NDBIO49: Query Languages
http://www.ksi.mff.cuni.cz/~svoboda/courses/NDBI049/

Lecture 8

XPath

Martin Svoboda
martin.svoboda@ matfyz.cuni.cz

25. 11. 2025

Charles University, Faculty of Mathematics and Physics

http://www.ksi.mff.cuni.cz/~svoboda/courses/NDBI049/
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

XML data format

¢ Elements, attributes
XPath and XQuery

* Data model

° Query expressions

= Path expressions

= Comparison expressions
= Variable assignments

= |teration expressions

= Set operations

XML

Extensible Markup Language

Introduction

XML = Extensible Markup Language

* Representation and interchange of semi-structured data

= + a family of related technologies, languages, specifications, ...
Derived from SGML, developed by W3C, started in 1996
Design goals

= Simplicity, generality and usability across the Internet

File extension: *.xml, content type: text/xml
Versions: 1.0 and 1.1
W3C recommendation

NDBI0O49: Query Languages | Lecture 8: XPath | 25. 11. 2025

http://www.w3.org/TR/xml11/

Example

<?xml version="1.1" encoding="UTF-8"7>
<movie year="2007">
<title>Medvidek</title>
<actors>
<actor>
<firstname>Ji¥i</firstname>
<lastname>Machaéek</lastname>
</actor>
<actor>
<firstname>Ivan</firstname>
<lastname>Trojan</lastname>
</actor>
</actors>
<director>
<firstname>Jan</firstname>
<lastname>Hfebejk</lastname>
</director>
</movie>

Document Structure

Document
e Prolog: XML version + some other stuff

* Exactly one root element
= Contains other nested elements and/or other content

H.*.*@*@*.»@*E».*E7

L>->°

Example

<?xml version="1.1" encoding="UTF-8"7>
<movie>

</movie>

Constructs

Element

* Marked using opening and closing tags
= ... orjust an abbreviated tag in case of empty elements

* Each element can be associated with a set of attributes

.@@»—»@@-@
ﬁ-@@»@ T

Examples

<title>...</title>
<actors/>

Constructs

Types of element content
* Empty content
e Text content
¢ Element content

= Sequence of nested elements
¢ Mixed content
= Elements arbitrarily interleaved with text values

Constructs

Attribute
* Name-value pair

o) (@~~~

Escaping sequences (predefined entities)
* Used within values of attributes or text content of elements
e E.g.:
= < for<
= > ; for >
= " for "

XML Conclusion

XML constructs

e Basic: element, attribute, text

e Additional: comment, processing instruction, ...
Schema languages

e DTD, XSD (XML Schema), RELAX NG, Schematron
Query languages

e XPath, XQuery, XSLT
XML formats = particular languages

* XSD, XSLT, XHTML, DocBook, ePUB, SVG, RSS, SOAP, ...

XPath and XQuery

Introduction

XPath = XML Path Language
* Navigation and selection of nodes
« Versions: 1.0 (1999), 2.0 (2010), 3.0 (2014), 3.1 (March 2017)

* W3C recommendation
= https://www.w3.org/TR/xpath-31/
XQuery = XML Query Language
* Complex queries and transformations
¢ Contains XPath
* Versions: 1.0 (2007), 3.0 (2014), 3.1 (March 2017)

e W3C recommendation
= https://www.w3.org/TR/xquery-31/

https://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xquery-31/

Sample Data

<?xml version="1.1" encoding="UTF-8"7>
<movies>
<movie year="2006" rating="76" director="Jan Svérak">
<title>Vratné lahve</title>
<actor>Zdenék Svérak</actor>
<actor>Jifi Machacek</actor>
</movie>
<movie year="2000" rating="84">
<title>Samotari</title>
<actor>Jitka Schneiderova</actor>
<actor>Ivan Trojan</actor>
<actor>Jifi Machacek</actor>
</movie>
<movie year="2007" rating="53" director="Jan Hrebejk">
<title>Medvidek</title>
<actor>Ji¥i Machaiek</actor>
<actor>Ivan Trojan</actor>
</movie>
</movies>

Sample Data

Jan
Svérak

Vratné Zdenék Jiti
lahve Svérak Machécek

Data Model

XDM = XQuery and XPath Data Model (XPath 2.0, XQuery 1.0)

e XML tree consisting of nodes of different kinds
= Document, element, attribute, text, ...

* Document order
= The order in which nodes appear in the XML file
— lLe. nodes are numbered using a pre-order depth-first traversal

e Reverse document order
Query result

* Each query expression is evaluated to a sequence

Data Model

Sequence = ordered collection of nodes and/or atomic values
¢ Can be mixed
= But usually just nodes, or just atomic values
Are automatically flattened
*Eg: (2, O, (4,1, 3, () & (2, 4,1, 3, 1)
Can be empty
= Eg: (O
Standalone items are treated as singleton sequences
" Eg:l & (1)
Can have duplicate items

XPath

XML Path Language

Path Expressions

Path expression
* Allows for navigation within an XML tree
* Consists of navigational steps

=l

* Absolute paths: start with /
= Navigation starts at the document node

¢ Relative paths
= Navigation starts at an implicitly specified context node

Path Expressions: Examples

Absolute path expressions

/

/movies

/movies/movie/title/text ()

|
|
/movies/movie ‘
|
/movies/movie/@year ‘

Relative path expressions

actor/text () ‘

@director ‘

Path Expressions

Evaluation of a path expression P
e ... with respect to the initial context sequence ('

=

if P does not contain any step then
|_ return C (we already have the final result)

N

else (when P contains at least one step)
let S'be the first step and P’ the remaining steps (if any)
let C’ = () be an empty sequence
foreach context node u € C' do

evaluate S with respect to u and add the selected
L items C,/ to O’

N o o W

8 return evaluate P’ with respect to C’

Path Expressions: Steps

Navigational step
e Each step consists of up to 3 components

@ -[noseest .

e Axis

= Relation of nodes to be selected for a given context node u
¢ Node test

= Basic condition these selected nodes must satisfy
e Predicates

= Advanced conditions these nodes must further satisfy

Path Expressions: Axes

Axis
* Selects nodes that are reachable from a given context node

self
descendant-or-self
folluwing sibling

an CQSIOT

ancestor-or- self
precedlng sibling

precedlng

\> attrlbute —————

Path Expressions: Axes

child axis
* Selects children of a given context node
= Note that attributes are not considered to be child nodes!

¢ Used as the default axis (when omitted)

/movies/child: :movie

attribute axis

e Selects attributes of a given context node
= Note that this is the only axis that can select attributes!

/movies/movie/attribute: :year

self axis
» Selects just the current context node

Path Expressions: Axes

descendant(-or-self) axes

» Select all (non-attribute) nodes in a subtree of a given context
node excluding / including itself

‘ /descendant: :actor/text ()

parent axis
» Selects the parent node of a given context node
ancestor(-or-self)axes

» Select all ancestors of a given context node

= |.e., the parent, the parent of the parent, and so on, until the
document node, excluding / including the context node itself

Path Expressions: Axes

preceding-sibling and following-sibling axes

» Select all siblings of a given context node that occur before /
after this context node in the document order

/descendant-or-self: :movie/title/following-sibling: :actor ‘

preceding and following axes

¢ Select all (non-attribute) nodes that occur before / after
a given context node in the document order,
excluding nodes returned by the ancestor / descendant axis

Path Expressions: Axes

preceding

i O\]

b&

attribute

ancestor-or-self
ancestor

R
o

preceding-sibling /

parent

self

following

O’dl

\ following-sibling
]

E!E;!E child

W

descendant
descendant-or-self

Path Expressions: Axes

Forward axes
* self, child, descendant(-or-self), following(-sibling)
* Nodes are returned in the document order

Reverse axes

* parent, ancestor(-or-self), preceding(-sibling)

* Nodes are returned in the reverse document order

Path Expressions: Node Tests

Node test

» Filters the nodes selected by the axis using a basic condition
= Only names and kinds of nodes can be tested

textO

name: elements / attributes with a given name

‘ /movies ‘

’ /movies/movie/attribute: :year ‘

Path Expressions: Node Tests

+: all elements / attributes

’/movies/* ‘

’/movies/movie/attribute::* ‘

text (): all text nodes

’/movies/movie/title/text() ‘

node (): all nodes

’/movies/descendant-or-self::node()/actor

Path Expressions: Predicates

Predicates
* Additional filtering of the nodes based on advanced conditions

H®+ expression ®+o

* When multiple predicates are provided...

= They must all be satisfied
= They are evaluated one by one, from left to right

Commonly used conditions
e Path existence tests, comparisons, position tests
* Logical expressions

Path Expressions: Predicates

Path existence tests

* Relative or absolute path expressions

= Relative path expressions are evaluated with respect to the
node for which a given predicate is tested

* Treated as true when evaluated to a non-empty sequence

‘/movies/movie[actor] ‘

’/movies/movie[actor]/title/text() ‘

Comparisons
* General, value, or node comparison expressions

’/descendant::movie[@year > 2000] ‘

‘/descendant::movie[count(actor) ge 3]/title

Path Expressions: Predicates

Position tests

* Allow for filtering of items based on context positions
= Numbered starting with 1
= Always relative to the current context (intermediate result)
= Base order is implied by the axis used

’/descendant::movie/actor[position() = 1] ‘

‘/descendant::movie[actor][position() = last()] ‘

Logical expressions

¢ and, or, not connectives

‘/movies/movie[@year > 2000 and @director]

‘/movies/movie[@director][@year > 20001 ‘

Path Expressions: Abbreviations

Omitted axis: the default child axis is assumed

’/movies/movie/title ‘

/child::movies/child: :movie/child: :title ‘

Attributes: 0 < attribute: :

’/movies/movie/@year ‘

’/movies/movie/attribute::year ‘

Descendants: // < /descendant-or-self: :node()/

’/movies//child::actor ‘

’/movies/descendant—or—self::node()/child::actor

Path Expressions: Abbreviations

Context item: . & self::node()

’/movies/movie[.//actor] ‘

’/movies/movie[self::node()//actor] ‘

Parent: .. < parent::node()

Position tests: [number] < [position() = number]

’/movies/movie/child::actor[2]

’/movies/movie/child::actor[position() = 2]

’/movies/movie[actor][1ast()]

’/movies/movie[actor][position() = last(Q)]

Path Expressions: Conclusion

Evaluation of path expressions
* Evaluated from left to right, step by step
= Result of the entire expression is the result of the last step
Only one of the following can be returned...
e Sequence of nodes

= Always sorted in the document order
= Duplicate nodes are removed

— Based on the identities of nodes
* Sequence of atomic values
= The order as well as duplicate values are both preserved

= the returned sequences will never be mixed

NDBI0O49: Query Languages | Lecture 8: XPath | 25. 11. 2025

35

Comparison Expressions

Comparisons

* General comparisons
= Two sequences of values are expected to be compared
= =L <K= 0, >
= Eg.: (0,1) = (1,2)

¢ Value comparisons
= Two standalone values (singleton sequences) are compared
" eq,ne, 1t, le, ge, gt
* Eg:1 1t 3

* Node comparisons
= is —tests identity of nodes
= <<, >> —test positions of nodes (preceding, following)
= Similar behavior as in the case of value comparisons

Comparison Expressions

General comparisons (existentially quantified comparisons)
* Both the operands can be evaluated to sequences of items

of any length
o[value expression |

OHEOOOO

e The result is true if and only if there exists at least one pair
of individual items satisfying a given relationship

Comparison Expressions: Examples

General comparisons
o [(1) < (2)] =true
o [(1) < (1,2)] =true
o [(1) < O] =false
e [(0,1) = (1,2)] =true
e [(0,1) '= (1,2)] =true

Comparison Expressions

Value comparisons
* Both the operands must be evaluated to singleton sequences

o> value expression value expression [>o

pECORE

* Empty sequence () is returned...
= when at least one operand is evaluated to an empty sequence

* Type error is raised...
= when at least one operand is evaluated to a longer sequence

Comparison Expressions: Examples

Value comparisons
e [(1) le (2)] =true
e [(1) 1e O]=0
e [(1) le (1,2)] = error
e [O e (1,2)]=0

Comparison Expressions

Value and general comparisons
e Atomization of values — applied automatically
= Atomic values are preserved untouched
= Nodes are transformed to atomic values

e In particular...

= Element node is transformed to a string with concatenated
text values it contains in the document order

— E.g.: <movie year="2006">Vratné lahve</movie>
is atomized to a string Vratné lahve
— l.e., attribute values and element names are not included!
= Attribute node is transformed to its value
= Text node is transformed to its value

Comparison Expressions: Examples

Value and general comparisons
o [<a>5 eq 5] = true
o [<a>12 = <a>12] = true
e [3 1t 5] =true

Path Operator

Navigational steps in path expressions

o~{as - ()~ noderest |~ .

e Extended functionality (XPath 2.0)

= Function calls, sequence constructors, ...
= Must not yield mixed sequences (nodes and atomic values)

(tunction name)~(() @

® @
@,
=

Path Operator: Examples

Numbers of actors who appeared in the individual movies

‘/movies/movie/count(actor)

2
3
2

Flat sequence of interleaved movie titles and years of filming

/movies/movie/(title, @year)/data(.)

2006

Vratné lahve
2000
Samotari
2007
Medvidek

Variable Assignments

Let expression (XPath 2.0, XQuery 1.0 FLWOR)

* Allows for assignment of one or more variables
= $is used to denote variables

* These variables can then be accessed later on

»@»
)
o/

L.—» expression [>o

¢ Returns the result of the evaluated return clause

Variable Assignments: Example

Find titles of movies with at least average rating

let $a := avg(//movie/@rating)
return //movie[@rating >= $al/title/text()

Vratné lahve
Samotari

Iteration Expressions
For expression (XPath 2.0, XQuery 1.0 FLWOR)

» Allows for the iteration over items of an input sequence /
tuples of items when more input sequences are provided

»@»
)
o/

L.—» expression [>o

e Returns a flat sequence containing results of the return
clause evaluated for each input item / tuple of items

Iteration Expressions: Example

Numbers of actors who appeared in movies filmed in 2000 or later

for $m in //movie[@year >= 2000]
return count($m/actor)

2
3
2

Set Operations

Traditional set operations (XPath 2.0)
* Only applicable on sequences of nodes (not atomic values)!
e Duplicate nodes are removed

o[expression |-~~~ (@ioRD)
®
(intersect)
Union @D
* Nodes that occur in either of the operands
Intersection
* Nodes that occur in both the operands

Difference

* Nodes that occur in the first operand but not in the second one

Primary and Other Expressions

Literals

T
®> string literal @
®—> string literal @

Variable reference

Sequence constructor
~® @~
®

Primary and Other Expressions

Function call

o~ Cinctanrame () @~
e
O

Postfix expression
* Allows to add predicates to primary expressions
= |.e., variable references, sequence constructors, ...

o> primary expression

expression @

’$movies[actor] ‘

‘(//actor)[last()]

Primary and Other Expressions

Range expression
e Allows to generate a sequence of consecutive integers

o>| expression expression o

/movies/movie[@year = 2011 to 2020]

Arithmetic expressions
Conditional expression

Quantified expressions
* Allow to simulate the existential and universal quantifiers

Predefined Functions

($items)
* Performs the atomization of values in a sequence
($items), ($items), ($items), ($items)
* Calculates the average / sum / minimum / maximum

($node)
e Returns the name of an element or attribute node
() and O

* Returns the current context position / context size
($items, $separator)
* Returns a string with concatenated atomized values
($uri)
* Returns the document node for a specified XML file

NDBI0O49: Query Languages | Lecture 8: XPath | 25. 11. 2025

53

Lecture Conclusion

XPath
* Path expressions

= Absolute and relative paths
= Axes, node tests, and predicates

* Comparison expressions
= General, value, and node comparisons

For and let expressions

Set operations
= Union, intersection, difference

Primary expressions

	Outline
	XML
	XPath and XQuery
	Data Model
	Path Expressions
	Comparison Expressions
	Path Operator
	Variable Assignments
	Iteration Expressions
	Set Operations
	Additional Expressions
	Predefined Functions

	Conclusion

