NIE-PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/

Lecture 3

XML Databases: XPath, XQuery

Martin Svoboda
martin.svoboda@fit.cvut.cz

7. 10. 2025

Charles University, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Information Technology

http://www.ksi.mff.cuni.cz/~svoboda/courses/NIE-PDB/
mailto:martin.svoboda@fit.cvut.cz

Lecture Outline

XPath and XQuery
¢ Data model

e Query expressions

= Path expressions

= Comparison expressions

= Direct and computed constructors
FLWOR expressions

Conditional expressions
Quantified expressions

Introduction

XPath = XML Path Language
* Navigation and selection of nodes
« Versions: 1.0 (1999), 2.0 (2010), 3.0 (2014), 3.1 (March 2017)

* W3C recommendation
= https://www.w3.org/TR/xpath-31/
XQuery = XML Query Language
* Complex queries and transformations
¢ Contains XPath
* Versions: 1.0 (2007), 3.0 (2014), 3.1 (March 2017)

e W3C recommendation
= https://www.w3.org/TR/xquery-31/

https://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xquery-31/

Sample Data

<?xml version="1.1" encoding="UTF-8"7>
<movies>
<movie year="2006" rating="76" director="Jan Svérak">
<title>Vratné lahve</title>
<actor>Zdenék Svérak</actor>
<actor>Jifi Machacek</actor>
</movie>
<movie year="2000" rating="84">
<title>Samotari</title>
<actor>Jitka Schneiderova</actor>
<actor>Ivan Trojan</actor>
<actor>Jifi Machacek</actor>
</movie>
<movie year="2007" rating="53" director="Jan Hrebejk">
<title>Medvidek</title>
<actor>Jifi Machacek</actor>
<actor>Ivan Trojan</actor>
</movie>
</movies>

Sample Data

Jan
Svérak

Vratné Zdenék Jiti
lahve Svérak Machécek

Data Model

XDM = XQuery and XPath Data Model (XPath 2.0, XQuery 1.0)

e XML tree consisting of nodes of different kinds
= Document, element, attribute, text, ...

* Document order
= The order in which nodes appear in the XML file
— lLe. nodes are numbered using a pre-order depth-first traversal

e Reverse document order
Query result

* Each query expression is evaluated to a sequence

Data Model

Sequence = ordered collection of nodes and/or atomic values
¢ Can be mixed
= But usually just nodes, or just atomic values
Are automatically flattened
*Eg: (2, O, (4,1, 3, () & (2, 4,1, 3, 1)
Can be empty
= Eg: (O
Standalone items are treated as singleton sequences
" Eg:l & (1)
Can have duplicate items

Path Expressions

Path expression
* Allows for navigation within an XML tree
* Consists of navigational steps

=l

* Absolute paths: start with /
= Navigation starts at the document node

¢ Relative paths
= Navigation starts at an implicitly specified context node

Path Expressions: Examples

Absolute path expressions

/

/movies

/movies/movie/title/text ()

|
|
/movies/movie ‘
|
/movies/movie/@year ‘

Relative path expressions

actor/text () ‘

@director ‘

Path Expressions

Evaluation of a path expression P
e ... with respect to the initial context sequence ('

=

if P does not contain any step then
|_ return C (we already have the final result)

N

else (when P contains at least one step)
let S'be the first step and P’ the remaining steps (if any)
let C’ = () be an empty sequence
foreach context node u € C' do

evaluate S with respect to u and add the selected
L items C,/ to O’

N o o W

8 return evaluate P’ with respect to C’

Path Expressions: Steps

Navigational step
e Each step consists of up to 3 components

@ -[noseest .

e Axis

= Relation of nodes to be selected for a given context node u
¢ Node test

= Basic condition these selected nodes must satisfy
e Predicates

= Advanced conditions these nodes must further satisfy

Path Expressions: Axes

Axis
* Selects nodes that are reachable from a given context node

self
descendant-or-self
folluwing sibling

an CQSIOT

ancestor-or- self
precedlng sibling

precedlng

\> attrlbute ——————————~

Path Expressions: Axes

child axis
* Selects children of a given context node
= Note that attributes are not considered to be child nodes!

¢ Used as the default axis (when omitted)

/movies/child: :movie

attribute axis

e Selects attributes of a given context node
= Note that this is the only axis that can select attributes!

/movies/movie/attribute: :year

self axis
» Selects just the current context node

Path Expressions: Axes

descendant(-or-self) axes

» Select all (non-attribute) nodes in a subtree of a given context
node excluding / including itself

‘ /descendant: :actor/text ()

parent axis
» Selects the parent node of a given context node
ancestor(-or-self)axes

» Select all ancestors of a given context node

= |.e., the parent, the parent of the parent, and so on, until the
document node, excluding / including the context node itself

Path Expressions: Axes

preceding-sibling and following-sibling axes

» Select all siblings of a given context node that occur before /
after this context node in the document order

/descendant-or-self: :movie/title/following-sibling: :actor ‘

preceding and following axes

¢ Select all (non-attribute) nodes that occur before / after
a given context node in the document order,
excluding nodes returned by the ancestor / descendant axis

Path Expressions: Axes

preceding

i O\]

b&

attribute

ancestor-or-self
ancestor

R
o

preceding-sibling /

parent

self

following

O’dl

\ following-sibling
]

E!E;!E child

W

descendant
descendant-or-self

Path Expressions: Axes

Forward axes
* self, child, descendant(-or-self), following(-sibling)
* Nodes are returned in the document order

Reverse axes

* parent, ancestor(-or-self), preceding(-sibling)

* Nodes are returned in the reverse document order

Path Expressions: Node Tests

Node test

» Filters the nodes selected by the axis using a basic condition
= Only names and kinds of nodes can be tested

textO

name: elements / attributes with a given name

‘ /movies ‘

’ /movies/movie/attribute: :year ‘

Path Expressions: Node Tests

+: all elements / attributes

’/movies/* ‘

’/movies/movie/attribute::* ‘

text (): all text nodes

’/movies/movie/title/text() ‘

node (): all nodes

’/movies/descendant-or-self::node()/actor

Path Expressions: Predicates

Predicates
* Additional filtering of the nodes based on advanced conditions

H®+ expression ®+o

* When multiple predicates are provided...

= They must all be satisfied
= They are evaluated one by one, from left to right

Commonly used conditions
e Path existence tests, comparisons, position tests
* Logical expressions

Path Expressions: Predicates

Path existence tests

* Relative or absolute path expressions

= Relative path expressions are evaluated with respect to the
node for which a given predicate is tested

* Treated as true when evaluated to a non-empty sequence

‘/movies/movie[actor] ‘

’/movies/movie[actor]/title/text() ‘

Comparisons
* General, value, or node comparison expressions

’/descendant::movie[@year > 2000] ‘

‘/descendant::movie[count(actor) ge 3]/title

Path Expressions: Predicates

Position tests

* Allow for filtering of items based on context positions
= Numbered starting with 1
= Always relative to the current context (intermediate result)
= Base order is implied by the axis used

’ /descendant: :movie/actor[position() = 1] ‘

‘ /descendant: :movie[actor] [position() = last()] ‘

Logical expressions

¢ and, or, not connectives

‘/movies/movie [@year > 2000 and @director] ‘

‘ /movies/movie[@director] [@year > 2000] ‘

Path Expressions: Abbreviations

Omitted axis: the default child axis is assumed

’/movies/movie/title ‘

/child::movies/child: :movie/child: :title ‘

Attributes: 0 < attribute: :

’/movies/movie/@year ‘

’/movies/movie/attribute::year ‘

Descendants: // < /descendant-or-self: :node()/

’/movies//child::actor ‘

’/movies/descendant—or—self::node()/child::actor

Path Expressions: Abbreviations

Context item: . & self::node()

’/movies/movie[.//actor] ‘

’/movies/movie[self::node()//actor] ‘

Parent: .. < parent::node()

Position tests: [number] < [position() = number]

’/movies/movie/child::actor[2]

’/movies/movie/child::actor[position() = 2]

’/movies/movie[actor][1ast()]

’/movies/movie[actor][position() = last(Q)]

Path Expressions: Conclusion

Evaluation of path expressions
* Evaluated from left to right, step by step
= Result of the entire expression is the result of the last step
Only one of the following can be returned...
e Sequence of nodes

= Always sorted in the document order
= Duplicate nodes are removed

— Based on the identities of nodes
* Sequence of atomic values
= The order as well as duplicate values are both preserved

= the returned sequences will never be mixed

NIE-PDB: Advanced Database Systems | Lecture 3: XML Databases: XPath, XQuery | 7. 10. 2025

25

Comparison Expressions

Comparisons

* General comparisons
= Two sequences of values are expected to be compared
= =L <K= 0, >
= Eg.: (0,1) = (1,2)

¢ Value comparisons
= Two standalone values (singleton sequences) are compared
" eq,ne, 1t, le, ge, gt
* Eg:1 1t 3

* Node comparisons
= is —tests identity of nodes
= <<, >> —test positions of nodes (preceding, following)
= Similar behavior as in the case of value comparisons

Comparison Expressions

General comparisons (existentially quantified comparisons)
* Both the operands can be evaluated to sequences of items

of any length
o[value expression |~—(=)
©)
®
©)

e The result is true if and only if there exists at least one pair
of individual items satisfying a given relationship

Comparison Expressions: Examples

General comparisons
o [(1) < (2)] =true
o [(1) < (1,2)] =true
o [(1) < O] =false
e [(0,1) = (1,2)] =true
e [(0,1) '= (1,2)] =true

Comparison Expressions

Value comparisons
* Both the operands must be evaluated to singleton sequences

o> value expression value expression [>o

pECORE

* Empty sequence () is returned...
= when at least one operand is evaluated to an empty sequence

* Type error is raised...
= when at least one operand is evaluated to a longer sequence

Comparison Expressions: Examples

Value comparisons
e [(1) le (2)] =true
e [(1) 1e O]=0
e [(1) le (1,2)] = error
e [O e (1,2)]=0

Comparison Expressions

Value and general comparisons
e Atomization of values — applied automatically
= Atomic values are preserved untouched
= Nodes are transformed to atomic values

e In particular...

= Element node is transformed to a string with concatenated
text values it contains in the document order

— E.g.: <movie year="2006">Vratné lahve</movie>
is atomized to a string Vratné lahve
— l.e., attribute values and element names are not included!
= Attribute node is transformed to its value
= Text node is transformed to its value

Comparison Expressions: Examples

Value and general comparisons
o [<a>5 eq 5] = true
o [<a>12 = <a>12] = true
e [3 1t 5] =true

Expressions

XQuery expressions
* Path expressions (traditional XPath)
= Selection of nodes of an XML tree
* FLWOR expressions

= for .. let .. where .. order by .. return ..

¢ Conditional expressions
= if .. then .. else ..

* Quantified expressions

" somel|every .. satisfies ..

Expressions

XQuery expressions
* Boolean expressions
= and, or, not logical connectives
¢ Primary expressions
= Literals, variable references, function calls, constructors, ...

boolean expression
primary expression

Node Constructors

Constructors
* Allow for creation of new nodes for elements, attributes, ...
= |.e. nodes that do not exist in the original XML document
Direct constructor
* Well-formed XML fragment with embedded query expressions
= E.g.: <movies>{ count(//movie) }</movies>
Computed constructor
e Special syntax

" E.g.: element movies { count(//movie) }

Node Constructors

Direct constructor

e The entire expression must be a well-formed XML fragment
= Names of elements and attributes must be fixed

T@»- . ~0-®
@@ . oW

iH_G}Q}.*G)

* Embedded query expressions can be used
= However, only in attribute values and element content!

Node Constructors

Direct constructor
o Attribute

o G)~(2~ (s O
S~y

¢ Element content

’ }&_».

* Embedded query expressions
= Enclosed by curly braces {}
— Escaping sequence: {{ and }}

Node Constructors: Example

Create a summary of all movies

<movies>
<count>{ count(//movie) }</count>
{
for $m in //movie
return
<movie year="{ data($m/Qyear) }">{ $m/title/text() }</movie>
}
</movies>
<movies>
<count>3</count>

<movie year="2006">Vratné lahve</movie>

<movie year="2000">Samotafi</movie>

<movie year="2007">Medvidek</movie>
</movies>

Node Constructors

Computed constructor
* Names of elements and attributes can be dynamic

¢ Element node
=>(Celement) —7. @~
“om=ol | Lo

o Attribute node

A ﬁ*‘*.*’*

e Text node

@D - @[|- @~

Node Constructors: Example

Create a summary of all movies

element movies {
element count { count(//movie) 1},
for $m in //movie
return
element movie {
attribute year { data($m/@year) 7},
text { $m/title/text() }
}
}

<movies>
<count>3</count>
<movie year="2006">Vratné lahve</movie>
<movie year="2000">Samotafi</movie>
<movie year="2007">Medvidek</movie>
</movies>

FLWOR Expressions

FLWOR expression (XQuery 1.0)

Allow for advanced iterations over sequences of items

l for clause where clause ITT{ order by clause }7>l return clause }—»0

Clauses

for —selection of items to iterate over

let — bindings of auxiliary variables

where — conditions to be satisfied

order by - order in which the items are processed
return —result to be constructed

FLWOR Expressions: Example

Find titles of movies with rating 75 and more

for $m in //movie

let $r := $m/Q@rating
where $r >= 75

order by $m/@year
return $m/title/text()

Samotari
Vratné lahve

FLWOR Expressions: Clauses

For clause

* |terates over items of one or more input sequences
= These items are accessible via the introduced variables

H.T.»— AW .*_]

)
o/

e Optional positional variable
= Allows to access the ordinal number of the current item

* When multiple input sequences are provided...

= Then the behavior is identical to the usage of multiple
consecutive single-variable for clauses

— le., as if the for loops are embedded into each other

FLWOR Expressions: Clauses

Let clause

e Defines one or more auxiliary variable assignments

@~) - - -
)
o/

FLWOR Expressions: Clauses

Where clause
* Allows to describe complex filtering conditions
* Items not satisfying the conditions are skipped

0+-—> expression [>o

Order by clause
* Defines the order in which the items are processed

expression |
t ascending
descendlng

FLWOR Clauses

Return clause
* Defines how the result sequence is constructed
* Evaluated once for each suitable item

H.> expression [>o

Various supported use cases

e Querying, joining, grouping, aggregation, integration,
transformation, validation, ...

FLWOR Examples

Find titles of movies filmed in 2000 or later such that they have at
most 3 actors and a rating above the overall average

let $r := avg(//movie/@rating)

for $m in //movie[@rating >= $r]

let $a := count($m/actor)

where ($a <= 3) and ($m/@year >= 2000)
order by $a ascending, $m/title descending
return $m/title

<title>Vratné lahve</title>
<title>Samotari</title>

FLWOR Examples

Find movies in which each individual actor stared

for $a in distinct-values(//actor)
return <actor name="{ $a }">
{
for $m in //movielactor[text() = $al]
return <movie>{ $m/title/text() }</movie>
¥

</actor>

<actor name="Zdenék Svérak">
<movie>Vratné lahve</movie>

</actor>

<actor name="Jiri Machacek">
<movie>Vratné lahve</movie>
<movie>Samotafri</movie>
<movie>Medvidek</movie>

</actor>

FLWOR Examples

Construct an HTML table with data about movies

<table>
<tr><th>Title</th><th>Year</th><th>Actors</th></tr>
{
for $m in //movie
return
<tr>
<td>{ $m/title/text() }</td>
<td>{ data($m/Qyear) }</td>
<td>{ count($m/actor) }</td>
</tr>
}
</table>

FLWOR Examples

Construct an HTML table with data about movies

<table>
<tr><th>Title</th><th>Year</th><th>Actors</th></tr>
<tr><td>Vratné lahve</td><td>2006</td><td>2</td></tr>
<tr><td>Samotari</td><td>2000</td><td>3</td></tr>
<tr><td>Medvidek</td><td>2007</td><td>2</td></tr>
</table>

Conditional Expressions

Conditional expression

H.—»@ expression G)».—> expression }—».—» expression }—»0

* Note that the else branch is compulsory
= Empty sequence () can be returned if needed

Example

if (count(//movie) > 0)
then <movies>{ string-join(//movie/title, ", ") }</movies>
else ()

<movies>Vratné lahve, Samota¥i, Medvidek</movies>

Quantified Expressions

Quantifier
e Returns true if and only if...

= in case of some at least one item
= in case of every all the items

« ...of a given sequence/s satisfy the provided condition
T:-@ Gatisfies) [expression o
(every) ®)

Quantified Expressions

Examples

Find titles of movies in which Ivan Trojan played

for $m in //movie

where
some $a in $m/actor satisfies $a = "Ivan Trojan"

return $m/title/text ()

Samotari
Medvidek

Find names of actors who played in all movies

for $a in distinct-values(//actor)

where
every $m in //movie satisfies $m/actor[text() = $a]

return $a

Jiri Machéacek ‘

Final Observations

XQuery
* Keywords must always be in lowercase
e XQuery is a functional query language

* Whenever expression is mentioned in any diagram,
expression of any kind can be used (without any limitations)

Lecture Conclusion

XPath expressions
e Absolute and relative paths
* Axes, node tests, and predicates
XQuery expressions
e Constructors: direct, computed
* FLWOR expressions

* Conditional, quantified, comparison, ...

	Outline
	XPath and XQuery
	Data Model
	Path Expressions
	Comparison Expressions
	Expressions
	Node Constructors
	FLWOR
	Conditions
	Quantifiers
	Final Observations

	Conclusion

