NIE-PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/

Lecture 5

Basic Principles

Martin Svoboda
martin.svoboda@fit.cvut.cz

21. 10. 2025

Charles University, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Information Technology

http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/
mailto:martin.svoboda@fit.cvut.cz

Lecture Outline

Different aspects of data distribution
e Scaling
= Vertical vs. horizontal
e Distribution models

= Sharding
= Replication: master-slave vs. peer-to-peer architectures

e CAP properties
= Consistency, availability and partition tolerance
= ACID vs. BASE guarantees

e Consistency
= Read and write quora

Scalability

Scalability

What is scalability?

o = capability of a system to handle growing amounts of data
and/or queries without losing performance, or its potential
to be enlarged in order to accommodate such a growth

Two general approaches
e Vertical scaling

e Horizontal scaling

Vertical Scalability

Vertical scaling (scaling up/down)
* =adding resources to a single node in a system
= E.g. increasing the number of CPUs, extending system memory,
using larger disk arrays, ...
= |.e. larger and more powerful machines are involved
* Traditional choice
= In favor of strong consistency
= Easy to implement and deploy
= No issues caused by data distribution

Works well in many cases but ...

Vertical Scalability: Drawbacks

Performance limits
* Even the most powerful machine has a limit

* Moreover, everything works well...
at least until we start approaching such limits

Higher costs

* The cost of expansion increases exponentially

= In particular, it is higher than the sum of costs of equivalent
commodity hardware

Proactive provisioning
* New projects / applications might evolve rapidly
* Upfront budget is needed when deploying new machines
* And so flexibility is seriously suppressed

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

Vertical Scalability: Drawbacks

Vendor lock-in
* There are only a few manufacturers of large machines

e Customer is made dependent on a single vendor

= Their products, services, but also implementation details,
proprietary formats, interfaces, support, ...

e l.e. itis difficult or impossible to switch to another vendor
Deployment downtime

¢ |nevitable downtime is often required when scaling up

Horizontal Scalability

Horizontal scaling (scaling out/in)
* =adding more nodes to a system
= |.e. system is distributed across multiple nodes in a cluster
e Choice of many NoSQL systems
Advantages
* Commodity hardware, cost effective

Flexible deployment and maintenance

Often surpasses the vertical scaling

Often no single point of failure

Horizontal Scalability: Consequences

Significantly increases complexity

* Complexity of management, programming model, ...
Introduces new issues and problems

» Data distribution

e Synchronization of nodes

e Data consistency

* Recovery from failures

And there are also plenty of false assumptions ...

Horizontal Scalability: Fallacies

False assumptions
* Network is reliable
e Latency is zero
* Bandwidth is infinite
* Network is secure
* Topology does not change
* There is one administrator
* Network is homogeneous
e Transport cost is zero

Source: https://blogs.oracle.com/jag/resource/Fallacies.html

Horizontal Scalability: Conclusion

= a standalone node still might be a better option in certain cases
e E.g. for graph databases
= Simply because it is difficult to split and distribute graphs
* In other words

= |t can make sense to run even a NoSQL database system
on a single node
= No distribution at all is the most preferred / simple scenario

But in general, horizontal scaling really opens new possibilities

Horizontal Scalability: Architecture

What is a cluster?

* = a collection of mutually interconnected commodity nodes
* Based on the shared-nothing architecture

= Nodes do not share their CPUs, memory, hard drives, ...
= Each node runs its own operating system instance
= Nodes send messages to interact with each other

* Nodes of a cluster can be heterogeneous

» Data, queries, calculations, requests, workload, ...
this is all distributed among the nodes within a cluster

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025 12

Distribution Models

Distribution Models

Generic techniques of data distribution
e Sharding

= |dea: different data on different nodes
= Motivation: increasing volume of data, increasing performance

e Replication
= |dea: the same data on different nodes
= Motivation: increasing performance, increasing fault tolerance

Both the techniques are mutually orthogonal

e |.e. we can use either of them, or combine them both
Distribution model

» = specific way how sharding and replication is implemented
NoSQL systems often offer automatic sharding and replication

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

Sharding

Sharding (horizontal partitioning)

* Placement of different data on different nodes
= What different data means? Usually aggregates
— E.g. key-value pairs, documents, ...

= Related pieces of data that are accessed together
should also be kept together

— Specifically, operations involving data on multiple
shards should be avoided (if possible)

The questions are...
* how to design aggregate structures?
* how to actually distribute these aggregates?

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

15

Sharding

Each shard reads and
writes its own data

.-

Source: Sadalage, Pramod J. - Fowler, Martin: NoSQL Distilled. Pearson Education, Inc., 2013.

Sharding

Objectives
* Achieve uniform data distribution
* Achieve balanced workload (read and write requests)
* Respect physical locations
= E.g. different data centers for users around the world
e ...
Unfortunately, these objectives...
* may mutually contradict each other
* may change in time
So, how to actually determine shards for aggregates?

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

17

Sharding

Sharding strategies

* Based on mapping structures
= Data is placed on shards in a random fashion
— E.g. round-robin, ...

= Knowledge of the mapping of individual aggregates
to particular shards must then be maintained

— Thus usually maintained using a centralized index structures
with all the disadvantages

* Based on general rules
= Each shard is responsible for storing certain data
= Hash partitioning, range partitioning, ...

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025 18

Sharding

Why is sharding difficult?
* Not only we need to be able to determine particular shards
during write requests
= |.e. when a new aggregate is about to be inserted
= So that we can actually make a decision where it should be
physically stored

e but also during read requests

= |.e. when existing aggregate/s are about to be retrieved

= So that we can actually find and return them efficiently
(or detect they are missing)

= And all that only based on the search criteria provided
(e.g. key, id, ...) unless all the nodes should be accessed

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

19

Sharding

Why is sharding even more difficult?

e Structure of the cluster may be changing
= Nodes can be added or removed

* Nodes may have incomplete / obsolete cluster knowledge
= Nodes involved, their responsibilities, sharding rules, ...

* Individual nodes may be failing

* Network may be partitioned
= Messages may not be delivered even though sent

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

20

Replication

Replication
* Placement of multiple copies of the same data (replicas)
on different nodes

* Replication factor = number of such copies
Two approaches
* Master-slave architecture

* Peer-to-peer architecture

Replication

Master-Slave Architecture

/‘ N0
ﬂupdatummadam n ﬁ \

Reads can be done from
master or slave

cgamu propogateto —

Slaves

Source: Sadalage, Pramod J. - Fowler, Martin: NoSQL Distilled. Pearson Education, Inc., 2013.

Replication

Master-Slave Architecture

Architecture
* One node is primary (master), all the other secondary (slave)
* Master node bears all the management responsibility
* All the nodes contain identical data

Read requests can be handled by both the master or slaves

o Suitable for read-intensive applications
= More read requests to deal with — more slaves to deploy

* When the master fails, read operations can still be handled

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025 23

Replication

Master-Slave Architecture

Write requests can only be handled by the master
* Newly written replicas are propagated to all the slaves

e Consistency issue

= Luckily enough, at most one write request is handled at a time

= But the propagation still takes some time during which
obsolete reads might happen

= Hence certain synchronization is required to avoid conflicts

* In case of master failure, a new one needs to be appointed

= Manually (user-defined) or automatically (cluster-elected)
= Since the nodes are identical, appointment can be fast

* Master might therefore represent a bottleneck
(because of the performance or failures)

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

24

Replication

Peer-to-Peer Architecture

Al nodes read and
writeall data

Source: Sadalage, Pramod J. - Fowler, Martin: NoSQL Distilled. Pearson Education, Inc., 2013.

Replication

Peer-to-Peer Architecture

Architecture
* All the nodes have equal roles and responsibilities
e All the nodes contain identical data once again
Both read and write requests can be handled by any node
* No bottleneck, no single point of failure
* Both the operations scale well
= More requests to deal with — more nodes to deploy

e Consistency issues

= Unfortunately, multiple write requests can be initiated
independently and being executed at the same time
= Hence synchronization is required to avoid conflicts

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025 26

Sharding and Replication

Observations with respect to the replication:

* Does the replication factor really need to correspond to the
number of nodes?

= No, replication factor of 3 will often be the right choice
= Consequences

— Nodes will no longer contain identical data
— Replica placement strategy will be needed

* Do all the replicas really need to be successfully written when
write requests are handled?

= No, but consistency issues have to be tackled carefully

Sharding and replication can be combined... but how?

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

27

Sharding and Replication

Sharding and Master-Slave Replication

waster for two shards slave for two shards master for one shard

m“zv?f:: m slave for two shards slave for one shard

Source: Sadalage, Pramod J. - Fowler, Martin: NoSQL Distilled. Pearson Education, Inc., 2013.

Sharding and Replication

Sharding and Peer-to-Peer Replication

Source: Sadalage, Pramod J. - Fowler, Martin: NoSQL Distilled. Pearson Education, Inc., 2013.

Sharding and Replication

Combinations of sharding and replication
e Sharding + master-slave replication

= Multiple masters, each for different data
= Roles of the nodes can overlap

— Each node can be master for some data and/or slave for other

¢ Sharding + peer-to-peer replication
= Basically placement of anything anywhere
(although certain rules can still be applied)

Sharding and Replication

Questions to figure out for any distribution model
* Can all the nodes serve both read and write requests?

Which replica placement strategy is used?

How the mapping of replicas is maintained?

What level of consistency and availability is provided?

What extent of infrastructure knowledge do the nodes have?

CAP Theorem

CAP Theorem

Assumptions

» Distributed system with sharding and replication

* Read and write operations on a single aggregate only
CAP properties

* Properties of a distributed system

» Consistency, Availability, and Partition tolerance
CAP theorem

Itis not possible to have a distributed system that would guar-
antee consistency, availability, and partition tolerance at the
same time. Only 2 of these 3 properties can be enforced.

But, what these properties actually mean?

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

33

CAP Properties

Consistency

* Read and write operations must be executed atomically
= A bit more formally...
There must exist a total order on all operations such that each
operation looks as if it was completed at a single instant,
i.e. as if all the operations were executed sequentially one by
one on a single standalone node
* Practical consequence:

after a write operation, all readers see the same data

= Since any node can be used for handling of read requests,
atomicity of write operations means that changes must be
propagated to all the replicas

— As we will see later on, other ways for such a strong consistency
exist as well

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

34

CAP Properties

Availability

* If a node is working, it must respond to user requests
= A bit more formally...
Every read or write request successfully received by a
non-failing node in the system must result in a response,
i.e. their execution must not be rejected

Partition tolerance

* System continues to operate even when two or more sets of
nodes get isolated

= A bit more formally...

The network is allowed to lose arbitrarily many messages sent
from one node to another

* l.e. a connection failure must not shut the whole system down

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

35

CAP Theorem Consequences

If at most two properties can be guaranteed...
* CA = consistency + availability

= Traditional ACID properties are easy to achieve

= Examples: RDBMS, Google BigTable
= Any single-node system, but even clusters (at least in theory)

— However, should the network partition happen, all the nodes
must be forced to stop accepting user requests

* CP = consistency + partition tolerance
= Other examples: distributed locking
* AP = availability + partition tolerance

= New concept of BASE properties
= Examples: Apache Cassandra, Apache CouchDB
= Other examples: web caching, DNS

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025 36

CAP Theorem Consequences

Partition tolerance is necessary in clusters
e Why?
= Because it is difficult to detect network failures

* Does it mean that only purely CP and AP systems are possible?
* No...

The real meaning of the CAP theorem:
* The real-world does not need to be just black and white

¢ Partition tolerance is a must,
but we can trade off consistency versus availability
= Just a little bit relaxed consistency can bring a lot of availability
= Such trade-offs are not only possible,
but often work very well in practice

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025 37

ACID Properties

Traditional ACID properties
¢ Atomicity
= Partial execution of transactions is not allowed (all or nothing)
¢ Consistency

= Transactions bring the database from one consistent (valid)
state to another

e Isolation

= Transactions executed in parallel do not see uncommitted
effects of each other

e Durability
= Effects of committed transactions must remain durable

BASE Properties

New concept of BASE properties
e Basically Available

= The system works basically all the time
= Partial failures can occur, but there are no total system failures

e Soft State

= The system is in flux (unstable), non-deterministic state
= Changes occur all the time

e Eventual Consistency
= Sooner or later the system will be in some consistent state
BASE is just a vague term, no formal definition was provided

* Proposed to illustrate design philosophies at the opposite
ends of the consistency-availability spectrum

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

39

ACID and BASE

ACID
* Choose consistency over availability

* Pessimistic approach

* Implemented by traditional relational databases
BASE

e Choose availability over consistency

e Optimistic approach
e Common in NoSQL databases
* Allows levels of scalability that cannot be acquired with ACID

Current trend in NoSQL:
strong consistency — eventual consistency

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

40

Consistency

Consistency

Consistency in general...
* Consistency is the lack of contradiction in the database

* However, it has many facets...

= For example, we only assume atomic operations always
manipulating just a single aggregate,
but set operations could also be considered etc.

Strong consistency is achievable even in clusters,
but eventual consistency might often be sufficient

* One minute obsolete article on a news portal does not matter

* Even when an already unavailable hotel room is booked once
again, the situation can still be figured out in the real world

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025 42

Consistency

Write consistency (update consistency)
* Problem: write-write conflict
= Two or more write requests on the same aggregate are
initiated concurrently
e Context: peer-to-peer architecture only
e |ssue: lost update
e Solution:

= Pessimistic strategies

— Preventing conflicts from occurring
— Write locks, ...

= Optimistic strategies
— Conflicts may occur, but are detected and resolved later on
— Version stamps, vector clocks, ...

Consistency

Read consistency (replication consistency)
* Problem: read-write conflict
= Write and read requests on the same aggregate are initiated
concurrently
* Context: both master-slave and peer-to-peer architectures
* Issue: inconsistent read
* When not treated, inconsistency window will exist

= Propagation of changes to all the replicas takes some time

= Until this process is finished, inconsistent reads may happen
= Even the initiator of the write request may read wrong data!

— Session consistency / read-your-writes / sticky session

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025 44

Strong Consistency

How many nodes need to be involved to get strong consistency?
e Write quorum: W > N/2
= |dea: only one write request can get the majority

= W= number of nodes successfully participating in the write
= N=number of nodes involved in replication (replication factor)

e Read quorum: R> N— W
= |dea: concurrent write requests cannot happen
= R =number of nodes participating in the read
= Should the retrieved replicas be mutually different,
the newest version is resolved and then returned

When a quorum is not attained — the request cannot be handled

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

45

Strong Consistency

Examples

Examples for replication factor N =3
e Write quorum W = 3 and read quorum R =1

= All the replicas are always updated
= = we can read any one of them

* Write quorum W = 2 and read quorum R = 2
= Typical configuration, reasonable trade-off
Consequence
* Quora can be configured to balance read and write workload

= The higher the write quorum is required,
the lower the read quorum can then be required

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025 46

Lecture Conclusion

There is a wide range of options influencing...

Scalability — how well the entire system scales?

Availability — when nodes may refuse to handle user requests?
Consistency — what level of consistency is required?

Latency — how long does it take to handle user requests?
Durability — is the committed data written reliably?

Resilience — can the data be recovered in case of failures?

= it’s good to know these properties and choose the right trade-off

NIE-PDB: Advanced Database Systems | Lecture 5: Basic Principles | 21. 10. 2025

48

	Outline
	Scalability
	Vertical Scalability
	Horizontal Scalability

	Distribution
	Sharding
	Replication
	Sharding and Replication

	CAP Theorem
	ACID and BASE

	Consistency
	Strong Consistency

	Conclusion

