NDBIO49: Query Languages
http://www.ksi.mff.cuni.cz/~svoboda/courses/NDBI049/

Lecture 10

MongoDB

Martin Svoboda
martin.svoboda@ matfyz.cuni.cz

9. 12. 2025

Charles University, Faculty of Mathematics and Physics


http://www.ksi.mff.cuni.cz/~svoboda/courses/NDBI049/
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

Document databases

* Introduction
Data formats

* JSON, BSON
MongoDB

e Data model

e CRUD operations

= Insert, update, remove
= Find: projection, selection, modifiers

¢ Index structures
* MapReduce



Document Stores

Data model
e Documents

= Self-describing
= Hierarchical tree structures (JSON, XML, ...)

— Scalar values, maps, lists, sets, nested documents, ...
= |dentified by a unique identifier (key, ...)

* Documents are organized into collections
Query patterns

* Create, update or remove a document

* Retrieve documents according to complex query conditions
Observation

* Extended key-value stores where the value part is examinable

NDBIO49: Query Languages | Lecture 10: MongoDB | 9. 12. 2025



JSON

JavaScript Object Notation



Introduction

JSON = JavaScript Object Notation
Open standard for data interchange

Design goals
= Simplicity: text-based, easy to read and write
= Universality: object and array data structures
— Supported by majority of modern programming languages

— Based on conventions of the C-family of languages
(C, C++, C#, Java, JavaScript, Perl, Python, ...)

Derived from JavaScript (but language independent)
Started in 2002
File extension: *.json

Content type: application/json

NDBIO49: Query Languages | Lecture 10: MongoDB | 9. 12. 2025


http://www.json.org/

Example

{

"title" : "Medvidek",

"year" : 2007,

"actors" : [

{
"firstname" : "Ji¥i",
"lastname" : "Machacek"
}’
{
"firstname" : "Ivan",
"lastname" : "Trojan"
}

1,

"director" : {
"firstname" : "Jan",
"lastname" : "Hfebejk"

}

¥




Data Structure

Object
* Unordered collection of name-value pairs (properties)

= Correspond to structures such as objects, records, structs,
dictionaries, hash tables, keyed lists, associative arrays, ...

* Values can be of different types, names should be unique

~©O -
(~[vale |
O
Examples
e { "name" : "Ivan Trojan", "year" : 1964 }
e {1}



Data Structure

Array
¢ Ordered collection of values

= Correspond to structures such as arrays, vectors, lists,
sequences, ...

* Values can be of different types, duplicate values are allowed

o (D»c

Examples
e [ 2,7, 7,51
e [ "Ivan Trojan", 1964, -5.6 ]
e [ ]




Data Structure

Value

[obea]

e Unicode string

= Enclosed with double quotes
= Backslash escaping sequences
= Example: "a \n b \" ¢ \\ 4"

e Number

false

BEge

= Decimal integers or floats
= Examples: 1,-0.5, 1.5e3

Nested object

Nested array

Boolean value: true, false

Missing information: null



JSON Conclusion

JSON constructs
e Collections: object, array
e Scalar values: string, number, boolean, null

Schema languages
* JSON Schema
Query languages
* JSONig, JMESPath, JAQL, ...




Binary JSON



Introduction

BSON = Binary JSON
» Binary-encoded serialization of JSON documents

= Extends the set of basic data types of values offered by JSON
(such as a string, ...) with a few new specific ones

Design characteristics: lightweight, traversable, efficient
Used by MongoDB

= Document NoSQL database for JSON documents
= Data storage and network transfer format

File extension: *.bson

NDBIO49: Query Languages | Lecture 10: MongoDB | 9. 12. 2025

12


http://bsonspec.org/

Example

JSON

‘{ "title" : "Medvidek", "year" : 2007 }

BSON

24 00 00 00 02 74 69 74 6C 65 00 OA 00 00 00 4D 65 64 76 C3 AD 64 65 6B
00 10 79 65 61 72 00 D7 07 00 00 00




Example

JSON
{
"title" : "Medvidek",
"year" : 2007
}
BSON
24 00 00 00
02 74 69 74 6C 65 00 OA 00 00 00 4D 65 64 76 C3 AD 64 65 6B 00
10 79 65 61 72 00 D7 07 00 00
00




Document Structure

Document = serialization of one JSON object or array
* JSON object is serialized directly
e JSON array is first transformed to a JSON object
= Property names derived from numbers of positions

= E.g.:
[ "Trojan", "Svérak" ] —
{ nou . "Trojan", ||1|| . "Svérék" }

e Structure

= Document size (total number of bytes)
= Sequence of elements (encoded JSON properties)
= Terminating hexadecimal 00 byte

)



Document Structure

Element = serialization of one JSON property

]
N L r

02~ rame -2 i) -~
- @D e - (o)
e RN S—
e RN S—
k»

\».»-TQT—J
@) [me]

k».»-»-—»
@[]




Document Structure

Element = serialization of one JSON property

e Structure

= Type selector
— 02 (string)
— 01 (double), 10 (32-bit integer), 12 (64-bit integer)
— 03 (object), 04 (array)
— 08 (boolean)
— O0A (null)
— 09 (datetime), 11 (timestamp)

= Property name
— Unicode string terminated by 00

byte +°

= Property value



MongoDB Document Database

\. mongo



MongoDB

JSON document database

https://www.mongodb.com/

Features
= Open source, high availability, eventual consistency, automatic
sharding, master-slave replication, automatic failover,
secondary indices, ...

Developed by MongoDB

Implemented in C++, C, and JavaScript

Operating systems: Windows, Linux, Mac OS X, ...

Initial release in 2009
= Version we cover is 6.0.1 (August 2022)


https://www.mongodb.com/

Query Example

Collection of movies Query statement

{ Titles of movies filmed in 2005 and later,

_id: ObjectId("1"), . . .
title: "Vratné lahve", sorted by these titles in descending order

year: 2006
3 db.movies.find(
{ year: { $gt: 2005 } 1},
{ { _id: false, title: true }
_id: ObjectId("2"), ).sort({ title: -1 })

title: "Samotari",

year: 2000 Query result

}
’{ title: "Vratné lahve" }

{

_id: ObjectId("3"), ’{ title: "Medvidek" }

title: "Medvidek",

year: 2007
}




Data Model

Database system structure

Instance — databases — collections — documents

e Database
e Collection

= Collection of documents, usually of a similar structure
e Document

= MongoDB document = one JSON object

— lLe. even a complex JSON object with other recursively nested
objects, arrays or values

= Each document has a unique identifier (primary key)
— Technically realized using a top-level _id field



Data Model

MongoDB document
* Internally stored in BSON format (Binary JSON)

= Maximal allowed size 16 MB
= GridFS can be used to split larger files into smaller chunks

Restrictions on fields
* Top-level _id is reserved for a primary key

* Field names cannot start with $ and cannot contain .

= $is reserved for query operators
= . is used when accessing nested fields

* The order of fields is preserved
= Except for_id fields that are always moved to the beginning

* Names of fields must be unique

NDBIO49: Query Languages | Lecture 10: MongoDB | 9. 12. 2025 22



Primary Keys

Features of identifiers
* Unique within a collection
* Immutable (cannot be changed once assigned)
e Can be of any type other than a JSON array

Key management
* Natural identifier
e Auto-incrementing number — not recommended
* UUID (Universally Unique Identifier)

* Objectld — special 12-byte BSON type (the default option)

= Small, likely unique, fast to generate, ordered, based on a
timestamp, machine id, process id, and a process-local counter

NDBIO49: Query Languages | Lecture 10: MongoDB | 9. 12. 2025 23



Design Questions

Data modeling (in terms of collections and documents)
* No explicit schema is provided, nor expected or enforced
= However...

— documents within a collection are similar in practice
— implicit schema is required nevertheless

e Challenge

= Balancing application requirements, performance aspects,
data structure, mutual relationships, query patterns, ...

Two main concepts
e References
e Embedded documents



Denormalized Data Models

Embedded documents
* Related data in a single document
= with embedded JSON objects, so called subdocuments
* Pros: data manipulation (fewer queries need to be issued)
e Cons: possible data redundancies
e Suitable for one-to-one or one-to-many relationships

{
_id: ObjectId("2"), title: "Samotaf¥i", year: 2000,
actors: [
{ firstname: "Jitka", lastname: "Schneiderova" 1},
{ firstname: "Ivan", lastname: "Trojan" },
{ firstname: "Ji¥i", lastname: "Machacéek" }

]
}




Normalized Data Models

References

* Related data in separate documents

= These are interconnected via directed links (references)
= Technically expressed using ordinary values with identifiers
of target documents (i.e. no special construct is provided)

* Features: higher flexibility, follow up queries might be needed
e Suitable for many-to-many relationships

{ {
_id: ObjectId("2"), _id: ObjectId("6"),
title: "Samotari", firstname: "Jitka",
year: 2000, lastname: "Schneiderova"
actors: [ ObjectId("6"), — }

",
ObjectId("4"),
")

ObjectId("5") 1]




Sample Data

Collection of movies Collection of actors

{ { _id: ObjectId("4™),
_id: ObjectId("1"), firstname: "Ivan",
title: "Vratné lahve", year: 2006, lastname: "Trojan" }
actors: [ ObjectId("7"), ObjectId("5") ]

} { _id: ObjectId("s"),

firstname: "Jiri",

{ lastname: "Machalek" }
_id: ObjectId("2"),
title: "Samotaf¥i", year: 2000, { _id: ObjectId("6"),
actors: [ ObjectId("6"), ObjectId("4"), firstname: "Jitka",

ObjectId("5") ] lastname: "Schneiderova" }

}

{ _id: ObjectId("7"),

{ firstname: "Zden&k",
_id: ObjectId("3"), lastname: "Svérak" }
title: "Medvidek", year: 2007,
actors: [ ObjectId("5"), ObjectId("4") ]

}




Application Interfaces

mongo shell
¢ Interactive interface to MongoDB

* mongosh --username user —--password pass —--host
host ——-port 28015

Drivers

e Java, C, C++, CH, Perl, PHP, Python, Ruby, Scala, ...




Query Language

MongoDB query language is based on JavaScript
* Single command / entire script

* Read queries return a cursor
= Allows us to iterate over all the selected documents

e Each command is always evaluated over a single collection

Query patterns
e Basic CRUD operations
= Accessing documents via identifiers or conditions on fields

* Aggregations: MapReduce, pipelines, grouping

NDBIO49: Query Languages | Lecture 10: MongoDB | 9. 12. 2025

29



CRUD Operations

Overview
* db.collection.insert|insertOne|insertMany ()
= Inserts a new document / documents

db.collection.replaceOne()
= Replaces an existing document

db.collection.update|updateOne|updateMany ()
= Modifies an existing document / documents

db.collection.remove|deleteOne|deleteMany ()
= Removes an existing document / documents
db.collection.find()

= Finds documents based on filtering conditions
= Projection and / or sorting may be applied too



Insert Operations



Insert Operations

insertOne [/ insertMany methods
* Inserts one new document into a given collection

@00~

L .
©-E= -~ _— 0

¢ Inserts multiple new documents into a given collection

@O~ - G
L
oy —valy
NDBIOAD: Qwery Languages | Lecture 10: MongoDB | 9.12.205 3




Insert Operations

insertOne [/ insertMany methods (cont’d)
e Parameters
= Document: one document to be inserted

— Provided document identifier (_id field) must be unique
— When missing, it is generated automatically (Objectld)

= Options

¢ Collections are created automatically when not yet exist




Insert Operations: Examples

Insert a new actor document

db.actors.insert0One( {

{ _id: ObjectId("8"),
firstname: "Anna", firstname: "Anna",
lastname: "Geislerova" lastname: "Geislerova"

} }

)

Insert two new movies

db.movies.insertMany (
L
{
_id: ObjectId("9"), title: "Zelary", year: 2003,
actors: [ ObjectId("4"), ObjectId("8") 1]
},
{ title: "Anthropoid", year: 2016, actors: [ ObjectId("8") ] },
]
)




Replace Operation



Replace Operation

replaceOne method
* Replaces one existing document in a given collection

@O~ -0~

Lo- .
O, )

e Parameters
= Query: description of a document to be updated
— The same behavior as in the find operation
— When there are more matching documents,
just the first one is updated!
= Replacement: new content for a given document
= Options



Replace Operation: Example

Replace the whole document of a specified actor

db.actors.replacelne(
{ _id: ObjectId("s") },
{ firstname: "Afa", lastname: "Geislerova" }

)

{
_id: ObjectId("8"),
firstname: "Ana",
lastname: "Geislerova"

}




Upsert Mode

Upsert mode of the replace operation

* When there is no matching document to be udapted
= one new document is inserted instead

* This mode is activated via an option
= {upsert: true}
What will the new document contain?
 All fields from the replacement parameter
* And as for the primary key...

= |dentifier from the query condition is used when supplied
= QOtherwise a new one is generated

NDBIO49: Query Languages | Lecture 10: MongoDB | 9. 12. 2025 38



Upsert Mode: Example

Unsuccessful update of a movie resulting in insertion

db.movies.replaceOne(

{ title: "Tmavomodry svét", year: { $gt: 2000 } },

{
title: "Tmavomodry svét",
director: { firstname: "Jan", lastname: "Svérak" },
year: 2001

},

{ upsert: true }

)

{
_id: ObjectId("11"),
title: "Tmavomodry svét",
director: { firstname: "Jan", lastname: "Svérak" },
year: 2001
}




Update Operations



Update Operations

updateOne [/ updateMany methods
¢ Modify the first / all matching documents

H@*@T-ﬂ

L
©-E-O- I~ ®-

e Parameters
= Query: description of documents to be updated
— The same behavior as in the find operation
= Update: modification actions to be applied
— Various update operators are available: $set, $unset, $inc, ...
— Each can only be used at most once

= Options



Update Operations: Example

Update of all movies filmed in 2015 or later

db.movies.updateMany(
{ year: { $gt: 2015 } 1},
{
$set: { tag: "New Movies" },
$inc: { rating: 3 }
}
)




Update Operators

Field operators
* $set — sets the value of a given field / fields

H-*@*@T.*(D*@_T@»

e $unset —removes a given field / fields

H.*@*@‘tg*. O

¢ $rename — renames a given field / fields




Update Operators

Field operators (cont’d)
¢ $inc —increments the value of a given field / fields

H.*@*@*I.{}-T@»
o

e $mul — multiplies the value of a given field / fields

- ;-




Update Operators

Array operators
e $push —adds one item / all items to the end of an array

~@gushD~(: )~ *@T -
©-GeeD-(O-fay O
)
o/

* $addToSet —adds one item / all items to the end of an array,
but duplicate values are ignored

o~ ((SaddToset)~(: )~ QT O
©-GeedD-(O-fay O
®)




Update Operators

Array operators (cont’d)
e $pop —removes the first / last item of an array

H.*@*@T-C}T:W@w

e $pull —removes all array items that match a specified query

“.*@*@T-Q*ET(D*
[ auery |
®)




Upsert Mode

Upsert mode of the update operations

* When there is no matching document to be udapted
= one new document is inserted instead

* This mode is activated via an option
= {upsert: true}
What will the new document contain?
¢ All value fields from the query parameter

* As well as the outcome of all the update operators applied
from the update parameter
* And as for the primary key...

= |dentifier from the query condition is used when supplied
= Otherwise a new one is generated

NDBIO49: Query Languages | Lecture 10: MongoDB | 9. 12. 2025

47



Upsert Mode: Example

Unsuccessful update of a movie resulting in insertion

db.movies.updateOne (
{ title: "Tmavomodry svét", year: { $gt: 2000 } },
{
$set: {
director: { firstname: "Jan", lastname: "Svérak" 1},
year: 2001
},
$inc: { rating: 2 }
},
{ upsert: true }

)

{ _id: ObjectId("11"),
title: "Tmavomodry svét",
director: { firstname: "Jan", lastname: "Svérak" },
year: 2001,
rating: 2 }




Delete Operations



Delete Operations

deleteOne [/ deleteMany methods
* Remove the first / all matching documents

o @O~ e~ -ﬂ

L.
OB -

e Parameters
= Query: description of documents to be removed
— The same behavior as in the find operation

= Options



Find Operation



Find Operation

find method
* Selects matching documents from a given collection

»@»@»-7
L
° Parameters

= Query: description of documents to be selected
= Projection: fields to be included / excluded in the result

* Matching documents are returned via an iterable cursor
= This allows us to chain further sort, skip or 1imit operations



Find Operation: Examples

Select all movies from our collection

‘db.movies.find()

‘db.movies.find( {1 ‘

Select a particular movie based on its document identifier

‘db.movies.find( { _id: ObjectId("2") } )

Select movies filmed in 2000 with a rating greater than 1

’db.movies.find( { year: 2000, rating: { $gt: 1 } } ) ‘

Select movies filmed between 2005 and 2015

‘db.movies.find( { year: { $gte: 2005, $1lte: 2015 } } ) ‘




Selection

Query parameter describes the documents we are interested in

.+_».

e

Boolean expression with one top-level logical operator: $and, $or

Conditions on individual distinct fields

* Value equality

= The actual field value must be identical to the specified value
* Query operators

= The actual field value must satisfy all the provided operators




Selection: Field Conditions

Value equality
e The actual field value must be identical to the specified value

e |.e. identical...

= including the number, order and names of recursively identical
values of all nested object fields

= including the number and order of recursively identical array
items

Query operators

* The actual field value must satisfy all the provided operators
= Each operator can be used at most once




Value Equality: Examples

Select movies having a specific director

db.movies.find(
{ director: { firstname: "Jan", lastname: "Svérak" } }

)

db.movies.find(
{ director: { lastname: "Svérak", firstname: "Jan" } }

)

Select movies having specific actors

’db.movies.find( { actors: [ ObjectId("7"), ObjectId("5") 1 } )

‘db.movies.find( { actors: [ ObjectId("5"), ObjectId("7") 1 } )

Queries in both the pairs are not equivalent!




Dot Notation

The dot notation for field names

D
field

* Accessing fields of embedded documents
= "field.subfield"
— E.g.: "director.firstname"
* Accessing items of arrays
= "field.index"

— E.g.: "actors.2"
— Positions start at 0



Value Equality

Example (revisited)

Select movies having a specific director

db.movies.find(
{ director: { firstname:

)

".Jan",

lastname: "Svérak" } }

db.movies.find(
{ "director.firstname":

)

"Jan" s

"director.lastname":

"Svérak" }




Query Operators

Comparison operators

s~

s

Sl e

e Comparisons take particular BSON data types into account
= Certain numeric conversions are automatically applied




Query Operators

Comparison operators

* $eq, $ne
= Tests the actual field value for equality / inequality
— The same behavior as in case of value equality conditions
e $1t, $1te, $gte, $gt
= Tests whether the actual field value is less than / less than or
equal / greater than or equal / greater than the provided value

e $in
= Tests whether the actual field value is equal to at least one
of the provided values
e $nin
= Negation of $in



Query Operators

Element operators
* $exists —tests whether a given field exists / not exists

(Sexists )~ -T

Evaluation operators

* $regex —tests whether a given field value matches
a specified regular expression (PCRE)

* $text — performs text search (text index must exists)




Query Operators

Array operators

e $all —tests whether a given array contains all the specified
items (in any order)

00— -

Example (revisited)
Select movies having specific actors

db.movies.find(
{ actors: [ ObjectId("5"), ObjectId("7") 1 }
)

db.movies.find(
{ actors: { $all: [ ObjectId("5"), ObjectId("7") 1 } }

)




Query Operators

Array operators (cont’d)

* $size —tests the size of a given array against a fixed number
(and not, e.g., a range, unfortunately)

~Gsize)~( )~

* $elemMatch —tests whether a given array contains at least
one item that satisfies all the involved query operations

o~ setemwatch -~ -~ auery |-




Query Operators

Logical operators

e $and, $or
- -0-0-mm-(O - 0-

= Logical connectives for conjunction / disjunction
= At least 2 involved query expressions must be provided
= Only allowed at the top level of a query

e $not
@)~ ()@ [ty operaior] - @

= Logical negation of exactly one involved query operator
= |.e. cannot be used at the top level of a query



Querying Arrays

Condition based on value equality is satisfied when...

* the given field as a whole is identical to the provided value,
or

* at least one item of the array is identical to the provided value

‘db.movies.find( { actors: ObjectId("5") } )

|
’{ actors: ObjectId("5") } ‘
|

’{ actors: [ ObjectId("5"), ObjectId("7") 1 }




Querying Arrays

Condition based on query operators is satisfied when...

 the given field as a whole satisfies all the involved operators,
or

* each of the involved operators is satisfied by at least one item
of the given array

= note, however, that this item may not be the same for all the
individual operators

‘db.movies.find( { ratings: { $gte: 2, $lte: 3 } } ) ‘

’{ ratings: 3 } ‘ ’{ ratings: [ 3, 7, 51 } ‘ ’{ ratings: [ 1, 41 } ‘

Use $elemMatch when just a single array item should be found
for all the operators




Projection
Projection allows us to determine the fields returned in the result

T

(array i)~ : -~ ([ projecton operator F~(3)

)
o/

true or 1 for fields to be included

false or O for fields to be excluded
Positive and negative enumerations cannot be combined!
= The only exception is _id which is included by default

Projection operators — allow to select particular array items




Projection Operators

Array operators

* $elemMatch — selects the first matching item of an array
This item must satisfy all the operators included in query
When there is no such item, the field is not returned at all

o~ setemwatch -~ -~ auery |-

e $slice —selects the first count items of an array (when
count is positive) / the last count items (when negative)
Certain number of items can also be skipped

@D~ (count) 7
O-EGD-O-GEGD-@




Projection: Examples

Find a particular movie, select its identifier, title and actors

db.movies.find(
{ _id: ObjectId("2") },

)

{ title: true, actors: true }

{

_id: ObjectId("2"),

title: "Samotari",

actors: [ ObjectId("6"),
ObjectId("4"),
ObjectId("5") ]

Find movies from 2000, select their titles and the last two actors

db.movies.find(
{ year: 2000 },
{
title: 1, _id: O,
actors: { $slice: -2 }
}
)

{

title: "Samotari",
actors: [ ObjectId("4"),
ObjectId("5") ]




Modifiers

Modifiers change the order and number of returned documents
* sort — orders the documents in the result

e skip—skips a certain number of documents from the
beginning

o~ @D~ (Or~ @D~ ()
e limit — returns at most a certain number of documents

= @D-(O- @D~

All the modifiers are optional, can be chained in any order (without
any implications), but must all be specified before any documents
are retrieved via a given cursor

NDBIO49: Query Languages | Lecture 10: MongoDB | 9. 12. 2025

70



Modifiers

Sort modifier orders the documents in the result

H-*@*.T.*C}T:YT.{D»

1 for ascending, -1 for descending order
The order of documents is undefined unless explicitly sorted
Sorting of larger datasets should be supported by indices

Sorting happens before the projection phase
= |.e. not included fields can be used for sorting purposes as well




Index Structures



Index Structures

Motivation

* Full collection scan must be conducted when searching
for documents unless an appropriate index exists

Primary index
e Unique index on values of the _id field
* Created automatically
Secondary indexes
* Created manually for values of a given key field / fields
* Always within just a single collection

NDBIO49: Query Languages | Lecture 10: MongoDB | 9. 12. 2025 75



Index Structures

Secondary index creation

~()~( O~ Ceptesion) (.- (RS - (O {81~ — - @

Definition of keys (fields) to be involved

)
-/




Index Structures

Index types

¢ 1, -1 —standard ascending / descending value indexes
= Both scalar values and embedded documents can be indexed

hashed — hash values of a single field are indexed

text — basic full-text index

2d - points in planar geometry

2dsphere — points in spherical geometry




Index Structures

Index forms
* One key / multiple keys (composed index)
* Ordinary fields / array fields (multi-key index)
Index properties
* Unique — duplicate values are rejected (cannot be inserted)
e Partial — only certain documents are indexed
» Sparse — documents without a given field are ignored
* TTL - documents are removed when a timeout elapses

Just some type / form / property combinations can be used!

NDBIO49: Query Languages | Lecture 10: MongoDB | 9. 12. 2025 78



Index Structures

Execution plan

’db.movies‘find({ title: "Medvidek" }).explain()

Index creation

’db.movies.createlndex({ title: 1 }) ‘




MapReduce



MapReduce

Executes a MapReduce job on a selected collection

@0 EEw-O- G,

)
(-~ [ functon } (-~ Fecuce funcon | ey @~

e Parameters
= Map: JavaScript implementation of the Map function
= Reduce: JavaScript implementation of the Reduce function
= Options




MapReduce

Map function
e Current document is accessible via this
e emit(key, value) is used for emissions
Reduce function
* Intermediate key and values are provided as arguments
e Reduced value is published via return
Options
* query: only matching documents are considered
e sort: they are processed in a specific order
* limit: at most a given number of them is processed

* out: output is stored into a given collection

NDBIO49: Query Languages | Lecture 10: MongoDB | 9. 12. 2025 82



MapReduce: Example

Count the number of movies filmed in each year, starting in 2005

db.movies.mapReduce (
function() {
emit (this.year, 1);
}’
function(key, values) {
return Array.sum(values);

1,
{

query: { year: { $gte: 2005 } },
sort: { year: 1 },
out: "statistics"
}
)







Lecture Conclusion

MongoDB

* Document database for JSON documents

¢ Sharding with master-slave replication architecture
Query functionality

e CRUD operations

= Insert, find, update, remove
= Complex filtering conditions

¢ Index structures

* MapReduce




	Outline
	Introduction
	JSON
	BSON
	MongoDB
	Data Model
	Sample Data
	Query Interfaces
	CRUD Operations
	Insert Operations
	Replace Operation
	Update Operations
	Delete Operations
	Find Operation
	Index Structures
	MapReduce

	Conclusion

