NDBIO49: Query Languages
http://www.ksi.mff.cuni.cz/~svoboda/courses/NDBI049/

Lectures 2 -5

Query Evaluation

Martin Svoboda
martin.svoboda@ matfyz.cuni.cz

7.10. —4. 11. 2025

Charles University, Faculty of Mathematics and Physics

http://www.ksi.mff.cuni.cz/~svoboda/courses/NDBI049/
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

Algorithms
* Access methods
¢ External sort
* Nested loops join
e Sort-merge join
¢ Hash join
Evaluation
* Query evaluation plans

e Optimization techniques

Introduction

SQL queries
e SELECT statements

SET operation

(
\»\|

Introduction

Relational algebra
e Basic and inferred operations

= Selection o, projection 7, . ,,, renaming Pbi/ay,....bn)an
= Set operations: union U, intersection M, difference \
* Inner joins: cross join x, natural join x, theta join x,
Left / right natural / theta semijoin x, x, x,, X,
Left / right natural / theta antijoin &, <, >, <,

= Division +
* Extended operations

= Left / right / full outer natural join Ix, XC, 2xC
= Left / right / full outer theta join 14 , <, 0,
= Sorting, grouping and aggregation, distinct, ...

Naive Algorithms

Selection: ¢, (E)
* lIteration over all tuples and removal of those filtered out
Projection: m,, .. (E)
 Iteration over all tuples and removal of excluded attributes
= But also removal of duplicates within the traditional model

Distinct

» Sorting of all tuples and removal of adjacent duplicates
Inner joins: Ep X Es, Ep X Eg, Ep X, Eg

* lIteration over all the possible combinations via nested loops
Sorting

e Quick sort, heap sort, bubble sort, insertion sort, ...

Challenges

Blocks
* Tuples stored in data files are not accessible directly
= Since we have read / write operations for whole blocks only
e That is true for all types of files...

= And so not just data files for tables
= But also files for index structures or system catalog

Latency

* Traditional magnetic hard drives are extremely slow
= Efficient management of cached pages is hence essential

Memory

* Size of available system memory is always limited
= external algorithms are needed

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

Objectives

Query evaluation plan

* Based on the database context and available memory...
... suitable evaluation algorithms need to be selected...
... 50 that the overall evaluation cost is minimal

Database context
* Relational schema: tables, columns, data types
* Integrity constraints: primary / unique / foreign keys, ...
» Data organization: heap / sorted / hashed file
* Index structures: B tree, bitmap index, hash index
* Available statistics: min / max values, histograms, ...

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

Objectives

Available system memory
* Number of pages allocated for the execution of a given query

e There are two possible scenarios...
= Having a particular memory size...
— Propose its usage and estimate the evaluation cost
= Having a particular cost expectation...
— Determine the required memory and propose its usage

Evaluation algorithms
* Access methods
e Sorting: external sort approaches
* Joining: nested loops, merge join, and hash join approaches

Objectives

Cost estimation

* Expressed in terms of read / write disk operations
= Since hard drives are extremely slow, as already stated...
— And so everything else can boldly be ignored
* We are interested in estimates only

= Since it is unlikely we could provide accurate calculations
= But still...

— The more accurate estimates, the better evaluation plans
= And there can really be huge differences in their efficiency...
— Even up to several orders of magnitude!
* In other words...

* Query optimization is crucial for any database system
= As well as we also need to know what we are doing...

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

Available Statistics

Environment

e P: size of a block / page, usually ~ 4 kB

e M: number of available system memory pages
Relation R

* np: number of tuples

* sp: average / fixed tuple size
br =~ | B/sgr]: blocking factor

= Number of tuples that can be stored within one block

pr ~ [ng/br]: number of blocks
e V4 cardinality of the active domain of attribute A
= Number of distinct values of A occurringin R

* ming 4 and mazr 4: minimal and maximal values for A

Access Methods

Data Files

Internal structure

» Blocks of data files for tables are divided into slots
= Each slot is intended for storing exactly one tuple
— By the way, they can easily be uniquely identified
— Using a pair of block and slot logical ordinal numbers

¢ Fixed-size slots
= Usage status of each slot just needs to be remembered

(e [

e Variable-size slots

= When at least one variable-size attribute is involved
= Slot beginnings and lengths need to be remembered

(o '

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025 12

Access Methods

Access method

e Particular approach for finding the intended tuples
= |.e., reading blocks with such tuples into the system memory
— Directly from data files for tables
— But also indirectly using index structures
* Full scan (sequential read) is possible under all circumstances
= However, we can do better in certain cases based on...

— Involved selection conditions
— Particular data file organization
— Available index structures (if any)

= |.e., number of blocks to be read can significantly be reduced

— And so the evaluation cost
— Since only relevant blocks are considered instead all of them

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

13

Access Methods

Data file organization
¢ Heap file, sorted file, hashed file
Index structures
e B tree, ...
Selection conditions
¢ Equality tests with respect to unique / non-unique attributes
= A = v, where vis a particular value (not another attribute)

¢ Range queries for one-sided / two-sided intervals
" §A,A§vg,and(v1 SA)/\(AS ’UQ)
— Analogously for other comparison operators (>, <, >)
— As well as their mutual combinations in two-sided intervals
— However, only fixed boundary values are assumed again

Heap File

Heap file
e Tuples are put into individual slots entirely arbitrarily
= |.e., we do not have any specific knowledge of their position

52 [20]10]] [s]55]sa] 5] [3a]3s] 2]] [w][]o] [] | | |

Selection costs
¢ Full scan is inevitable in almost all situations

" C=DR
* Equality test with respect to a unique attribute
= ¢c= [pr/2]

— Since we can stop at the moment a given tuple is found
— However, uniform distribution of data and queries is assumed
— And values outside of the active domain may also be queried

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025 15

Sorted File

Sorted file
e Tuples are ordered with respect to a particular attribute

‘6‘11‘18‘18"20‘23‘25‘34"36‘42‘49‘53"53‘71‘75‘82"93‘ ‘ ‘ “

Selection costs
e Binary search (half-interval search) can be used in general
= However, only when the same attribute is queried, of course

— l.e., the same attribute as the one used for sorting
— Otherwise, sequential read as in a heap file would be needed

* Equality test
= ¢ = [log, pr| for a unique attribute
= ¢ = [logy pr| + [pr/ VR 4| for a non-unique attribute

Sorted File

Selection costs (cont’d)
* Range query for two-sided intervals [v;, ;] and other
o | —

MIng 4 V1 vy MATRA

e For "continuous" domains...
= Number of values between any two of them is not limited

— At least potentially
— In practical terms, there can simply be far too many of them
— E.g.: FLOAT, VARCHAR, ...

= ¢ = [logy pr| + [pr - (v2 — v1)/(mazg 4 — ming 4)]
— Boundary types (inclusive / exclusive) are unimportant

Sorted File

Selection costs (cont’d)
* Range query for two-sided intervals [v;, ;] and other

.. ..
' '
' '
O=O-0=C :. =00 :. O—=C
MIng 4 V1 vy MATRA

e For "discrete" domains...
= Number of values between any two of them is finite
— E.g.: INTEGER, CHAR, DATE, ...
* ¢ =[logy pr| + [pr - (v2 — v1 +¢€)/(mazg 4 — ming a4 +1)]
— gis 1 for closed intervals, —1 for open (unless v; = 1;), and
0 otherwise, i.e., half-open and zero-sized open

Sorted File

Selection costs (cont’d)

* Range query for one-sided intervals (—oo, v5] and (—oo, 1)

® ®
' '
' '
H
@ —0
MIng 4 V2 MATRA

* ¢=[pgr- (va — ming 4)/(mazg 4 — ming. 4)]

" ¢c=[pr-(v2 — ming 4 +¢)/(maxg a4 — ming 4 + 1)]
» Range query for one-sided intervals [v;, 00) and (v;,)

= Analogously...

= c=[pr- (mazg g — v1)/(mazg 4 — ming)]

* ¢=[pr-(mazg s — v +¢)/(mazgs — ming 4 + 1)]

Hashed File

Hashed file

e Tuples are put into disjoint buckets (logical groups of blocks)
= Based on a selected hash function over a particular attribute

- E.g, W(A) = Amod 3

‘18‘42‘75‘36"82‘34‘49‘25"53‘20‘23‘53‘
[sfssl [J|L [[| Jjluf[n] |]
h(A) =0 h(A) =1 h(A) =2

¢ Hash function

= |ts domain are values of a given attribute A

= |ts range provides H distinct values

— There is exactly one bucket for each one of them
— All tuples in a bucket always share the same hash value

Hashed File

File statistics
* Hpg: number of buckets
o Crp= [pr/Hg]: expected bucket size
= Measured as a number of blocks in a bucket
Selection costs
* Equality test when the hashing attribute is queried

= Only the corresponding bucket needs to be accessed
= ¢ = (g for a non-unique attribute
= ¢ = [Cr/2] for a unique attribute
— Similar assumptions as in the case of heap files
* Any other condition
" c= DR
— l.e., full scan is needed

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025 21

B* Tree Index

B tree index structure = self-balanced search tree
* Logarithmic height is guaranteed (the same across all leaves)
* Moreover, very high fan-out is assumed
= |.e., our trees will tend to be significantly wider than taller
— => search times will not only be logarithmic, but also really low
Logical structure
* Internal node (including a non-leaf root node)

= Contains an ordered sequence of dividing values and pointers
to child nodes representing the sub-intervals they determine

e Leaf node

= Contains individual values and pointers to tuples in data file
= Leaves are also interconnected by pointers in both directions

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025 22

B™ Tree Index

BT tree index structure (cont’d)
* Sample index for relation R and its attribute A

(2 D] I | O P o

M_’ ‘10‘11‘14‘ ‘ ‘19‘21‘21‘ ‘ € %‘23‘26‘ ‘ ‘ (428 \
Index

Table

B* Tree Index

Physical structure

* Each node is physically represented by one index file block
= And so they are treated the same way as data file blocks
— le., loaded into the system memory one by one, etc.

Index statistics
* mp 4: maximal number of children (order of tree)

= Usually up to small hundreds in practice
= Actual number is guaranteed to be at least [mp_4/2]

— Except for the root node
* [4: index height
= Usually just =~ 2 — 3 for typical real-world tables

* ppr.a: number of leaf nodes

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025 24

B™ Tree Index

Search algorithm
* Index is traversed from its root toward the corresponding leaf
= Data tuple then needs to be fetched from the data file

7] | |

) [

O b fonse fol@aml folas fo]al

Index

Table

Non-Clustered B' Tree Index

Non-clustered index
e Order of items within the leaves and data file is not the same
= |.e., data file is organized as a heap file of hashed file

[s] | |

{814 ZIJ
O0—O0—0——0
] e Iy I s I e [R e

|||||
Table

\ 1| T = | T | T
NDBIOAS: Qery Languages | Lectures 2 5: Query Bvaluation | 7.10.-4.10.2025 2%

LAAAA‘MAAAA

Non-Clustered B' Tree Index

Selection costs
* Equality test for a unique / non-unique attribute
" c= IR.A +1
= c=Ipa+ [pra/VR.Al +min(pr, [nr/VR.al)
* Range query for two-sided intervals [v;, 1;] and other
* c=1Iga+[pra-(v2—v1)/(mazga — minga)]+

min(pg, [ng - (v2 — v1)/(mazg a4 — ming 4)1)
— Analogously for discrete domains

* However, for small domains Vy 4 or large intervals...
= Full scan of the data file is better
— l.e., index is not utilized at all
e Conditions not involving the indexed attribute
= Full scan again, of course

Clustered B™ Tree Index

Clustered index

e On the contrary, order of items is (at least almost) the same
= |.e., data file is a sorted file (with respect to the same attribute)

[| |

LAAAA‘M////

[81421J

i~

Clustered B™ Tree Index

Selection costs
e Equality tests

= ¢= Ip 4 + 1 for a unique attribute
* ¢=1Igp 4+ [pr/ Vg 4| for a non-unique attribute

* Range query for two-sided intervals [v;, 1;] and other

* c=1Ipa+[pr-(v2—wv)/(mazg . — ming 4)]
— Analogously for discrete domains

* Range query for one-sided intervals

= Data file is read directly as an ordinary sorted file
e Conditions not involving the indexed attribute

= Full scan again, of course

Examples

Sample scenario #1
* Movie (id, title, year, ...)
= Basic statistics

— npr = 100 000 tuples, by = 10, par = 10 000 blocks
— Varia = nar = 100 000 values (since they are unique)

Heap file
Sorted file (using ids)
Hashed file
~ h(M.id) = M.id mod 50
— Hjyr = 50 buckets, C3; = 200 blocks
BT tree index (using ids)
— mys.sq = 100 followers
- IM.id = 3, PM.id = 1 500 blocks

Examples

Equality test: movie with a particular identifier

* Heap file

* ¢= [py/2] = 5000
* Sorted file

* c=[logypy| =14
¢ Hashed file

= ¢=[Cy/2] = 100

Non-clustered index (BT tree & heap file)
s c=Iyuy+l=3+1=4

Clustered index (B™ tree & sorted file)
s c=Iyut+1=3+1=4

Examples

Sample scenario #2
* Movie (id, title, year, ...)
= Basic statistics

— nypr = 100 000 tuples, by = 10, par = 10 000 blocks
= VM year = 50 values
= MINM.year = 1943, mazps year = 2022 (i.e., 80 values)

Heap file
Sorted file (using years)
Hashed file

- h(M.year) = M.year mod 20
— Hjy = 20 buckets, C3; = 500 blocks

BT tree index (using years)

— MM.year = 100 followers
- IM,year - 3; pM,year = 1 500 bIOCkS

Examples

Equality test: movies filmed in a particular year

* Heap file

= c¢=py = 10000
* Sorted file

= ¢ = [logy pur] + [Pat/ Viryear] = 14 + 200 = 214
¢ Hashed file

= ¢c= Cy =500
Non-clustered index (BT tree & heap file)

" Cc= IM.year + [pM.year/ VM.year—| + min(pM» [nM/ VM.year—D
=3+30+2000=2033

Clustered index (BT tree & sorted file)
" Cc= IM.year + [pM/ VM.year-‘ =3+ 200 = 203

Examples

Range query: movies filmed during years [y, = 2016, yo = 2020]
* Heap file
= c¢=py = 10000

Sorted file
= Let r < (y2 — y1 + 1)/ (Mazpsyear — Minp year + 1) = 5/80
» ¢ = [logy pum| + [par- 7] = 14 + 625 = 639

Hashed file
= ¢c=pyu=10000

Non-clustered index (BT tree & heap file)

" Cc= IM,yea’r + “)M.year' 7:I + min(pM, [TLM . 7:‘)
=3+94+ 6250 =06 347

Clustered index (B™ tree & sorted file)
"Cc= IM.yeaT+ |VpM' 7’] =3+ 625 =628

External Sort

External Sort

N-way external merge sort
e Sort phase (pass 1)

= Groups of input blocks are loaded into the system memory
= Tuples in these blocks are then sorted

— Any in-memory in-place sorting algorithm can be used
— E.g.: quick sort, heap sort, bubble sort, insertion sort, ...

= Created initial runs are written into a temporary file
* Merge phase (passes 2 and higher)

= Groups of runs are loaded into the memory and merged

= Newly created (longer) runs are written back on a hard drive
= Merging is finished when exactly one run is obtained

— And so the entire input table is sorted

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

36

Sort Phase

Pass 1

e |nput data file
= Relational table R
— E.g., ng = 18 tuples, by = 4 tuples/block, pr = 5 blocks

R‘49‘15‘27‘81"27‘11‘43‘36"92‘19‘72‘68"26‘63‘43‘32"84‘35‘ ‘ ‘

R[] R[2] R[3) R[4] R[5]

¢ System memory layout
= Input buffer 7
— E.g., size M = 2 pages

Sort Phase

Pass 1

e Groups of M blocks are presorted and so initial runs created
= Input blocks from R are first loaded to Z

— Individual tuples in Z are then sorted
— Created runs are stored to a temporary file R!

= [[olTlu] frlufels] .

Memory

Hard disk

(=] []

R |49‘15‘27‘81‘ |27‘11‘43‘36‘ ‘92‘19‘72‘68‘ ‘26‘63‘43‘32‘
R[1] R[2] - > >

= (I] (< « < /
R}

Sort Phase

Pass 1
 Resulting runs in R! within our sample scenario

R[] R[2) R[3] R4 R3]

R ‘49‘15‘27‘81"27‘11‘43‘36"92‘19‘72‘68"26‘63‘43‘32”84‘35‘ ‘ “
J

Rl ‘11‘15‘27‘27"36‘43‘49‘81"19‘26‘32‘43"63‘68‘72‘92”35‘84‘ ‘ “

Ri R; Ry

Merge Phase

Pass 2

* Groups of M runs are iteratively merged together
= Blocks from these input runs are gradually loaded into 7

— Minimal items are then iteratively selected and moved to O
— Merged (longer) runs are written to a new temporary file R?

A |11|15|27|z7||19|zs|3z|43| o D:I:\:“ ~

A
Memory

Hard disk

R |11|15|27|27|‘36‘43‘49‘81‘|19|26|32|43|‘63‘68‘72‘92”35‘84‘ ‘ “
Ri - Ry —> > > >

- | I [
R}

Merge Phase

Passes 2 and 3

* Merging continues until just a single run is acquired
= And so the entire input table is sorted

Rl ‘11‘15‘27‘27"36‘43‘49‘81"19‘26‘32‘43"53‘68‘72‘92“35‘84‘ ‘ “
R L R} J R;
M v
RZ 11 15 19 26 27 27 32 36 43 43 49 63 68 72 81 92 35 84 ‘
R? L R2 J
v
R3 11 15 19 26 27 27 32 35 36 43 43 49 63 68 72 81 84 92 ‘

Rt

Algorithm

Sort phase (pass 1)

1 p+1

2 foreach group of blocks By, ..., By (if any) from 'R do
3 read these blocks to 7

4 sort all items inZ

5 write all blocks from Z as a new run to R”

Algorithm

Merge phase (passes 2 and higher)

while R? has more then just one run do

6
7 p+—p+1

8 foreach group of runs Ry, ..., Ry (if any) from R?~! do
9 start constructing a new run in R?

10 read the first block from each run R, to Z[z]

11 while 7 contains at least one item do

12 select the minimal item and move it to O

13 if the corresponding Z[z] is empty then

14 | read the next block from R, (if any) to Z[1]
15 if O is full then write O to R? and empty O

16 if O is not empty then write O to R? and empty O

Summary

Memory layout
e Sort phase (pass 1): M
= Input buffer Z: M pages

_—
Input buffer Z
M pages

* Merge phase (passes 2 and higher): M + 1
= Input buffer Z: M > 2 pages
= Qutput buffer O: 1 page

Input buffer 7 Output buffer O
M pages 1 page

Summary

Time complexity
* Single pass (regardless of the phase)
" Cread = Curite = PR
* Number of passes
= t=[logy(pr)]
e Overall cost
* cgs = t- (Cread + Curite) = [logy(pr) | - 2pR
Limitation of the overall number of passes
* Ingeneral...
" M=[/pr]
» Specifically for t = 2 (i.e., exactly 2 passes)

* M=1ypr]
NDBIOAS: Qery Languages | Lectures 2 5: Query Bvluation | 7.10.-4.11.2025 a5

Improved Approach

N-way external merge sort with priority queue
e Sort phase is modified

= |nstead of fixed-size initial runs...
= ... we generate them using a priority queue

— In particular, min-heap data structure is used
= The aim is to make the initial runs longer
* Memory layout: M/ +1+1
= Queue container C: M > 1 pages
= |nput buffer Z: 1 page
= Output buffer O: 1 page
NN -3 -0
— —— ——

Queue container C Input buffer Z Output buffer O
M pages 1 page 1 page

Sort Phase

Pass 1

e Once the queue is initialized, runs are generated on the fly

= Minimal item greater than or equal to the last value is always
extracted and replaced with another item from the input file

A B)|
¢ e e - (] o [T

Memory

Hard disk

R__

ISZ 72 68“26|63‘43‘32‘|M‘35‘ ‘ “

R3] - > >
w\ltlmlu» | o< /

Sort Phase

Pass 1 (cont’d)
e Two runs are obtained in our scenario

R! ‘11‘15‘19‘27‘ ‘27‘36‘43‘43‘ ‘49‘63‘68‘72‘ ‘81‘84‘92‘ ‘

ns] |

Rl R}

Impact summary

e Created initial runs will tend to be longer
= 2M blocks on average (instead of just M)

— ppg inthe best case
— Min the worst case

o = number of the runs will tend to be lower

Algorithm

Improved sort phase (pass 1)

1 read blocks R[1], ..., R[M] (if any) from R to C
2 read block R[M + 1] (if any) from R to Z

3 while C contains at least one item do

4 start constructing a new run in R', put v < —oo

5 while C contains at least one item 7 > v do

6 let 7 be the minimal one, move ito O, put v < ¢
7 move the next item from Z (if any) to C

8 if Z is empty then

9 | read the next block from R (if any) to Z

10 if O is full then write O to R! and empty O

11 if O is not empty then write O to R! and empty O

Priority Queue

Min-heap data structure

e Complete binary tree

= Key associated with each node must be less than or equal to
keys of all its child nodes

— lL.e., the root node contains the minimal item among them all
e Array representation is possible
= Using a straightforward index arithmetic

@ i15|27|36|27|49|43|81‘
) @

o

Queue Container

Queue container C

* Two separate min-heap structures are in fact used
= Active heap with items greater than or equal to the last value

— And so values that can still be (actually all really will be) used in
the currently constructed run

= Inactive heap with items not satisfying the condition
* Both are represented as arrays
= Directly inside the container blocks
e Container initialization (line 1)
= Active heap is built from the input items, inactive heap is empty

|11‘15‘27‘36‘ ‘27‘49‘43‘81

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025 51

Queue Container

Queue container C (cont’d)
* Whenever an item is added to the container (line 7)
= |tis added to the active / inactive heap based on the condition

MEEE B

* Whenever the active heap is fully depleted (line 5)
= |.e., the current run terminated, both the heaps are swapped

2

wlafs] | ||]]

Nested Loops Join

Nested Loops

Binary nested loops

* Universal approach for all types of inner joins
= Natural join, cross join, theta join
— l.e., arbitrary joining condition can be involved

= Support possible duplicates
= Requires no index structures

* Not the best option in all situations, though
= Suitable for tables with significantly different sizes

Basic idea
e Outer loop: iteration over the blocks of the first table
* Inner loop: iteration over the blocks of the second table

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

54

Nested Loops

Sample input data
* Tables R and S to be joined using a value equality test

R ‘21‘84‘56‘19"41‘72‘69‘35”56‘84‘ ‘ ‘

S ‘31‘56‘75‘43"88‘21‘43‘14"92‘52‘25‘81"72‘37‘64‘35”14‘64‘ ‘ ‘

Basic setup
e Memory layout: 1 +1+1
= Input buffer Z: 1 page
= |Input buffer Zs: 1 page
= : 1 page
H-N -]
—— —— ——

Ir Is o
1 page 1 page 1 page

Nested Loops

Basicsetup (1 +1+ 1)
e Another pair of loops is used for joining tuples in the memory

D A —

yyyyyy

dddddddd

BN

R |21‘84‘56‘19‘ ‘41‘72‘69‘35‘
- > >

S ‘31‘56‘75‘43"88‘21‘43‘14"92‘52‘25‘81"72‘37‘64‘35”14‘64‘ ‘ “
> > >

T‘ - }: ~

Algorithm

Basicsetup (1 +1+ 1)

1 foreach block R from R do
2 read Rinto Zy

3 foreach block S from S do

4 read Sinto Zg

5 foreach item rin Zy do

6 foreach item sin Zg do

7 if and s satisfy the join condition then

8 join rand s and put the result to O

9 L if O is full then write O to T, empty O

10 if O is not empty then write O to 7 and empty O

Observations

Time complexity
e Basicsetup (1 +1+1)
" CNL = PR+ PR DS
* = smaller table should always be taken as the outer one
General setup
* Multiple pages are used for both the input buffers
* Memory layout: Mp + Mg+ 1
= Input buffer Zx: Mg pages
= |nput buffer Z5: Mg pages
= : 1 page

EN-N - 5E -3 - [
H_/

Ir Is o

MFp, pages Mg pages 1 page

Algorithm

General setup (Mpz + Mg+ 1)

1
2
3
4
5
6
7
8
9

foreach group of blocks R, ..., Ry, (if any) from R do
read these blocks into Zx
foreach group of blocks S, ..., Su (if any) from S do

read these blocks into Zg
foreach item rin Z do
foreach item sin Zg do
if rand s satisfy the join condition then
join rand s and put the result to O
L if O is full then write O to T, empty O

10 if O is not empty then write O to 7 and empty O

Observations

Time complexity
e General setup (Mp + Mg+ 1)
" cn = pr + [pr/MR] - ps
* = there is no reason of having Mg > 2
Standard setup
* Memory layout: Mrp +1+1
= |nput buffer Zp: Mg pages
= Input buffer Zs: 1 page
= : 1 page

EN-E -8 - [
— S S
Ir Is o

Mp, pages 1 page 1 page

Standard Approach

Standard setup (My + 1 + 1) with zig-zag optimization
* Multiple pages are used just for the outer table

Ir
S
R |21‘84‘56‘19‘|41‘7Z‘69‘35H56‘84‘ ‘ “
o> > >
S ‘31‘56‘75‘43"88‘21‘43‘14"92‘52‘25‘81"72‘37‘64‘35”14‘64‘ ‘ “
o> > > “« €« <«

T‘ - }: J

Observations

Zig-zag optimization
* Reading of the inner table S

= Odd iterations normally
= Even iterations in reverse order

Time complexity
e Standard setup (Mg + 1+ 1)

* e = pr + [pPrR/MR] - ps (without zig-zag)
= ¢y = pr+ [pr/MR] - (ps—1) + 1 (with zig-zag)

Special Cases

Very small tables
* Smaller table fits entirely within the memory, i.e., pr < My
" cNL = PR+ Ps
Non-brute-force replacement for inner loops
* BT tree index exists in S on attribute A that is unique in S
* ey =pr+ngr- (Isa+1)
— If Ris organized as a heap

" ey =pr+ Isa+psa+ Vga
— If Ris sorted with respect to A

* Sis a hashed file over attribute A that is unique in S
e =pr+ Vra- Cs
— If Ris sorted with respect to A

Non-Binary Nested Loops

Non-binary nested loops

* Nested loops algorithm for multiple tables at once
= In particular, let us have tables Rq,...,R,forn>2,neN
— Let their sizes be p1, ..., pn

* Solution

= We just need to embed more loops into each other
* Memory layout: M; +---+ M, + 1

= Input buffers Z;: M; pages for each table R;

] : 1 page
* Overall cost with zig-zag optimization

© e = (p1)+(Tpr/ M)+ (b2 — M) + Mo+ -+

(Ipu/M0T - Thama /M] - (pn = M) + M)

Memory Setup

Memory layout: M, + --- + M, + 1
e Optimization problem
= Finding integer M; minimizing the overall cost cy,
e Heuristics

= Let M > nbe all the available pages (for input buffers)
= Let p; < --- < p, (without loss of generality)
= Allocate one page for the innermost table, i.e., M,, = 1
= Allocate the remaining pages uniformlyto R1,..., R,—1
- lLe,letm=|(M—-1)/(n—1)]
— Then put M; = mforeachic {1,...,n— 1}
— It may happen that some pages will still be unallocated
— There will be exactly u = (M — 1) — (n — 1) - mof them
— Assign these remaining pages (if any) between smaller tables
- le, M;+=1foreachic {1,...,u}

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025 65

Memory Setup

Memory layout (cont’d)
* Example #1
= n = Jtables, M = 11 pages (for input buffers)
= Allocation: (5,5,1)

IIIII IIIII - D

Ia
M = 5 pages M, = 5 pages Ms=1 1 page

* Example #2
= n =5 tables, M = 11 pages
= Allocation: (3,3,2,2,1)

EEN-NEN-BN-EN-N-=

I I Is
M;=3 My=3 M3=2 M4=2 Ms=1 1page

Sort-Merge Join

Sort-Merge Join

Sort-merge join algorithm (or just merge join)
e Inner joins based on value equality tests only

= Basic version without duplicates
— Could be extended to support them, though

e Suitable for tables with relatively similar sizes

= Especially when they are already sorted
= Or when the final result is expected to be sorted

Phases
e Sort phase
= Both tables are externally sorted, one by one (if not yet)
¢ Join phase
= |tems are joined while simulating the merge of the two tables

Basic Approach

Sample input data
* Input tables R and S

R ‘65‘19‘35‘92”49‘31‘ ‘ ‘

S ‘52‘94‘38‘71"92‘41‘63‘19"75‘54‘46‘68"15‘27‘22‘43"11‘50‘49‘ ‘

Sort phase
* Resulting sorted tables

R ‘19‘31‘35‘49”65‘92‘ ‘ ‘

S’ ‘11‘15‘19‘22‘ ‘27‘38‘41‘43‘ ‘46‘49‘50‘52‘ ‘54‘63‘68‘71‘ ‘75‘92‘94‘ ‘

Basic Approach

Join phase
* Blocks from the sorted tables are processed one by one

dddddddd

4 |19|31|35|49H55‘9z‘ ‘ “
-

S’ ‘11‘15|19‘22"27‘38‘41‘43"46‘49‘50‘52"54‘63‘68‘71"75‘92‘94‘ “
>

r [-~k /

Algorithm

Join phase

1 read block R’[1] to Zx and block S’[1] to Z
2 while both Z and Zs contain at least one item do

3 let rbe the minimal item in Z and s minimal item in Zg
4 if rand s can be joined then

5 join rand s and put the result to O

6 if O is full then write O to 7 and empty O

7 remove both rfrom Zy and sfrom Zg

8 else remove the lower one of rfrom Zy or s from Zg

9 if 75 is empty then read the next block from R’ (if any)
10 if Z5 is empty then read the next block from &’ (if any)

11 if O is not empty then write O to 7 and empty O

Observations

Join phase
e Memorylayout: 1 +1+1
= Input buffer Zy: 1 page
= Input buffer Zs: 1 page
= Qutput buffer O: 1 page
o0 -]
—— —— ——

Ir Is o
1 page 1 page 1 page

Time complexity
* Sort phase
¢ Join phase
" CM3 = PR+ DS

Extended Version

Duplicate items
* Possible duplicates in one table only
= Letit be S (without loss of generality)
= Algorithm modification is straightforward...

— Having successfully joined rand s, we just remove s from Zg
and not rfrom Zp, (line 7)

I,
" .I,

‘28‘30‘31‘34“35‘38 ‘46‘48‘50‘51‘

L0

‘14‘19‘28‘28‘ ‘37|40|40|40| |40|40|49‘52‘
A
T

L

5

‘52‘57‘61‘65‘

‘54‘54‘57‘57‘

3

5

Is

Extended Version

Duplicate items
* Possible duplicates in both tables

= All matching pairs of rand sjust need to be joined...
= Unfortunately, size of input buffers might not be sufficient

— Since we may span block boundaries, even repeatedly

I,
S

s e[|l v

N

][| ||]

=\

5

‘31‘31‘31‘34‘

3

2] 8 [10]a]

5

Is i

Integrated Approach

2-pass integrated sort-merge join with priority queue
e Sort phase (pass 1)
= Tables are processed one by one
— They are not sorted entirely, though
= Only initial runs are constructed
— Using just the sort phase (pass 1) of the external sort algorithm
— Priority queue is involved to make these runs longer
— And so their overall number lower
e Join phase (pass 2)
= The same idea as in the basic sort-merge approach
— We only have more runs within each presorted table

Integrated Approach

Sort phase (pass 1)
 Resulting initial runs within tables R! and S*!

R s nss s 2
R}
St ‘19‘38‘41‘46"52‘54‘63‘68"71‘75‘92‘94"11‘15‘22‘27”43‘49‘50‘ “

St 8y

Integrated Approach

Join phase (pass 2)
 All runs from both the tables R' and S' are merged at once

ye
-, | - (M S o[-

A

Memory

Hard disk

R! |19|31|35|49‘ ‘55‘92‘ ‘ “
R} -

St ‘19‘38‘41‘46‘ ‘52‘54‘63‘68‘ ‘71‘75‘92‘94‘ ‘11‘15‘22‘27‘ ‘43‘49‘50‘ “
St - 83 -

r [>~k /

Algorithm

Join phase (pass 2)

read R1[1] from each run in R' to Zy[1], the same for S*
while both Z; and Zs contain at least one item do
let rbe the minimal item in Zp and s minimal item in Zg
if 7and s can be joined then
join rand s and put the result to O
if O is full then write O to 7 and empty O
remove both rfrom Zr and s from Zg
else remove the lower one of rfrom Zy or s from Zg
9 if the given Zp[z] is empty then refill it from R}
10 if the given Zg[1] is empty then refill it from S}

N oo o W

(o]

11 if O is not empty then write O to 7 and empty O

Observations

Join phase (pass 2)
* Memory layout: Mp + Mg+ 1

= Input buffer Z: My pages = number of runs in R!
= Input buffer Zs: Mg pages = number of runs in S*

= : 1 page
EN - N - @@ -3 - D

Input buffers Zr and Zg
Mp + Mg pages 1 page

Time complexity
* Sort phase: ceory = 2pr + 2ps
* Join phase: ¢join = Pr + Ps
o Overall cost: Cy; = Coort + Cjoin = 3(Pr + Ps)

Observations

Optimized setup
* Motivation
= Balanced memory usage across both phases
* Sort phase (pass 1)

= Required memory: M+ 1+ 1 pages
= Let M = [/p], where p = max(pg, ps)
— As if we wanted 2 passes for the external sort
= |f M pages are used for the priority queue container...

— Expected length of initial runs should be 2M
— And so the expected number of all runs ps/2M + pr/2M <

p/2M+ p/2M = 2p/2M = p/M =~ p/\/p~ /D~ M
* Join phase (pass 2)
= Required memory: Mpr + Mg+ 1 pages
== Mp+ Mg~ M

Observations

Optimized setup (cont’d)
¢ In other words...

= The same number of)M pages should be sufficient for both...

— Queue container C during pass 1, and
— Input buffers 7 and Zg during pass 2

1 +Q+Q

Queue container C A 9]
M pages 1 page 1 page

ﬁ

v R
——
o

~
Input buffers Zg and Zg
Mp + Mg pages 1 page

Hash Join

Hash join approaches
* Basic principle
= |tems of the first table are hashed into the system memory
= |tems of the second table are then attempted to be joined
e Limitations
= Inner joins based on value equality tests only
— Including possible duplicates
= Not suitable for small active domains
e Particular approaches
= Classic hash join, Simple hash join, Partition hash join,
Grace hash join, and Hybrid hash join

Classic Hashing

Classic hash join

¢ Build phase
= Smaller table (let it be R) is hashed into the system memory

— le., itis sequentially loaded into the memory, block by block
— Allits tuples are then emplaced into the hash container

e Hash function his assumed for this purpose

= |ts domain are values of the joining attribute A
= |ts range provides H distinct values

e Hash container internally contains H buckets
= |ts overall size will inevitably be somewhat larger than pgr
- Letussay M = [F- pr] pages for some small factor F
¢ Probe phase
= |tems from the larger table S are attempted to be joined

Build Phase

Build phase
e Tuples from the smaller table are hashed into the memory
= E.g., hash function h(A) = A mod 2 is assumed

I_H

T .

h(A) =0 h(A) =1

Memory

Hard disk

R

|25|14|38l42"57‘69‘13‘93"84‘57‘92‘6”43‘ ‘ ‘ “

- > >

Probe Phase

Probe phase
e Tuples from the larger table are attempted to be joined

([
[se[ss[]| [s7]eo] 5]
" o [Elaels] o [ws
[s2[e[T J|[fsr]e]]
R(A) =0 h(4) =1
Memory
Hard disk
S ‘87|14|65|19"28‘57‘6‘44"72‘35‘91‘16"14‘37‘93‘28”91‘28‘ ‘ “
- > >
rC1 -~k /

Algorithm

Build phase

1 foreach block R from R do
2 read RintoZ

3 foreach item rin Z do

4 calculate hash value h < h(r.A)
5 add rinto bucket i in H

Algorithm

Probe phase

1 foreach block Sfrom S do

2 read Sinto Z

3 foreach item sin Z do

4 calculate hash value h < h(s.A)

5 foreach item rin bucket /. in H do

6 if 7and scan be joined then

7 join 7and s and put the result to O

8 L if O is full then write O to 7 and empty O

9 if O is not empty then write O to 7 and empty O

Observations

Memory layout
e Build phase: M+ 1
= Hash container 7{: M = [F - pr| pages
= Input buffer Z: 1 page

Hash container H Input buffer 7
M pages 1 page

* Probe phase: M+ 1+1
= Hash container 7{: M pages (preserved from the build phase)
= Input buffer Z: 1 page

= : 1 page
EN-N -8 -
%(—/ —— ——
Hash container Input bufferZ Output buffer O
M pages 1 page 1 page

Observations

Time complexity
* Build and probe phases
" Cpuild = PR
" Cprobe = PS
* Overall cost
" CCH = Cbuild + Cprobe = PR + DS
Summary
* Interesting approach as for its efficiency

= However, usable only when the smaller table can entirely be
hashed into the system memory...

Simple Hashing

Simple hash join
* Basicidea
= During each pass, just a subset of all tuples is considered

— These are processed via analogous build and probe routines
— The remaining tuples are postponed for the following passes

e Partition function p is assumed for this separation

= Its domain are again values of the joining attribute A
= |ts range provides P distinct values

* Obvious requirement

= Both functions p and & need to be mutually orthogonal
= E.g.: p(A) = Amod 4and h(A) = A mod 2 will not work

— Because all items in a partition would either be even or odd

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

91

Build Phase

Build phase (partition 0)
e |tems from the smaller table are either hashed or postponed

= E.g., partition function p(A) = A mod 4 and hash function
h(A) = (A/4) mod 2 are assumed

(—J% p(4) = oTpm) 40

ol [||l]]
" 7 |[alulals] 7 o]l |
L]
emory h(4) =0 h(4) =1 p(4) € {1,...,3}
Hard disk
R |28‘17‘51‘16"52‘40‘19‘53"10‘32‘36‘77‘5 R
- > >

Probe Phase

Probe phase (partition 0)

el
[l T [Jlsefre]z]]

" 7 |slslall| 7 sl |
vy A =0 h4) =1 p(4) € {1,...,3}
Hard disk (
S “8‘33‘52‘31‘ ‘95‘22‘36‘52‘ ‘49‘74‘63‘11‘ B St
- > >

L [1 | J
- <
r |

Algorithm

Overall procedure

put R «+ R

put S? S

foreach partition p € {0,...,P— 1} do

execute build phase for partition p over R? and create
postponed RP+!

5 execute probe phase for partition p over S? and create

postponed SP*!

6 empty hash container H

A W N R

Algorithm

Build phase (for partition K)

1
2
3
4
5
6
7

8
9
10

foreach block R from R do

read RintoZ

foreach item rin Z do

calculate partition value p < p(r.A)
if p = Kthen

calculate hash value h < h(r.A)
add rinto bucket i in H

else

add rinto partition buffer P
if P is full then write P to RX*! and empty P

11 if P is not empty then write P to R5*! and empty P

Algorithm

Probe phase (for partition K)

1 foreach block S from S do

2 read Sinto Z

3 foreach item sin Z do

4 calculate partition value p < p(s.A)

5 if p = Kthen

6 calculate hash value h < h(s.A)

7 foreach item rin bucket 4 in H do

8 if and s can be joined then

9 L join rand s and put the result to O

10 if O is full then write O to T, empty O

\AA4

Algorithm

Probe phase (for partition K) (cont’d)

AAA
11 else
12 add s into partition buffer P
L if P is full then write P to SX*! and empty P

14 if O is not empty then write O to 7 and empty O
15 if P is not empty then write P to S**! and empty P

Observations

Memory layout
e Build phase: M +1+1
= Hash container H: M = [F- (pr/P)] pages
= Input buffer Z: 1 page
= Partition buffer P: 1 page

EN- N -3 -0
— S S

Hash container H Input bufferZ Partition buffer P
M pages 1 page 1 page

Observations

Memory layout
* Probe phase: M+1+1+1
= Hash container #: M pages (preserved from the build phase)
= Input buffer Z: 1 page
= Partition buffer P: 1 page
= Qutput buffer O: 1 page

HEE- N -8 -8 -
E== e

Hash container H. Input bufferZ Partition buffer ? Output buffer O
M pages 1 page 1 page 1 page

Observations

Time complexity
e Build and probe phases

" Cpuild ~ (pR‘l' P pR) (PT %PR
=pR+2—[(P 1)+ (P
=pR+21[(P D+A) |

=P-pr
* Analogously ¢probe = P+ pg

¢ Overall cost
" CsH = Cbuild + Cprobe = P (PR + Dg)
Summary

~2)+ -+ ()] pr
- D)=

) i)

pr+ (P—1)pg

* We are now able to deal even with larger tables
= However, overall cost is still not efficient enough...

Partition Hashing

Partition hash join
* Basic principle
= Both tables are first partitioned
— Using partition function p again
= Pairs of the corresponding partitions are then joined together
— Using the classic hash join approach
— Or actually even nested loops if desired

Overall procedure

1 split R and create partitions R, ..., Rp_1
2 split S and create partitions Sy, ..., Sp_1

3 foreach partition p € {0,..., P— 1} do

4 | join partitions R, and S,,

Partition Phase

Partition phase (for table R)
* Tuples of a given table are split to disjoint partitions

=

p(4) €{0,...,3}

Memory

Hard disk
\4

R

|89l21l46|15"68‘43‘78‘93‘5 Ro R1 R2 R3

- > >

Join Phase

Partition phase
* Resulting partitions for our sample scenario

ma[[almnle W | | s [mnwa |

Rwase nesa vs | s | ssws |

7o [l 2 s 5 [l [

Rs ‘15‘43‘79‘35‘ ‘71‘55‘43‘ “ S3 HE ‘
Join phase

e Pairs of the corresponding partitions are then joined together
= Rgand Sy, R1 and Sy, ...

Algorithm

Partition phase
* Table R is assumed, partitioning of S is analogous

1 foreach block 1t from R do

2 read RintoZ

3 foreach item rinZ do

4 calculate partition value p < p(r.4)

5 add rinto partition buffer P,

6 if P, is full then write P, to R, and empty P,

7 foreach partition p € {0,..., P— 1} do
s | if P, is not empty then write P, to R, and empty P,

Observations

Memory layout
e Partition phase: 1 + P

= |nput buffer Z: 1 page
= Partition buffers 77: P pages

Input buffer Z Partition buffers P
1 page P pages

Time complexity
¢ Partitioning phase
" Csplit ¥ 2 PR+ 2 ps
* Overall cost (with classic hash join involved)

" CPH = Csplit + P Ccu & Csplit + P[% + p—ﬁg]“ 3 (pr + ps)

Grace Hashing

Grace hash join
* Just ordinary partition hash join
= ... with balanced memory requirements across all the phases

Memory setup

o Letm~F-pgr
= |.e., square root of the size of an in-memory container that
would roughly be needed for hashing of the smaller table R

e Partition function p is chosen to ensure that P = m

= = m partitions will be created (for R as well as S)
= = expected size of each partition of R should be...

- s=pr/P=pr/m=pr/VF pr~/pr/Fpages
= = space needed for hashing each of these partitions...

- F-s=F-\/pr/F=~/F-pr~ mpages

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025 106

Grace Hashing

Memory setup (cont’d)

¢ l.e., size P of partition buffers P (partition phase) and size M
of hash container (build and probe phases) are equal to m

N - EN- N
—— e
A Partition buffers P
1 page P pages
EN - N - 0O
—_— ——
Hash container H. o
M pages 1 page
HE-N -0 -0
—_— —— ——
Hash container 1 T 9
M pages 1 page 1 page

Hybrid Hashing

Hybrid hash join
e Basically an improvement of the simple hash join approach

= Instead of using just one buffer for all items to be postponed...

= ... we directly split them to separate partitions
— l.e., asin the partition hash join approach
* In other words...
= Partitions 0 are joined directly during the first pass
— Using the altered build and probe phases
= All the remaining partitions are pairwise joined subsequently
— Using the classic hash join approach

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

108

Build Phase

Build phase
e |tems from the smaller table are either hashed or postponed

= However, when they are to be postponed, they are branched
to individual separated partitions

* f_)%
Lol T J[ss] [T]
[TTT T TT]

h(A) =0 h(4) =1

Memory

Hard disk

‘10 ‘32 ‘36 ‘77

‘52 ‘40 ‘19 ‘53

R |28 ‘17 ‘51 ‘16‘

B Ri,...,Rs
> > >

Probe Phase

Probe phase

p(4)=0 | p(4) #0

BEEN
h(A)=0 h(4) =1
Wemory p(4) €{1,...,3}
Hard disk (
S‘lslsalszlsl‘ ‘49‘74‘63‘11‘5 Siyeeny S3
> > >
A ok J

‘95‘22‘36‘52‘

Algorithm

Overall procedure

1 execute build phase over R, hash items from partition 0
and create postponed partitions Rq,..., Rp_1

2 execute probe phase over S, join items from partition 0
and create postponed partitions Sy, ..., Sp_;

3 foreach partitionp € {1,...,P— 1} do

4 | join partitions R, and S,

Algorithm

Build phase
1 foreach block R from R do
2 read RintoZ
3 foreach item rin Z do
4 calculate partition value p < p(r.A)
5 if p = 0 then
6 calculate hash value h < h(r.A)
7 add rinto bucket hin H
8 else
9 add rinto partition buffer P,
10 if P, is full then write P, to R, and empty P,

Algorithm

Build phase (cont’d)

AAA
11 foreach partitonp € {1,...,P— 1} do
12 L if P, is not empty then write P, to R, and empty P,

Algorithm

Probe phase

1 foreach block Sfrom S do

2 read SintoZ

3 foreach item sin Z do

4 calculate partition value p < p(s.4)

5 if p = 0 then

6 calculate hash value h < h(s.A)

7 foreach item rin bucket i in H do

8 if 7and s can be joined then

9 L join rand sand put the result to O

10 if O is full then write O to T, empty O

\AA4

Algorithm

Probe phase (cont’d)

AAA
11 else
12 add sinto partition buffer P,
13 L if P, is full then write P, to S, and empty P,

14 if O is not empty then write O to 7 and empty O
15 foreach partitonp € {1,..., P— 1} do
16 | if P, is not empty then write P, to S, and empty P,

Observations

Memory layout
* Build phase: M+ 1+ (P—1)
= Hash container H: M = [F- (pr/P)] pages
= Input buffer Z: 1 page
= Partition buffers 7: P — 1 pages

Hash container H Input buffer Z Partition buffers P
M pages 1 page P — 1 pages

Observations

Memory layout
* Probe phase: M+ 1+ (P—1)+1
= Hash container #: M pages (preserved from the build phase)
= Input buffer Z: 1 page
= Partition buffers 7: P — 1 pages
= Qutput buffer O: 1 page

Hash container 1. Input buffer 7 Partition buffers P Output buffer O
M pages 1 page P — 1 pages 1 page

Observations

Time complexity

* Build and probe phases for partition 0
- Cbuild%pR'*’pR'% :PR'(l‘l‘%):pR'(?—}la)
= Analogously cprobe = ps- (2 — 1%)
e Overall cost (with classic hash join involved)
" CHH = Cpuild T Cprobe + (P —1) - ccu
~pr- (2= F)+ps- (- F) + (P D[% + 5]
~ (83— 2) - (pr+ps)

Query Evaluation

Sample Query

Database schema
* Movie (id, title, year, ...)
* Actor (movie, actor, character, ...)
= FK: Actor[movie] C Movie[id]
Sample query
e Actors and characters they played in movies filmed in 2000

= SELECT title, actor, character
FROM Movie JOIN Actor

WHERE (year = 2000) AND (id = movie)

* (Movie X Actor)((year = 2000) A (id = movie))
[title, actor, character]

" Ttitle,actor,character (U(year=2000)/\(id:movie) (MOVie X ACtOF))

Sample Query

Sample query (cont’d)
e Actors and characters they played in movies filmed in 2000

® Ttitle,actor,character (J(VEar=2OOO)A(id:movie) (Movie X ACtOI‘))
Projection [title, actor, character]
Selection (year = 2000) A (id = movie)

Cross join

[ose]| [e |

Query Evaluation

Basic idea
e SQL query — RA query — evaluation plan — query result
Evaluation process

e (1) Scanning [scanner]
= Lexical analysis is performed over the input SQL expression
— Lexemes are recognized and then tokens generated

* (2) Parsing [parser]
= Syntactic analysis is performed
— Derivation tree is constructed according to the SQL grammar
¢ (3) Translation
= Query tree with relational algebra operations is constructed

Query Evaluation

Evaluation process (cont’d)
e (4) Validation [validator]
= Semantic validity is checked
— Compliance of relation schemas with intended operations
e (5) Optimization [optimizer]
= Alternative evaluation plans are devised and compared

— In order to find the most efficient plan
— Based on their evaluation cost estimates

e (6) Code generation [generator]
= Execution code is generated for the chosen plan
* (7) Execution [processor]

= Intended query is finally evaluated
— And the yielded result provided to the user

Query Evaluation

Query tree
* Internal tree structure

= Leaf nodes = input tables
= Inner nodes = individual RA operations (o, 7, X, X, ...)

* Root node represents the entire query
= Nodes are evaluated from leaves toward the root
Query evaluation plan
* Query tree
e For each inner node...

= Calculated statistics (number of tuples, blocking factor, ...)
= Selected algorithm (limited by context and available memory)
= Estimated cost

e Overall cost

Sample Plan #1

Cross join
m1 = njr - n4 = 100 000 000 000
b = (bM . bA)/(bM + bA) =8
p1 = n1/by = 12 500 000 000
Nested loops

M; =25+1+1=27

& = par + (par/25) - pa = 10 010 000
¢y = p1 = 12500 000 000

Sorted file (year)
nas = 100 000

by =10

par = 10000

Vs year = 50

B tree index (year)
M M.year = 100

Ingyear =3

Projection [title, actor, character]
ng = ng = 20000

b3 < 50

p3 = n3/bs =400

c5 = pa =2500

cj = p3 =400

N/ Selection (year = 2000) A (id = movie)
ng =np - (1/VM4yem') . (1/TLM) = 20000

by =b; =8

D2 =n2/b2 = 2500

c3 = p1 = 12 500 000 000
¢y = pa =2500

Heap file
n4 = 1000 000
by =40

pa = 25000

Evaluation Plan Cost

Overall evaluation cost

e Let us first assume that all intermediate results are always
written to temporary files and so each involved operation...

= Reads its inputs from / writes its output to a hard drive

e Overall cost then equals to the sum of all the partial costs
Cost of Plan #1

* M= 25414 1 memory pages
c=[q+d]+ G+]+ [g]
o c¢=[pa+ (pa/25) - pa+ pi] + [p1 + po] + [p2]

c=|

[

10 010 000 -+ 12 500 000 000] + [12 500 000 000 + 2 500]+
2 500]

* ¢= 25010015000

Sample Query

Intuitive optimization
e Actors and characters they played in movies filmed in 2000
= SQL expression

SELECT title, actor, character
FROM Movie JOIN Actor ON (id = movie)
WHERE (year = 2000)

= RA expression

Ttitle,actor,character (U(year:2000) (MOVie X (id=movie) ACtOI’))

Sample Plan #2

Projection [title, actor, character]
ng = ng = 20 000

bg + 50

p3 = n3/b; = 400

c3 = py = 2500

c3 = p3 =400

Theta join [id = movie]
ni =n4 = 1000 000
by = (bar-ba)/(bar +ba) =8
P11 = n1/b1 = 125000

Nested loops

My =25+1+1=27

¢f = pu + (pn/25) - p4 = 10010 000
¢¥ = p; = 125000

Selection (year = 2000)
x/. 1y = ny - (1/Vaz year) = 20 000

by =by =8

p2 = n2/by = 2500

¢§ = p; =125000

Sorted file (year) 8 = py =2500
nyr = 100 000

by = 10

par = 10000

VM.year =50 | Movie | | Actor | Heap file

BT tree index (year) n4 = 1000 000
MM year = 100 \/ bs = 40

IM_yem =3 pa = 25000

Sample Plan #2

Cost of Plan #2

Again M = 25 + 1 + 1 memory pages

c= [+ d]+ [+ &+ [c]

¢ = [pm+ (Pm/25) - pa + p1] + [p1 + p2) + [p2]

¢ = [10 010 000 + 125 000] 4 [125 000 + 2 500] + [2 500]
c= 10265000

= That is approximately 2 400 times better than the first plan

Pipelining

Pipelining mechanism
* Intermediate results are passed between the operations
directly without the usage of temporary files on a disk
= And so just within the system memory
— It may even be possible to do it in-place without extra pages

e Unfortunately, such an approach is not always possible...

Cost of Plan #2 with pipelining
e Still M =25+ 1+ 1 memory pages

o« o= [+ X+ DX+ W+ X

= Joined tuples are filtered and projected immediately in-place
e ¢=10010000

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

130

Query Optimization

Objective = finding the most optimal query evaluation plan
* Itis not possible to consider all plans, though
= Simply because there are far too many of them
= And so pruning and heuristics need to be incorporated
Optimization strategies
e Algebraic
= Proposal of alternative plans using query tree transformations
e Statistical
= Estimation of costs and result sizes based on available statistics
e Syntactic
= Manual modification of query expressions by users themselves

— In order to involve plans that would otherwise be unreachable
— Breaches the principle of declarative querying, though

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025 131

Statistical Optimization

Statistical Optimization

Objective
» Capability of calculating necessary result characteristics...
= Of both the final result as well as all intermediate ones
— lLe., all individual nodes within a given evaluation plan tree
e ... so that the overall cost can be estimated
= And thus alternative plans mutually compared
Basic statistics
* Data file for table R

= nr number of tuples, sy tuple size, br blocking factor
" pr number of pages
= Hashed file: Hr number of buckets, C'r bucket size

¢ Index file for attribute A from table R
= Bt tree: I 4 tree height, pr 4 number of leaf nodes

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

133

Statistical Optimization

Additional statistics
* Provide deeper insight into the active domain

= May even be implicitly derivable from index structures
= Unfortunately, they may also be missing or unavailable

— Especially as for intermediate results
e Vpk 4 number of distinct values
* ming 4 and maxp 4 minimal and maximal values

¢ Histograms
= Provide even more accurate understanding of the domain
— And so better estimates

= Especially useful for non-uniform distributions

Histograms

Histogram = approximate representation of data distribution
e Active domain is split into sub-intervals called buckets
= Usually consecutive and non-overlapping
* Frequency of values is determined for each one of them
= |.e., count of values that fall into that bucket
Sample data
* Integer values from interval [15, 26] and their frequencies

-JJ]]L-:

3 2 4 3 12 7 5 6 1 0 3 2

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

A A

MINR. A MaTg.A

Histograms

Equi-width histogram
* Buckets have equal widths (count of distinct values)
* Discrete domains: average frequencies are stored
= So that frequency [4 (v) can be retrieved for any value v
e Continuous domains: probabilities are stored instead
= So that probability ¢5 4 () can be retrieved for any bucket b

= e

3.0 73 4.0 17

—
3 2 4(3 122 7|5 6 1|0 3 2
13 14|15 16 17|18 19 20|21 22 23|24 25 26|27 28

Histograms

Equi-depth histogram
* Buckets are designed so that they have equal depths

= |.e., absolute frequencies are the same

— Or at least almost the same
— Since real-world data will likely not be nice enough

* We also need to explicitly store bucket placement information
= Since it is not derivable automatically

L] |

3.0 12.0 6.0 24

3 2 4 31217 5|6 1 0 3 2

13 14|15 16 17 181920 21|22 23 24 25 26|27 28

Size Estimates: Selection

Selection: T'= 0,(E)
Tuple size

¢ ST = SE

= Tuples are just filtered out and so their size remains untouched

Blocking factor

* br=bg
Number of tuples

* Basicidea: ny = [ng- 7,

e 1, € [0, 1] is an estimated reduction factor

= Describes how much the original tuples will be reduced

— Depends on a particular condition ¢
— As well as particular available statistics...

Size Estimates: Selection

Reduction factors

* Equality test with respect to a unique attribute
= 1, =1/ng(and so ny = 1)
* Equality test with respect to a non-unique attribute
"1, =1/Vga
= 1, = fp.a(v)/ng if histogram for discrete domains is available
— As a consequence, nr = g 4(v)
= 1, = tg a(bucket(v)) analogously for continuous domains
= 1, = 1/10 when no information is available at all
» Estimates using constants in general
= May work well, not bad, as well as totally wrong...

— But when nothing better is available, it must simply suffice
— Of course, particular constant is just a matter of discussion

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

139

Size Estimates: Selection

Reduction factors (cont’d)
* Range query for two-sided intervals I = [v;, v;| and other
= 1, = (v2 — v +¢)/(mazg 4 — ming 4 + 1)
" 1o = (LyerfBalv)/ne
= 7, = (v2 —v1)/(Mmazg 4 — ming 4)
T = Zbe buckets(1) tE-A(b)
=, =1/4
* Range query for one-sided intervals (—oo, v5] and (—oo, v5)
= Works analogously...
=1, =1/2
— Unfortunately, there are certain undesired consequences...
— E.g., reduction factors of A < 1and A < 1000 are the same

* Range query for one-sided intervals [v;, 00) and (v;, o)
= Works analogously again...

Size Estimates: Selection

Reduction factors (cont’d)
e Conjunction: p; A ©o
" T = Toy T
= Independence of both conditions is assumed
¢ Disjunction: p; V ¢,
" T =Ty 1 Tpy — Ty~ Tipn
* Negation: — ¢,
"o =1—r1y
* ...
Improved estimates might also be useful for access methods
* Since it is also about selection
= However, technical possibilities of data files must be respected

Size Estimates: Projection

Projection: T'= 7,, . 4. (F)
Tuple size
e sp is simply calculated using sizes of all preserved attributes
Blocking factor
e bp=|B/sr]
Number of tuples

* Default SQL projection without the DISTINCT modifier
= |.e., removal of potential duplicates is not performed
" ny=mng

* With duplicates removal enabled
= np = ng if at least one key of F'is preserved

Size Estimates: Joins

Inner joins: T'= Ep x Egor Egr M Egor Ep X, Eg
Tuple size
® S7 A Sp+ Sg
= Less for natural join since shared attributes are not repeated
Blocking factor

s |~ (] = L) = [
re ST - SR + Sg - B/bR+B/bS h br + bs

= Can be calculated exactly from the actual resulting tuple size
= As well as estimated just using the original blocking factors

Number of tuples
° np= [ng-ns-r,| with r, € [0, 1] for joining condition ¢
= Similar approach with reduction factors as in selections

Size Estimates: Joins

Reduction factors
¢ Cross join
= 1, = 1 (hence ny = np - ng)
* Foreign key lookup
= Let us assume that ¢ traverses a foreign key from R to S
— Then for each tuple r € R there must exist exactlyone s € S

= Andso 7, = 1/ng (hence ny = np)
* Equality test over an attribute Ain S

"1, =1/Vsa
= 1, = 1/ng specifically for a unique attribute (again 77 = nz)

Algebraic Optimization

Equivalence Rules: Selection

Commutativity of selection

¢ 0802 (0801 (E>> = 0901 (0902 (E>>
* Mutual order of selections can be changed
= Condition with higher selectivity can be applied first
— l.e., condition which yields a fewer number of tuples

Cascade of selections
° Oy (0801 (E)) = Op1 Ay (E)
¢ Direction —

= Selections can be merged together into just one
— Via a conjunction over the original conditions

e Direction
= Conjunctive selection can be split into separate selections

Equivalence Rules: Projection

Cascade of projections
¢ TAy (WA1 (E)) =TAy (E)
e —: only the outermost projection actually matters
= And so the inner one can entirely be omitted as meaningless
Commutativity of selection and projection
* Ta(0y(E)) = 0,(ma(E))
¢ Selection and projection can be mutually swapped

= < without any limitation
= —: only when all attributes in are still available
— When this assumption is not satisfied...

e ma(0,(E)) =ma(o,(maus(E)))
= Attributes S from E are those that are needed for the selection

Equivalence Rules: Joins

Commutativity of joins

e Crossjoin: By X Fr = Fy X F

e Natural join: £ X £y = Ey X F)

e Thetajoin: £y W, Fr = Fy M, [

e Operands of inner joins can be mutually swapped

= Such a thing is not possible for outer joins

Associativity of joins

* Inner joins are also associative (again, not outer)

e (Ey X Ey) X E3=F; X (Fy X E3)
o (Ey X Ep)) E3=F; X (Ey X Ej)

¢ (El Mo, EZ) M1 Ap2s Ey=Ey M1 Apis (E2 M o3 E3)
= Assuming that each ¢ ; only involves attributes from E; and E

Equivalence Rules: Joins

Integration of selection into joins
* Any inner join can be rewritten using theta join...

... and then combined with selection
= Intended for conditions of joining nature
— l.e., conditions that involve attributes from both the operands
° U@S(E1XE2) = E1 Mg E2
 Ops(Br My, Bp) = By My pp By
¢ USDS(EI M E2) =E Moy Aps Es
=y involves pairwise equality tests for all the shared attributes
— l.e., attributes occurring in both the operands

Equivalence Rules: Joins

Distribution of selection over joins

e Let us have an inner join wrapped by a selection...
= ... and this selection contains a condition of filtering nature
— l.e., condition with attributes from just one join operand

¢ It can then be executed before the join over just that operand
= And so the join evaluation cost can be decreased
° Ugos(El X Ez) = Ogos(El) X E2
= Assuming that, in particular, ¢ g involves attributes from E;
only

° U@S(El X Ez) EG@S(El) X E2
¢ UAOS(EI My, EQ) = U@S<E1> My, Ey

Equivalence Rules: Joins

Distribution of projection over joins
¢ Let us assume that attributes A; are from E; and A, from E,
L4 WAIUAQ(EI X EQ) = 7TA1(E1) X 7TA2(E2>
L4 WAIUAQ(El X EQ) = WAI(El) X 7TA2<E2)
= —: only works when all joining attributes are still available
© 7TA1 U As (El D EQ) = 7TA1 U As <7TA1 UN(El) X 7TA2 UN<E2>>
= Attributes N are those that are needed for the natural join
= Despite looking strange, the impact may be significant
— Since unnecessary attributes are removed earlier
o Tayuay (B Xy Ba) =ma, (B1) Xy ma,(En)
= —: analogous assumption again
¢ TA U Ay (El N EQ) =TA UA, <7TA1 UJi (El) Xo TAU Jo (E2)>
= Attributes J; from F; are those needed for the theta join

Equivalence Rules: Set Operations

Commutativity of set operations
e BFHUE=EUE,
e EENEy=ENE
» Set difference is not commutative

Associativity of set operations
e (B{UE)UE3=E U (EyU E3)
e (BxNEy)NE;=FE N (EyN Es)
» Set difference is also not associative

Equivalence Rules: Set Operations

Distribution of selection over set operations
° 0 (BN U Ey) =0,(E) Uoy(Es)
° 0 (BN N Ey) =0,(E1) Noy(E)
© 0p(B1\ B2) = 0,(Er) \ 0p(F)
Distribution of projection over set operations
o TA(E1 U Ey) =7ma(E) Uma(Er)
e Such a thing is not possible for intersection and difference

Recommendations

Basic heuristics
* Push filtering selections as close as possible to leaves
= To throw away not needed tuples as soon as possible

Push projections toward leaves the same way
= So that size of intermediate results is decreased

Integrate joining selections into joins
= |.e, rewrite other types of joins to theta joins

Simplify cascades of projections or selections
Transform sub-queries to joins whenever possible
= Since optimization only works for simple SELECT blocks

Exploit commutativity and associativity of operations
= Especially joins but also set operations

Examples
Sample transformations
© 7"'t'itle,actor,character(O (year=2000) A (id=movie) (MOVie X ACtOF)) // #1
© 7""citle,actor,character< O (id=movie) U(year:2000) (MOVie X ACtOI’)))
¢ Ttitle,actor,character (U(year 2000) O (id=movie) (MOVie X ACtOI‘)))
© 7Tt'itle,actor,character(O (year=2000) (MOVIE M(|d movie) ACtOF)) // #2
® Ttitle,actor,character (U(year:2000)(M0Vie) |>q(id:movie) ACtOF)

® Tltitle,actor,character <7Tid,title (U(year:QOOO) (MOVie)) X (id=movie)

7T'movie,actor,character(ACtor)) // #3

Algebraic Optimization

Objective
e Capability of finding alternative query evaluation plans

= Based on the so far introduced equivalence rules
— As well as other not covered rules and heuristics

e Ultimate challenge

= Space of all possible plans may be enormous
= And so significant pruning must be involved

Basic strategy for SPJ queries = select-project-join queries

* They allow to be approached at two separate levels...
= Single-relation plans / multi-relation plans

e But still an NP-complete problem

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025 156

Alternative Plans

Single-relation plans
* Finding the best access method for each individual table
= Including optional filtering selections and projections
Multi-relation plans
* Finding the best join plan for a given set of tables

= Only binary joins are usually assumed
= And so we just need to take into account all possible orderings

— Since inner joins are commutative and associative
Observation

* Optimal plan may not consist of optimal sub-plans
= And so it may happen that the truly best plan will not be found

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

157

Algorithm

Basic top-down approach
* Finding the best plan for a set of relations S
= Using a dynamic programming method

1 if the best plan for S'is already calculated then
2 P < fetch the best plan for S
return P
else
if S contains just a single relation R then
P < find the best access method for R
store P as the best plan for S
return P

w

0o N o b

vvy

Algorithm

Basic top-down approach (cont’d)

AAA
9 else
10 foreach S, C Ssuchthat S, # 0 A S, # Sdo
11 P, < recursively find the best plan for S;,
12 Pr < recursively find the best plan for S\ S;,
13 P + find the best join plan over P, and Py
14 if P is so far the best plan for S (if any) then
15 |_ store P as the best plan for S
16 P + fetch the best plan for §
17 return P

Left-Deep Linear Trees

Only left-deep linear trees are usually taken into account...
¢ Linear tree
= Each non-leaf node must have at least one child with relation

o Left-deep linear tree
= Moreover, that child must be the right-hand one
— Since that also increases the chance of attainable pipelining

> do s

((apaB) b (CraD)) (A|><1 Bl><1C))><1D (AI><IB)I><1C)I><1D

Algorithm

Restricted top-down approach
e For left-deep linear trees only
= This means there will be just O(n - 2") instead of O(3") plans

1 if the best plan for S'is already calculated then
2 P < fetch the best plan for §
return P
else
if S contains just a single relation R then
‘P < find the best access method for R
store P as the best plan for S
return P

w

0o N o b

vvy

Algorithm

Restricted top-down approach (cont’d)

9
10
11
12
13
14
15

16
17

AAA

else

foreach single relation R € Sdo
P, < recursively find the best plan for S\ {R}
Pr < recursively find the best plan for {R}
P + find the best join plan over P, and Pp
if P is so far the best plan for S (if any) then
L store P as the best plan for S

P «+ fetch the best plan for S
return P

Algorithm

Restricted bottom-up approach
* We proceed by induction on the number of relations

= All single-relation plans are found first

= Then gradually all multi-relation plans
— The best plan for n relations is found by considering all possible
means of joining any of its n — 1 relations with the 1 remaining

1 foreach single relation R € Sdo
2 P + find the best access method for R
store P as the best plan for {R}

\AAJ

3

Algorithm

Restricted bottom-up approach (cont’d)

AAA
4 foreach pass p € {2,...,|S5|} do
foreach 7' C Ssuch that | 7] = pdo
foreach single relation R € T'do
Py, < fetch the best plan for 7'\ {R}
Pr < fetch the best plan for {R}
P + find the best join plan over P, and Pp
10 if P is so far the best plan for 7'(if any) then
11 | store P as the best plan for T

O 00 N O un

12 P < fetch the best plan for S
13 return P

Query Evaluation

Sample Plan #3

Theta join [id = movie]

Projection [title, actor, character] — ng =13 - (1/Viryear) =20 000

ns = n4 = 20 000 by = (ba - bs)/(b2 +b3) =35
bs < 50 Nested loops
p5:n5/b5:400 My=py+1+1=27

ci = ps =400

Projection [movie, actor, character]
n3 = n4 = 1000 000

Projection [id, title]
Ny = ny = 2000 ‘_\ b3 + 65
by < 80 c3 = pa = 25000
p2 = ’nz/bz =25 (

7r
Heap file
. n4 = 1000 000
Sorted file (year) ba =40

nar = 100 000 Ppa = 25000
bar =10

par = 10000

Vit year =50 Selection (year = 2000)

BT tree index (year) n1 =ny - (1/Vryear) = 2 000
M gear = 100 by = by = 10

Intyear =3 p1=n1/by =200

cf = IM.year +pm- (I/VM.year) =203

Sample Plan #3

Cost of Plan #3 with pipelining

e M=25+1+ 1 memory pages for buffers Z;, Z, and O
= |.e., still the same amount of system memory pages used

ce=[d X+ XX+ 0 X+ DX+
= 7 is used for index traversal and then reading of movies
= All filtered and projected movies are put into Z;
= Actors are read into Z, their projection is postponed
= Joined tuples are put into O and projected

o ¢=Iuyear + prr - (1) Visyear)] + [14]

e ¢=[203] + |]

o ¢=25203
= That is approximately 400 times better than the second plan

— And so almost 1 million times better than the first plan

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

167

Explain Statements

EXPLAIN statement

* Allows to retrieve the evaluation plan for a given query
= When ANALYZE modifier is provided...
— Query is also executed and the actual run times are returned

-~ @D~ —~ e~

ANALYZE

Example

e EXPLAIN
SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)

Observations

False assumptions and simplifications
e Size of tuples
= Real-world tuples usually have variable size
— Because data types such as VARCHAR are often used
= That complicates internal block structure and cost estimates
e Unused slots
= Not all slots within data file blocks may really be used
— l.e., there can be gaps because of, e.g., deleted tuples
= And so the actual file size may be greater than assumed
¢ Inner fragmentation
= |t may not be possible to utilize inner block space entirely

— lLe., there can be unused space after the last slot
— Or even around the slots in case of variable-size tuples

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

169

Observations

False assumptions and simplifications (cont’d)
e Overflow areas in sorted files

= New tuples are usually not inserted to their correct positions
= Instead, special dedicated area is used for that purpose

— So that time-complicated insertion (up to linear) is avoided
= Only time to time the whole file is reorganized (resorted)
e Overflow areas in hashed files
= Allocated size of buckets may not be sufficient

e Outer fragmentation
= Layout of file blocks on a hard drive may not be continuous

— That may significantly increase time costs
— Because of repeated seeks and rotational delays

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

170

Observations

False assumptions and simplifications (cont’d)
¢ Impact of caching manager
= Blocks we require may already be loaded into the memory
— And so the actual cost may be lower
* Extent of available statistics
= Not all statistics we worked with may be available
— Or derivable in case of inner nodes
= And so less accurate estimates can then be made
¢ Lazy maintenance of statistics
= Statistics we do have may already be obsolete
— Simply because some of them are updated only occasionally

Observations

False assumptions and simplifications (cont’d)
¢ Non-uniform distribution
= Assumption of uniform distribution is often not realistic
— And it is not just about the data
— But also queries
¢ Independence of conditions
= When reduction factors for conditions are estimated...
— Their independence is assumed
— But this may not be realistic again
e Cost estimation in general
= QOur formulae provide only estimates, not precise calculations

— Moreover, there was a lot of simplification
— And the statistics we relied on may really be unavailable

= And so despite the effort, they may not always work well

Conclusion

Evaluation algorithms
* Access methods
e Sorting
= External merge sort with / without priority queue
e Joining
= Binary / non-binary nested loops join with / without zig-zag
= Basic / integrated sort-merge join
= Classic / simple / partition / grace / hybrid hash join
Query evaluation and optimization
* Evaluation plans
= Cost estimates, pipelining

 Statistical / algebraic optimization

	Outline
	Introduction
	Access Methods
	File Organization
	Index Structures
	Examples

	External Sort
	Basic Approach
	Priority Queue Approach

	Nested Loops Join
	Binary Nested Loops
	Non-Binary Nested Loops

	Sort-Merge Join
	Basic Approach
	Integrated Approach

	Hash Join
	Classic Hashing
	Simple Hashing
	Partition Hashing
	Grace Hashing
	Hybrid Hashing

	Query Evaluation
	Evaluation Process

	Statistical Optimization
	Histograms
	Size Estimates

	Algebraic Optimization
	Equivalence Rules
	Alternative Plans

	Query Evaluation
	Simplifying Assumptions

	Conclusion

