* Output key-value pairs are emitted and stored (output writer)
= Note that each worker produces its own separate output file
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Region Data Retrieval
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Region Data Retrieval
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Reduce Phase
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Reduce Phase

Master

Worker W3

Output 01

P
i
p

Medvidek !

i

|
i

|
!

Worker W1

Worker W4

Output 02

Horkertz ?




Reduce Task Confirmation
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MapReduce Job Termination
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Combine Function

Optional Combine function
* Objective
= Decrease the amount of intermediate data
i.e. decrease the amount of data that is needed to be
transferred from Mappers to Reducers
* Analogous purpose and implementation to Reduce function
» Executed locally by Mappers
* However, only applicable when the reduction is...

= Commutative
= Associative

= Idempotent: f(f(z)) = f(z)
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Improved Map Phase
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Improved Reduce Phase
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Improved Reduce Phase
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Functions Overview

Input reader
* Parses a given input split and prepares input records
Map function
Partition function
* Determines a particular Reducer for a given intermediate key
Compare function
* Mutually compares two intermediate keys
Combine function
Reduce function
Output writer
* Writes the output of a given Reducer
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Advanced Aspects

Counters

* Allow to track the progress of a MapReduce job in real time
= Predefined counters
— E.g. numbers of launched / finished Map / Reduce tasks,
parsed input key-value pairs, ...
= Custom counters (user-defined)

— Can be associated with any action that a Map or Reduce
function does




Advanced Aspects

Fault tolerance
* When a large number of nodes process a large number of data
= fault tolerance is necessary

Worker failure
* Master periodically pings every worker; if no response is received in
a certain amount of time, master marks the worker as failed
e All its tasks are reset back to their initial idle state and become
eligible for rescheduling on other workers

Master failure
e Strategy A — periodic checkpoints are created; if master fails,
a new copy can then be started
e Strategy B — master failure is considered to be highly unlikely;
users simply resubmit unsuccessful jobs
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Advanced Aspects

Stragglers

e Straggler = node that takes unusually long time to complete
a task it was assigned
* Solution
= When a MapReduce job is close to completion, the master
schedules backup executions of the remaining in-progress tasks
= A given task is considered to be completed whenever either
the primary or the backup execution completes




Additional Examples

URL access frequency
e Input: HTTP server access logs
* Map: parses a log, emits (accessed URL, 1) pairs
* Reduce: computes and emits the sum of the associated values
e Output: overall number of accesses to a given URL
Inverted index
* Input: text documents containing words
* Map: parses a document, emits (word, document ID) pairs
* Reduce: emits all the associated document IDs sorted
e Qutput: list of documents containing a given word
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Additional Examples

Distributed sort
* Input: records to be sorted according to a specific criterion
* Map: extracts the sorting key, emits (key, record) pairs
* Reduce: emits the associated records unchanged
Reverse web-link graph
* Input: web pages with <a href="..">..</a> tags
* Map: emits (target URL, current document URL) pairs
* Reduce: emits the associated source URLs unchanged
* Output: list of URLs of web pages targeting a given one
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Additional Examples

Reverse web-link graph

/%%
* Map function
* Qparam key Source web page URL
* @param value HTML contents of this web page
*/
map(String key, String value) {
foreach <a> tag t in value: emit(t.href, key);

}

/%%
* Reduce function
* Qparam key URL of a particular web page
* Qparam values List of URLs of web pages targeting this one
*/
reduce(String key, Iterator values) {
emit (key, values);

}




Use Cases: General Patterns

Counting, summing, aggregation

* When the overall number of occurrences of certain items or a
different aggregate function should be calculated

Collating, grouping

e When all items belonging to a certain group should be found,
collected together or processed in another way

Filtering, querying, parsing, validation

* When all items satisfying a certain condition should be found,
transformed or processed in another way

Sorting

* When items should be processed in a particular order with respect
to a certain ordering criterion
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Use Cases: Real-World Problems

Just a few real-world examples...

¢ Risk modeling, customer churn

 Recommendation engine, customer preferences
Advertisement targeting, trade surveillance
Fraudulent activity threats, security breaches detection
Hardware or sensor network failure prediction
Search quality analysis

Source: http://www.cloudera.com/



Apache Hadoop
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Apache Hadoop

Open-source software framework

Distributed storage and processing of very large data sets
on clusters built from commodity hardware

= Implements a distributed file system
= Implements a MapReduce programming model

Derived from the original Google MapReduce and GFS
Developed by Apache Software Foundation
Implemented in Java

Operating system: cross-platform

Initial release in 2011
= Version we cover is 3.3.4 (August 2022)
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http://hadoop.apache.org/

Apache Hadoop

Modules
* Hadoop Common
= Common utilities and support for other modules
» Hadoop Distributed File System (HDFS)
= High-throughput distributed file system
* Hadoop Yet Another Resource Negotiator (YARN)

= Cluster resource management
= Job scheduling framework

* Hadoop MapReduce
= YARN-based implementation of the MapReduce model
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Apache Hadoop

Hadoop-related projects

Apache Cassandra — wide column store

Apache HBase — wide column store

Apache Hive — data warehouse infrastructure

Apache Avro — data serialization system

Apache Chukwa — data collection system

Apache Mahout — machine learning and data mining library
Apache Pig — framework for parallel computation and analysis

Apache ZooKeeper — coordination of distributed applications
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Apache Hadoop

Real-world Hadoop users (year 2016)

* Facebook — internal logs, analytics, machine learning, 2 clusters
1100 nodes (8 cores, 12 TB storage), 12 PB
300 nodes (8 cores, 12 TB storage), 3 PB

¢ LinkedIn — 3 clusters
800 nodes (2 x4 cores, 24 GB RAM, 6x2 TB SATA), 9 PB
1900 nodes (2x6 cores, 24 GB RAM, 6x2 TB SATA), 22 PB
1400 nodes (2 x6 cores, 32 GB RAM, 6x2 TB SATA), 16 PB

* Spotify — content generation, data aggregation, reporting, analysis
1650 nodes, 43000 cores, 70 TB RAM, 65 PB, 20000 daily jobs

* Yahoo! — 40000 nodes with Hadoop, biggest cluster
4500 nodes (2x4 cores, 16 GB RAM, 4x 1 TB storage), 17 PB

Source: http://wiki.apache.org/hadoop/PoweredBy
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HDFS

Hadoop Distributed File System

e

* Open-source, high quality, cross-platform, pure Java

Highly scalable, high-throughput, fault-tolerant

Master-slave architecture

Optimal applications
= MapReduce, web crawlers, data warehouses, ...
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HDFS: File System

Logical view: Linux-based hierarchical file system
* Directories and files
» Contents of files is divided into blocks
= Usually 64 MB, configurable per file level
e User and group permissions
» Standard operations are provided
= Create, remove, move, rename, copy, ...
Namespace
e Contains names of all directories, files, and other metadata
= |.e. all data to capture the whole logical view of the file system

* Just a single namespace for the entire cluster
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HDFS: Cluster Architecture

Master-slave architecture
e Master: NameNode

= Manages the namespace

= Maintains physical locations of file blocks
= Provides the user interface for all the operations

— Create, remove, move, rename, copy, ... file or directory
— Open and close file

= Regulates access to files by users
e Slaves: DataNodes

= Physically store file blocks within their underlying file systems
= Serve read/write requests from users

— lLe. user data never flows through the NameNode

= Have no knowledge about the namespace
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HDFS: Replication

Replication = maintaining of multiple copies of each file block
* Increases read throughput, increases fault tolerance

* Replication factor (number of copies)
= Configurable per file level, usually 3
Replica placement
e Critical to reliability and performance
* Rack-aware strategy

= Takes the physical location of nodes into account
= Network bandwidth between the nodes on the same rack
is greater than between the nodes in different racks

e Common case (replication factor 3):
= Two replicas on two different nodes in a local rack
= Third replica on a node in a different rack
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HDFS: API

Available application interfaces
e Java API
= Python access or C wrapper also available
e HTTP interface
= Browsing the namespace and downloading the contents of files
¢ FS Shell — command line interface

= Intended for the user interaction
= Bash-inspired commands
= E.g.

— hadoop fs -1ls /

— hadoop fs -mkdir /mydir



Hadoop MapReduce

Hadoop MapReduce

* MapReduce programming model implementation
e Requirements
= HDFS
— Input and output files for MapReduce jobs
= YARN

— Underlying distribution, coordination, monitoring and
gathering of the results



Cluster Architecture

Master-slave architecture
e Master: JobTracker

= Provides the user interface for MapReduce jobs

= Fetches input file data locations from the NameNode
= Manages the entire execution of jobs

— Provides the progress information
= Schedules individual tasks to idle TaskTrackers
— Map, Reduce, ... tasks
— Nodes close to the data are preferred
— Failed tasks or stragglers can be rescheduled
» Slave: TaskTracker
= Accepts tasks from the JobTracker
= Spawns a separate JVM for each task execution
= Indicates the available task slots via HearBeat messages
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Execution Schema
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Java Interface

Mapper class
* Implementation of the map function
* Template parameters

= KEYIN, VALUEIN — types of input key-value pairs
= KEYOUT, VALUEOUT - types of intermediate key-value pairs

* Intermediate pairs are emitted via context.write(k, v)

class MyMapper extends Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@0verride
public void map(KEYIN key, VALUEIN value, Context context)
throws IOException, InterruptedException
{
// Implementation
}
}




Java Interface

Reducer class
* Implementation of the reduce function
* Template parameters

= KEYIN, VALUEIN — types of intermediate key-value pairs
= KEYOUT, VALUEQOUT - types of output key-value pairs

e Output pairs are emitted via context.write(k, v)

class MyReducer extends Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@0verride
public void reduce(KEYIN key, Iterable<VALUEIN> values, Context context)
throws IOException, InterruptedException
{
// Implementation
}
}




Example

Word Frequency
e Input: Documents with words
= Files located at /home/input HDFS directory
* Map: parses a document, emits (word, 1) pairs
* Reduce: computes and emits the sum of the associated values

e Qutput: overall number of occurrences for each word
= Qutput will be written to /home/output

MapReduce job execution

hadoop jar wc.jar WordCount /home/input /home/output




Example: Mapper Class

public class WordCount {

public static class MyMapper
extends Mapper<Object, Text, Text, IntWritable>
{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@0verride
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException
{
StringTokenizer itr = new StringTokenizer (value.toString());
while (itr.hasMoreTokens()) {
word.set (itr.nextToken());
context.write(word, one);
}
}
}




Example: Reducer Class

public class WordCount {
public static class lMyReducer
extends Reducer<Text, IntWritable, Text, IntWritable>
{
private IntWritable result = new IntWritable();
@0verride
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException
{
int sum = O;
for (IntWritable val : values) {
sum += val.get();
¥
result.set (sum) ;
context.write(key, result);
}
}
}







Lecture Conclusion

MapReduce criticism
* MapReduce is a step backwards

= Does not use database schema
= Does not use index structures
= Does not support advanced query languages

= Does not support transactions, integrity constraints, views, ...

= Does not support data mining, business intelligence, ...
* MapReduce is not novel

= |deas more than 20 years old and overcome
= Message Passing Interface (MPI), Reduce-Scatter

The end of MapReduce?
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