
NDBI049: Query Languages
http://www.ksi.mff.cuni.cz/~svoboda/courses/NDBI049/

Lectures 2 – 5

Query Evaluation
Martin Svoboda
martin.svoboda@matfyz.cuni.cz

7. 10. – 4. 11. 2025

Charles University, Faculty of Mathematics and Physics

http://www.ksi.mff.cuni.cz/~svoboda/courses/NDBI049/
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline
Algorithms

• Access methods
• External sort
• Nested loops join
• Sort‐merge join
• Hash join

Evaluation
• Query evaluation plans
• Optimization techniques

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 2

Introduction
SQL queries

• SELECT statements

SELECT clauseSELECT clause FROM clauseFROM clause WHERE clauseWHERE clause

GROUP BY clauseGROUP BY clause HAVING clauseHAVING clause

SET operationSET operation

ORDER BY clauseORDER BY clause

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 3

Introduction
Relational algebra

• Basic and inferred operations
Selection σφ, projection πa1,...,an , renaming ρb1/a1,...,bn/an
Set operations: union ∪, intersection ∩, difference \
Inner joins: cross join×, natural join⋊⋉, theta join⋊⋉φ

Left / right natural / theta semijoin⋉,⋊,⋉φ,⋊φ

Left / right natural / theta antijoin ▷, ◁, ▷φ, ◁φ
Division÷

• Extended operations
Left / right / full outer natural join d|><|, |><|d, d|><|d

Left / right / full outer theta join d|><|φ, |><|dφ, d|><|dφ

Sorting, grouping and aggregation, distinct, …

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 4

Naïve Algorithms
Selection: σφ(E)

• Iteration over all tuples and removal of those filtered out
Projection: πa1,...,an(E)

• Iteration over all tuples and removal of excluded attributes
But also removal of duplicates within the traditional model

Distinct
• Sorting of all tuples and removal of adjacent duplicates

Inner joins: ER × ES, ER ⋊⋉ ES, ER ⋊⋉φ ES

• Iteration over all the possible combinations via nested loops
Sorting

• Quick sort, heap sort, bubble sort, insertion sort, …

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 5

Challenges
Blocks

• Tuples stored in data files are not accessible directly
Since we have read / write operations for whole blocks only

• That is true for all types of files…
And so not just data files for tables
But also files for index structures or system catalog

Latency
• Traditionalmagnetic hard drives are extremely slow

Efficient management of cached pages is hence essential
Memory

• Size of available system memory is always limited

⇒ external algorithms are needed

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 6

Objectives
Query evaluation plan

• Based on the database context and available memory…
… suitable evaluation algorithms need to be selected…
… so that the overall evaluation cost isminimal

Database context
• Relational schema: tables, columns, data types
• Integrity constraints: primary / unique / foreign keys, …
• Data organization: heap / sorted / hashed file
• Index structures: B+ tree, bitmap index, hash index
• Available statistics: min / max values, histograms, …

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 7

Objectives
Available system memory

• Number of pages allocated for the execution of a given query
• There are two possible scenarios…

Having a particularmemory size…
– Propose its usage and estimate the evaluation cost

Having a particular cost expectation…
– Determine the required memory and propose its usage

Evaluation algorithms
• Access methods
• Sorting: external sort approaches
• Joining: nested loops, merge join, and hash join approaches
• …

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 8

Objectives
Cost estimation

• Expressed in terms of read / write disk operations
Since hard drives are extremely slow, as already stated…

– And so everything else can boldly be ignored
• We are interested in estimates only

Since it is unlikely we could provide accurate calculations
But still…

– The more accurate estimates, the better evaluation plans
And there can really be huge differences in their efficiency…

– Even up to several orders of magnitude!
• In other words…

Query optimization is crucial for any database system
As well as we also need to know what we are doing…

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 9

Available Statistics
Environment

• B: size of a block / page, usually≈ 4 kB
• M: number of available system memory pages

RelationR
• nR: number of tuples
• sR: average / fixed tuple size
• bR ≈ ⌊B/sR⌋: blocking factor

Number of tuples that can be stored within one block
• pR ≈ ⌈nR/bR⌉: number of blocks
• VR.A: cardinality of the active domain of attribute A

Number of distinct values of A occurring inR
• minR.A and maxR.A: minimal and maximal values for A

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 10

Access Methods

Data Files
Internal structure

• Blocks of data files for tables are divided into slots
Each slot is intended for storing exactly one tuple

– By the way, they can easily be uniquely identified
– Using a pair of block and slot logical ordinal numbers

• Fixed‐size slots
Usage status of each slot just needs to be remembered

• Variable‐size slots
When at least one variable‐size attribute is involved
Slot beginnings and lengths need to be remembered

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 12

Access Methods
Access method

• Particular approach for finding the intended tuples
I.e., reading blocks with such tuples into the system memory

– Directly from data files for tables
– But also indirectly using index structures

• Full scan (sequential read) is possible under all circumstances
However, we can do better in certain cases based on…

– Involved selection conditions
– Particular data file organization
– Available index structures (if any)

I.e., number of blocks to be read can significantly be reduced
– And so the evaluation cost
– Since only relevant blocks are considered instead all of them

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 13

Access Methods
Data file organization

• Heap file, sorted file, hashed file
Index structures

• B+ tree, …
Selection conditions

• Equality tests with respect to unique / non‐unique attributes
A = v, where v is a particular value (not another attribute)

• Range queries for one‐sided / two‐sided intervals
v1 ≤ A, A ≤ v2, and (v1 ≤ A) ∧ (A ≤ v2)

– Analogously for other comparison operators (≥,<,>)
– As well as their mutual combinations in two‐sided intervals
– However, only fixed boundary values are assumed again

• …

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 14

Heap File
Heap file

• Tuples are put into individual slots entirely arbitrarily
I.e., we do not have any specific knowledge of their position

53 20 18 23 42 53 82 75 34 36 93 49 18 11 71 6 25

Selection costs
• Full scan is inevitable in almost all situations

c = pR

• Equality test with respect to a unique attribute
c = ⌈pR/2⌉

– Since we can stop at the moment a given tuple is found
– However, uniform distribution of data and queries is assumed
– And values outside of the active domain may also be queried

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 15

Sorted File
Sorted file

• Tuples are ordered with respect to a particular attribute

532018 23 42 53 827534 36 93491811 716 25

Selection costs
• Binary search (half‐interval search) can be used in general

However, only when the same attribute is queried, of course
– I.e., the same attribute as the one used for sorting
– Otherwise, sequential read as in a heap file would be needed

• Equality test
c = ⌈log2 pR⌉ for a unique attribute
c = ⌈log2 pR⌉+ ⌈pR/VR.A⌉ for a non‐unique attribute

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 16

Sorted File
Selection costs (cont’d)

• Range query for two‐sided intervals [v1, v2] and other

• For "continuous" domains…
Number of values between any two of them is not limited

– At least potentially
– In practical terms, there can simply be far too many of them
– E.g.: FLOAT, VARCHAR, …

c = ⌈log2 pR⌉+ ⌈pR · (v2 − v1)/(maxR.A −minR.A)⌉
– Boundary types (inclusive / exclusive) are unimportant

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 17

Sorted File
Selection costs (cont’d)

• Range query for two‐sided intervals [v1, v2] and other

• For "discrete" domains…
Number of values between any two of them is finite

– E.g.: INTEGER, CHAR, DATE, …
c = ⌈log2 pR⌉+ ⌈pR · (v2 − v1 + ε)/(maxR.A −minR.A + 1)⌉

– ε is 1 for closed intervals,−1 for open (unless v1 = v2), and
0 otherwise, i.e., half‐open and zero‐sized open

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 18

Sorted File
Selection costs (cont’d)

• Range query for one‐sided intervals (−∞, v2] and (−∞, v2)

c = ⌈pR · (v2 −minR.A)/(maxR.A −minR.A)⌉
c = ⌈pR · (v2 −minR.A + ε)/(maxR.A −minR.A + 1)⌉

• Range query for one‐sided intervals [v1,∞) and (v1,∞)

Analogously…
c = ⌈pR · (maxR.A − v1)/(maxR.A −minR.A)⌉
c = ⌈pR · (maxR.A − v1 + ε)/(maxR.A −minR.A + 1)⌉

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 19

Hashed File
Hashed file

• Tuples are put into disjoint buckets (logical groups of blocks)
Based on a selected hash function over a particular attribute

– E.g., h(A) = A mod 3

53 2018 2342 538275 3436

93

49

18 11 716

25

• Hash function
Its domain are values of a given attribute A
Its range provides H distinct values

– There is exactly one bucket for each one of them
– All tuples in a bucket always share the same hash value

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 20

Hashed File
File statistics

• HR: number of buckets
• CR ≈ ⌈pR/HR⌉: expected bucket size

Measured as a number of blocks in a bucket
Selection costs

• Equality test when the hashing attribute is queried
Only the corresponding bucket needs to be accessed
c = CR for a non‐unique attribute
c = ⌈CR/2⌉ for a unique attribute

– Similar assumptions as in the case of heap files
• Any other condition

c = pR
– I.e., full scan is needed

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 21

B+ Tree Index
B+ tree index structure = self‐balanced search tree

• Logarithmic height is guaranteed (the same across all leaves)
• Moreover, very high fan‐out is assumed

I.e., our trees will tend to be significantly wider than taller
– ⇒ search times will not only be logarithmic, but also really low

Logical structure
• Internal node (including a non‐leaf root node)

Contains an ordered sequence of dividing values and pointers
to child nodes representing the sub‐intervals they determine

• Leaf node
Contains individual values and pointers to tuples in data file
Leaves are also interconnected by pointers in both directions

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 22

B+ Tree Index
B+ tree index structure (cont’d)

• Sample index for relationR and its attribute A

8 14 21

26 57

10 11 14 19 21 21 23 26

Index

Table

28

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 23

B+ Tree Index
Physical structure

• Each node is physically represented by one index file block
And so they are treated the same way as data file blocks

– I.e., loaded into the system memory one by one, etc.

Index statistics
• mR.A: maximal number of children (order of tree)

Usually up to small hundreds in practice
Actual number is guaranteed to be at least ⌈mR.A/2⌉

– Except for the root node
• IR.A: index height

Usually just≈ 2− 3 for typical real‐world tables
• pR.A: number of leaf nodes

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 24

B+ Tree Index
Search algorithm

• Index is traversed from its root toward the corresponding leaf
Data tuple then needs to be fetched from the data file

8

57

10 11 14 21 21 23 26

Index

Table

14 21

26

19

19

28

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 25

Non‐Clustered B+ Tree Index
Non‐clustered index

• Order of items within the leaves and data file is not the same
I.e., data file is organized as a heap file of hashed file

Index

Table

11 19 21 23

10 83 3 74

8 14 21

26 57

26211410

19 14 26 21

28

21 23

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 26

Non‐Clustered B+ Tree Index
Selection costs

• Equality test for a unique / non‐unique attribute
c = IR.A + 1
c = IR.A + ⌈pR.A/VR.A⌉+min(pR, ⌈nR/VR.A⌉)

• Range query for two‐sided intervals [v1, v2] and other
c = IR.A + ⌈pR.A · (v2 − v1)/(maxR.A −minR.A)⌉+

min(pR, ⌈nR · (v2 − v1)/(maxR.A −minR.A)⌉)
– Analogously for discrete domains

• However, for small domains VR.A or large intervals…
Full scan of the data file is better

– I.e., index is not utilized at all
• Conditions not involving the indexed attribute

Full scan again, of course

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 27

Clustered B+ Tree Index
Clustered index

• On the contrary, order of items is (at least almost) the same
I.e., data file is a sorted file (with respect to the same attribute)

Index

Table

10 11 19 21 23

11 14 19 21 21 23 26 28 31

8 14 21

26 57

14 21 26 28

10

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 28

Clustered B+ Tree Index
Selection costs

• Equality tests
c = IR.A + 1 for a unique attribute
c = IR.A + ⌈pR/VR.A⌉ for a non‐unique attribute

• Range query for two‐sided intervals [v1, v2] and other
c = IR.A + ⌈pR · (v2 − v1)/(maxR.A −minR.A)⌉

– Analogously for discrete domains
• Range query for one‐sided intervals

Data file is read directly as an ordinary sorted file
• Conditions not involving the indexed attribute

Full scan again, of course

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 29

Examples
Sample scenario #1

• Movie (id, title, year, …)
Basic statistics

– nM = 100 000 tuples, bM = 10, pM = 10 000 blocks
– VM.id = nM = 100 000 values (since they are unique)

Heap file
Sorted file (using ids)
Hashed file

– h(M.id) = M.id mod 50
– HM = 50 buckets, CM = 200 blocks

B+ tree index (using ids)
– mM.id = 100 followers
– IM.id = 3, pM.id = 1 500 blocks

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 30

Examples
Equality test: movie with a particular identifier

• Heap file
c = ⌈pM/2⌉= 5 000

• Sorted file
c = ⌈log2 pM⌉= 14

• Hashed file
c = ⌈CM/2⌉= 100

• Non‐clustered index (B+ tree & heap file)
c = IM.id + 1 = 3 + 1 = 4

• Clustered index (B+ tree & sorted file)
c = IM.id + 1 = 3 + 1 = 4

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 31

Examples
Sample scenario #2

• Movie (id, title, year, …)
Basic statistics

– nM = 100 000 tuples, bM = 10, pM = 10 000 blocks
– VM.year = 50 values
– minM.year = 1943, maxM.year = 2022 (i.e., 80 values)

Heap file
Sorted file (using years)
Hashed file

– h(M.year) = M.year mod 20
– HM = 20 buckets, CM = 500 blocks

B+ tree index (using years)
– mM.year = 100 followers
– IM.year = 3, pM.year = 1 500 blocks

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 32

Examples
Equality test: movies filmed in a particular year

• Heap file
c = pM = 10 000

• Sorted file
c = ⌈log2 pM⌉+ ⌈pM/VM.year⌉= 14 + 200 = 214

• Hashed file
c = CM = 500

• Non‐clustered index (B+ tree & heap file)
c = IM.year + ⌈pM.year/VM.year⌉+min(pM, ⌈nM/VM.year⌉)
= 3 + 30 + 2 000 = 2 033

• Clustered index (B+ tree & sorted file)
c = IM.year + ⌈pM/VM.year⌉= 3 + 200 = 203

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 33

Examples
Range query: movies filmed during years [y1 = 2016, y2 = 2020]

• Heap file
c = pM = 10 000

• Sorted file
Let r← (y2 − y1 + 1)/(maxM.year −minM.year + 1) = 5/80
c = ⌈log2 pM⌉+ ⌈pM · r⌉= 14 + 625 = 639

• Hashed file
c = pM = 10 000

• Non‐clustered index (B+ tree & heap file)
c = IM.year + ⌈pM.year · r⌉+min(pM, ⌈nM · r⌉)
= 3 + 94 + 6 250 = 6 347

• Clustered index (B+ tree & sorted file)
c = IM.year + ⌈pM · r⌉= 3 + 625 = 628

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 34

External Sort

External Sort
N‐way external merge sort

• Sort phase (pass 1)
Groups of input blocks are loaded into the system memory
Tuples in these blocks are then sorted

– Any in‐memory in‐place sorting algorithm can be used
– E.g.: quick sort, heap sort, bubble sort, insertion sort, …

Created initial runs are written into a temporary file
• Merge phase (passes 2 and higher)

Groups of runs are loaded into the memory and merged
Newly created (longer) runs are written back on a hard drive
Merging is finished when exactly one run is obtained

– And so the entire input table is sorted

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 36

Sort Phase
Pass 1

• Input data file
Relational tableR

– E.g., nR = 18 tuples, bR = 4 tuples/block, pR = 5 blocks

49 15 27 81 27 11 43 36 92 19 72 68 26 63 43 32 84 35

• System memory layout
Input buffer I

– E.g., size M = 2 pages

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 37

Sort Phase
Pass 1

• Groups of M blocks are presorted and so initial runs created
Input blocks fromR are first loaded to I

– Individual tuples in I are then sorted
– Created runs are stored to a temporary fileR1

92 19 72 68 26 63 43 32 84 3549 15 27 81 27 11 43 36

Memory

Hard disk

49 15 27 81 27 11 43 36

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 38

Sort Phase
Pass 1

• Resulting runs inR1 within our sample scenario

84 35

11 15 27 27 36 43 49 81 19 26 32 43 63 68 72 92

92 19 72 68 26 63 43 3249 15 27 81 27 11 43 36

35 84

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 39

Merge Phase
Pass 2

• Groups of M runs are iterativelymerged together
Blocks from these input runs are gradually loaded into I

– Minimal items are then iteratively selected and moved toO
– Merged (longer) runs are written to a new temporary fileR2

11 15 27 27 36 43 49 81 19 26 32 43 63 68 72 92 35 84

11 15 27 27 19 26 32 43

Memory

Hard disk

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 40

Merge Phase
Passes 2 and 3

• Merging continues until just a single run is acquired
And so the entire input table is sorted

11 15 27 27 36 43 49 81 19 26 32 43 63 68 72 92 35 84

11 15 19 26 27 27 32 35 36 43 43 49 63 68 72 81 84 92

11 15 19 26 27 27 32 36 43 43 49 63 68 72 81 92 35 84

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 41

Algorithm
Sort phase (pass 1)

1 p← 1
2 foreach group of blocks B1, . . . ,BM (if any) fromR do
3 read these blocks to I
4 sort all items in I
5 write all blocks from I as a new run toRp

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 42

Algorithm
Merge phase (passes 2 and higher)

6 whileRp has more then just one run do
7 p← p + 1
8 foreach group of runs R1, . . . ,RM (if any) fromRp−1 do
9 start constructing a new run inRp

10 read the first block from each run Rx to I[x]
11 while I contains at least one item do
12 select the minimal item and move it toO
13 if the corresponding I[x] is empty then
14 read the next block from Rx (if any) to I[x]
15 ifO is full then writeO toRp and emptyO
16 ifO is not empty then writeO toRp and emptyO

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 43

Summary
Memory layout

• Sort phase (pass 1): M
Input buffer I: M pages

Input buffer

 pages

...

• Merge phase (passes 2 and higher): M + 1
Input buffer I: M ≥ 2 pages
Output bufferO: 1 page

Input buffer

 pages

...

Output buffer

 page

+

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 44

Summary
Time complexity

• Single pass (regardless of the phase)
cread = cwrite = pR

• Number of passes
t = ⌈ logM(pR) ⌉

• Overall cost
c ES = t · (cread + cwrite) = ⌈ logM(pR) ⌉ · 2pR

Limitation of the overall number of passes
• In general…

M = ⌈ t√pR ⌉
• Specifically for t = 2 (i.e., exactly 2 passes)

M = ⌈√pR ⌉

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 45

Improved Approach
N‐way external merge sort with priority queue

• Sort phase is modified
Instead of fixed‐size initial runs…
… we generate them using a priority queue

– In particular,min‐heap data structure is used
The aim is tomake the initial runs longer

• Memory layout: M + 1 + 1
Queue container C: M ≥ 1 pages
Input buffer I: 1 page
Output bufferO: 1 page

Queue container

 pages

...

Output buffer

 page

+

Input buffer

 page

+

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 46

Sort Phase
Pass 1

• Once the queue is initialized, runs are generated on the fly
Minimal item greater than or equal to the last value is always
extracted and replaced with another item from the input file

11 15 27 27 36 43 49 81

92 19 72 68 26 63 43 32 84 3549 15 27 81 27 11 43 36

Memory

Hard disk

92 19 72 68

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 47

Sort Phase
Pass 1 (cont’d)

• Two runs are obtained in our scenario

11 15 19 27 27 36 43 43 49 63 68 72 81 84 92 26 32 35

Impact summary
• Created initial runs will tend to be longer

2M blocks on average (instead of just M)
– pR in the best case
– M in the worst case

• ⇒ number of the runs will tend to be lower

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 48

Algorithm
Improved sort phase (pass 1)

1 read blocksR[1], . . . ,R[M] (if any) fromR to C
2 read blockR[M + 1] (if any) fromR to I
3 while C contains at least one item do
4 start constructing a new run inR1, put v← −∞
5 while C contains at least one item i ≥ v do
6 let i be the minimal one, move i toO, put v← i
7 move the next item from I (if any) to C
8 if I is empty then
9 read the next block fromR (if any) to I

10 ifO is full then writeO toR1 and emptyO
11 ifO is not empty then writeO toR1 and emptyO

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 49

Priority Queue
Min‐heap data structure

• Complete binary tree
Key associated with each node must be less than or equal to
keys of all its child nodes

– I.e., the root node contains theminimal item among them all
• Array representation is possible

Using a straightforward index arithmetic

15

11

27

36 27

81

49 43

15 27 36 27 49 43 8111

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 50

Queue Container
Queue container C

• Two separate min‐heap structures are in fact used
Active heap with items greater than or equal to the last value

– And so values that can still be (actually all really will be) used in
the currently constructed run

Inactive heap with items not satisfying the condition
• Both are represented as arrays

Directly inside the container blocks
• Container initialization (line 1)

Active heap is built from the input items, inactive heap is empty

15 27 36 27 49 43 8111

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 51

Queue Container
Queue container C (cont’d)

• Whenever an item is added to the container (line 7)
It is added to the active / inactive heap based on the condition

72 84 92 81 32 3568 26

• Whenever the active heap is fully depleted (line 5)
I.e., the current run terminated, both the heaps are swapped

32 3526

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 52

Nested Loops Join

Nested Loops
Binary nested loops

• Universal approach for all types of inner joins
Natural join, cross join, theta join

– I.e., arbitrary joining condition can be involved
Support possible duplicates
Requires no index structures

• Not the best option in all situations, though
Suitable for tables with significantly different sizes

Basic idea
• Outer loop: iteration over the blocks of the first table
• Inner loop: iteration over the blocks of the second table

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 54

Nested Loops
Sample input data

• TablesR and S to be joined using a value equality test

56 8421 84 56 19 41 72 69 35

72 37 64 35 14 6492 52 25 8131 56 75 43 88 21 43 14

Basic setup
• Memory layout: 1 + 1 + 1

Input buffer IR: 1 page
Input buffer IS: 1 page
Output bufferO: 1 page

++

 page page page

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 55

Nested Loops
Basic setup (1 + 1 + 1)

• Another pair of loops is used for joining tuples in the memory

21 84 56 19

56 84

72 37 64 35 14 64

21 84 56 19 41 72 69 35

Memory

Hard disk

31 56 75 43

92 52 25 8131 56 75 43 88 21 43 14

56 56

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 56

Algorithm
Basic setup (1 + 1 + 1)

1 foreach block R fromR do
2 read R into IR
3 foreach block S from S do
4 read S into IS
5 foreach item r in IR do
6 foreach item s in IS do
7 if r and s satisfy the join condition then
8 join r and s and put the result toO
9 ifO is full then writeO to T , emptyO

10 ifO is not empty then writeO to T and emptyO

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 57

Observations
Time complexity

• Basic setup (1 + 1 + 1)
c NL = pR + pR · pS

• ⇒ smaller table should always be taken as the outer one
General setup

• Multiple pages are used for both the input buffers
• Memory layout: MR + MS + 1

Input buffer IR: MR pages
Input buffer IS: MS pages
Output bufferO: 1 page

... +... +

 page pages pages

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 58

Algorithm
General setup (MR + MS + 1)

1 foreach group of blocks R1, . . . ,RMR (if any) fromR do
2 read these blocks into IR
3 foreach group of blocks S1, . . . , SMS (if any) from S do
4 read these blocks into IS
5 foreach item r in IR do
6 foreach item s in IS do
7 if r and s satisfy the join condition then
8 join r and s and put the result toO
9 ifO is full then writeO to T , emptyO

10 ifO is not empty then writeO to T and emptyO

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 59

Observations
Time complexity

• General setup (MR + MS + 1)
c NL = pR + ⌈pR/MR⌉ · pS

• ⇒ there is no reason of having MS ≥ 2
Standard setup

• Memory layout: MR + 1 + 1
Input buffer IR: MR pages
Input buffer IS: 1 page
Output bufferO: 1 page

... ++

 page page pages

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 60

Standard Approach
Standard setup (MR + 1 + 1) with zig‐zag optimization

• Multiple pages are used just for the outer table

21 84 56 19

Memory

Hard disk

56 5641 72 69 35

56 8421 84 56 19 41 72 69 35

31 56 75 43

72 37 64 35 14 6492 52 25 8131 56 75 43 88 21 43 14

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 61

Observations
Zig‐zag optimization

• Reading of the inner table S
Odd iterations normally
Even iterations in reverse order

Time complexity
• Standard setup (MR + 1 + 1)

c NL = pR + ⌈pR/MR⌉ · pS (without zig‐zag)
c NL = pR + ⌈pR/MR⌉ · (pS − 1) + 1 (with zig‐zag)

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 62

Special Cases
Very small tables

• Smaller table fits entirely within the memory, i.e., pR ≤ MR
c NL = pR + pS

Non‐brute‐force replacement for inner loops
• B+ tree index exists in S on attribute A that is unique in S

c NL = pR + nR · (IS.A + 1)
– If R is organized as a heap

c NL = pR + IS.A + pS.A + VR.A
– If R is sorted with respect to A

• S is a hashed file over attribute A that is unique in S
c NL = pR + VR.A · CS

– If R is sorted with respect to A

• …

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 63

Non‐Binary Nested Loops
Non‐binary nested loops

• Nested loops algorithm formultiple tables at once
In particular, let us have tablesR1, . . . ,Rn for n ≥ 2, n ∈ N

– Let their sizes be p1, . . . , pn

• Solution
We just need to embed more loops into each other

• Memory layout: M1 + · · ·+ Mn + 1
Input buffers Ii: Mi pages for each tableRi
Output bufferO: 1 page

• Overall cost with zig‐zag optimization
c NL =

(
p1
)
+
(
⌈p1/M1⌉ · (p2 −M2) + M2

)
+ · · ·+(

⌈p1/M1⌉ . . . ⌈pn−1/Mn−1⌉ · (pn −Mn) + Mn
)

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 64

Memory Setup
Memory layout: M1 + · · ·+ Mn + 1

• Optimization problem
Finding integer Mi minimizing the overall cost cNL

• Heuristics
Let M ≥ n be all the available pages (for input buffers)
Let p1 ≤ · · · ≤ pn (without loss of generality)
Allocate one page for the innermost table, i.e., Mn = 1
Allocate the remaining pages uniformly toR1, . . . ,Rn−1

– I.e., let m = ⌊(M− 1)/(n− 1)⌋
– Then put Mi = m for each i ∈ {1, . . . , n− 1}
– It may happen that some pages will still be unallocated
– There will be exactly u = (M− 1)− (n− 1) ·m of them
– Assign these remaining pages (if any) between smaller tables
– I.e., Mi += 1 for each i ∈ {1, . . . , u}

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 65

Memory Setup
Memory layout (cont’d)

• Example #1
n = 3 tables, M = 11 pages (for input buffers)
Allocation: ⟨5, 5, 1⟩

 = 5 pages

+ +

 page = 5 pages = 1

+

• Example #2
n = 5 tables, M = 11 pages
Allocation: ⟨3, 3, 2, 2, 1⟩

 = 1 = 3

+

 = 3

+

 = 2

+

 = 2

+ +

 page

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 66

Sort‐Merge Join

Sort‐Merge Join
Sort‐merge join algorithm (or justmerge join)

• Inner joins based on value equality tests only
Basic version without duplicates

– Could be extended to support them, though
• Suitable for tables with relatively similar sizes

Especially when they are already sorted
Or when the final result is expected to be sorted

Phases
• Sort phase

Both tables are externally sorted, one by one (if not yet)
• Join phase

Items are joined while simulating the merge of the two tables

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 68

Basic Approach
Sample input data

• Input tablesR and S

65 19 35 92 49 31

52 94 38 71 11 50 4992 41 63 19 75 54 46 68 15 27 22 43

Sort phase
• Resulting sorted tables

 19 38 41 4643 49 50 52 54 63 68 71 75 92 9411 15 22 27

19 31 35 49 65 92

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 69

Basic Approach
Join phase

• Blocks from the sorted tables are processed one by one

Memory

Hard disk

19 19

19 31 35 49 65 92

19 38 41 4643 49 50 52 54 63 68 71 75 92 9411 15 22 27

19 31 35 49 1911 15 22

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 70

Algorithm
Join phase

1 read blockR′[1] to IR and block S ′[1] to IS
2 while both IR and IS contain at least one item do
3 let r be the minimal item in IR and s minimal item in IS
4 if r and s can be joined then
5 join r and s and put the result toO
6 ifO is full then writeO to T and emptyO
7 remove both r from IR and s from IS
8 else remove the lower one of r from IR or s from IS
9 if IR is empty then read the next block fromR′ (if any)

10 if IS is empty then read the next block from S ′ (if any)
11 ifO is not empty then writeO to T and emptyO

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 71

Observations
Join phase

• Memory layout: 1 + 1 + 1
Input buffer IR: 1 page
Input buffer IS: 1 page
Output bufferO: 1 page

++

 page page page

Time complexity
• Sort phase
• Join phase

c MJ = pR + pS

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 72

Extended Version
Duplicate items

• Possible duplicates in one table only
Let it be S (without loss of generality)
Algorithm modification is straightforward…

– Having successfully joined r and s, we just remove s from IS
and not r from IR (line 7)

28 30 31 34

14 19 28 28

52 57 61 65504835 38

54 57 5740 49 52 544037 40

40

514340 46

40

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 73

Extended Version
Duplicate items

• Possible duplicates in both tables
All matching pairs of r and s just need to be joined…
Unfortunately, size of input buffersmight not be sufficient

– Since we may span block boundaries, even repeatedly

7 10 11 16

2 8 10 10

31 31 31 3427272516 19

25

29 29 3125 25 25 25 252517 25

25

3025

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 74

Integrated Approach
2‐pass integrated sort‐merge join with priority queue

• Sort phase (pass 1)
Tables are processed one by one

– They are not sorted entirely, though
Only initial runs are constructed

– Using just the sort phase (pass 1) of the external sort algorithm
– Priority queue is involved to make these runs longer
– And so their overall number lower

• Join phase (pass 2)
The same idea as in the basic sort‐merge approach

– We only have more runs within each presorted table

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 75

Integrated Approach
Sort phase (pass 1)

• Resulting initial runs within tablesR1 and S1

 19 38 41 46 43 49 5052 54 63 68 71 75 92 94 11 15 22 27

19 31 35 49 65 92

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 76

Integrated Approach
Join phase (pass 2)

• All runs from both the tablesR1 and S1 are merged at once

19 31 35 49

Memory

Hard disk

19 19

19 31 35 49 65 92

19 38 41 46 43 49 5052 54 63 68 71 75 92 94 11 15 22 27

19 38 41 46 11 15 22 27

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 77

Algorithm
Join phase (pass 2)

1 readR1
x[1] from each run inR1 to IR[x], the same for S1

2 while both IR and IS contain at least one item do
3 let r be the minimal item in IR and s minimal item in IS
4 if r and s can be joined then
5 join r and s and put the result toO
6 ifO is full then writeO to T and emptyO
7 remove both r from IR and s from IS
8 else remove the lower one of r from IR or s from IS
9 if the given IR[x] is empty then refill it fromR1

x
10 if the given IS[x] is empty then refill it from S1

x

11 ifO is not empty then writeO to T and emptyO

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 78

Observations
Join phase (pass 2)

• Memory layout: MR + MS + 1
Input buffer IR: MR pages= number of runs inR1

Input buffer IS: MS pages= number of runs in S1

Output bufferO: 1 page

... +... +

 page
Input buffers and

 pages

Time complexity
• Sort phase: csort = 2pR + 2pS

• Join phase: cjoin = pR + pS

• Overall cost: c MJ = csort + cjoin = 3(pR + pS)

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 79

Observations
Optimized setup

• Motivation
Balanced memory usage across both phases

• Sort phase (pass 1)
Required memory: M + 1 + 1 pages
Let M = ⌈√p⌉, where p = max(pR, pS)

– As if we wanted 2 passes for the external sort
If M pages are used for the priority queue container…

– Expected length of initial runs should be 2M
– And so the expected number of all runs pS/2M + pR/2M ≤

p/2M + p/2M ≈ 2p/2M = p/M ≈ p/√p ≈ √p ≈ M
• Join phase (pass 2)

Required memory: MR + MS + 1 pages
⇒MR + MS ≈ M

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 80

Observations
Optimized setup (cont’d)

• In other words…
The same number of M pages should be sufficient for both…

– Queue container C during pass 1, and
– Input buffers IR and IS during pass 2

... +... +

 page
Input buffers and

 pages

Queue container

 pages

...

 page

+

 page

+

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 81

Hash Join

Hash Join
Hash join approaches

• Basic principle
Items of the first table are hashed into the system memory
Items of the second table are then attempted to be joined

• Limitations
Inner joins based on value equality tests only

– Including possible duplicates
Not suitable for small active domains

• Particular approaches
Classic hash join, Simple hash join, Partition hash join,
Grace hash join, and Hybrid hash join

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 83

Classic Hashing
Classic hash join

• Build phase
Smaller table (let it beR) is hashed into the system memory

– I.e., it is sequentially loaded into the memory, block by block
– All its tuples are then emplaced into the hash container

• Hash function h is assumed for this purpose
Its domain are values of the joining attribute A
Its range provides H distinct values

• Hash container internally contains H buckets
Its overall size will inevitably be somewhat larger than pR

– Let us say M = ⌈F · pR⌉ pages for some small factor F
• Probe phase

Items from the larger table S are attempted to be joined

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 84

Build Phase
Build phase

• Tuples from the smaller table are hashed into the memory
E.g., hash function h(A) = A mod 2 is assumed

25 14 38 42

Memory

Hard disk

 57 69 13 93 84 57 692

25 14 38 57

14 38 25 57

43

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 85

Probe Phase
Probe phase

• Tuples from the larger table are attempted to be joined

Memory

Hard disk

87 14 65 19

19 4465 614 5787 28 16913572 28933714 2891

 14 14

38 42

92

14

6

84 136957

93 57 43

25

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 86

Algorithm
Build phase

1 foreach block R fromR do
2 read R into I
3 foreach item r in I do
4 calculate hash value h← h(r.A)
5 add r into bucket h inH

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 87

Algorithm
Probe phase

1 foreach block S from S do
2 read S into I
3 foreach item s in I do
4 calculate hash value h← h(s.A)
5 foreach item r in bucket h inH do
6 if r and s can be joined then
7 join r and s and put the result toO
8 ifO is full then writeO to T and emptyO

9 ifO is not empty then writeO to T and emptyO

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 88

Observations
Memory layout

• Build phase: M + 1
Hash containerH: M = ⌈F · pR⌉ pages
Input buffer I: 1 page

Hash container

 pages

...

Input buffer

 page

+

• Probe phase: M + 1 + 1
Hash containerH: M pages (preserved from the build phase)
Input buffer I: 1 page
Output bufferO: 1 page

Hash container

 pages

... +

Input buffer

 page

+

Output buffer

 page

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 89

Observations
Time complexity

• Build and probe phases
cbuild = pR
cprobe = pS

• Overall cost
c CH = cbuild + cprobe = pR + pS

Summary
• Interesting approach as for its efficiency

However, usable only when the smaller table can entirely be
hashed into the system memory…

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 90

Simple Hashing
Simple hash join

• Basic idea
During each pass, just a subset of all tuples is considered

– These are processed via analogous build and probe routines
– The remaining tuples are postponed for the following passes

• Partition function p is assumed for this separation
Its domain are again values of the joining attribute A
Its range provides P distinct values

• Obvious requirement
Both functions p and h need to bemutually orthogonal
E.g.: p(A) = A mod 4 and h(A) = A mod 2 will not work

– Because all items in a partition would either be even or odd

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 91

Build Phase
Build phase (partition 0)

• Items from the smaller table are either hashed or postponed
E.g., partition function p(A) = A mod 4 and hash function
h(A) = (A/4) mod 2 are assumed

28 17 51 16

Memory

Hard disk

 52 40 19 53

28 17 51 16

16 28

17 51

10 32 36 77

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 92

Probe Phase
Probe phase (partition 0)

Memory

Hard disk

33 31

 31 5252 3633 228 95 11637449

8 33 52 31

52 52

16 40

48

32 16 28 52

44 76

36 68

12

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 93

Algorithm
Overall procedure

1 putR0 ←R
2 put S0 ← S
3 foreach partition p ∈ {0, . . . ,P− 1} do
4 execute build phase for partition p overRp and create

postponedRp+1

5 execute probe phase for partition p over Sp and create
postponed Sp+1

6 empty hash containerH

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 94

Algorithm
Build phase (for partition K)

1 foreach block R fromRK do
2 read R into I
3 foreach item r in I do
4 calculate partition value p← p(r.A)
5 if p = K then
6 calculate hash value h← h(r.A)
7 add r into bucket h inH
8 else
9 add r into partition buffer P

10 if P is full then write P toRK+1 and empty P

11 if P is not empty then write P toRK+1 and empty P

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 95

Algorithm
Probe phase (for partition K)

1 foreach block S from SK do
2 read S into I
3 foreach item s in I do
4 calculate partition value p← p(s.A)
5 if p = K then
6 calculate hash value h← h(s.A)
7 foreach item r in bucket h inH do
8 if r and s can be joined then
9 join r and s and put the result toO

10 ifO is full then writeO to T , emptyO

▼▼▼

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 96

Algorithm
Probe phase (for partition K) (cont’d)

▲▲▲
11 else
12 add s into partition buffer P
13 if P is full then write P to SK+1 and empty P

14 ifO is not empty then writeO to T and emptyO
15 if P is not empty then write P to SK+1 and empty P

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 97

Observations
Memory layout

• Build phase: M + 1 + 1
Hash containerH: M = ⌈F · (pR/P)⌉ pages
Input buffer I: 1 page
Partition buffer P : 1 page

Hash container

 pages

...

Input buffer

 page

+

Partition buffer

 page

+

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 98

Observations
Memory layout

• Probe phase: M + 1 + 1 + 1
Hash containerH: M pages (preserved from the build phase)
Input buffer I: 1 page
Partition buffer P : 1 page
Output bufferO: 1 page

Hash container

 pages

... +

Input buffer

 page

+

Output buffer

 page

Partition buffer

 page

+

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 99

Observations
Time complexity

• Build and probe phases
cbuild ≈

(
pR + P−1

P pR
)
+
(

P−1
P pR + P−2

P pR
)
+ · · ·+

(
1
PpR

)
= pR + 2 1

P

[
(P− 1) + (P− 2) + · · ·+ (1)

]
pR

= pR + 2 1
P

[
(P−1)+(1)

2 · (P− 1)
]
pR = pR + (P− 1)pR

= P · pR
Analogously cprobe = P · pS

• Overall cost
c SH = cbuild + cprobe = P · (pR + pS)

Summary
• We are now able to deal even with larger tables

However, overall cost is still not efficient enough…

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 100

Partition Hashing
Partition hash join

• Basic principle
Both tables are first partitioned

– Using partition function p again
Pairs of the corresponding partitions are then joined together

– Using the classic hash join approach
– Or actually even nested loops if desired

Overall procedure

1 splitR and create partitionsR0, . . . ,RP−1
2 split S and create partitions S0, . . . ,SP−1
3 foreach partition p ∈ {0, . . . ,P− 1} do
4 join partitionsRp and Sp

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 101

Partition Phase
Partition phase (for tableR)

• Tuples of a given table are split to disjoint partitions

Memory

Hard disk

89 21 46 15
 68 43 78 93

46
89 21 46 15

89 21

15

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 102

Join Phase
Partition phase

• Resulting partitions for our sample scenario

 449652 1268

 89 93 33 21 37 5321 73 4569

 46 78 22 54

 7115 433543 79 55

18463046

45572593

52847228

39958351

Join phase
• Pairs of the corresponding partitions are then joined together

R0 and S0,R1 and S1, …

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 103

Algorithm
Partition phase

• TableR is assumed, partitioning of S is analogous

1 foreach block R fromR do
2 read R into I
3 foreach item r in I do
4 calculate partition value p← p(r.A)
5 add r into partition buffer Pp
6 if Pp is full then write Pp toRp and empty Pp

7 foreach partition p ∈ {0, . . . ,P− 1} do
8 if Pp is not empty then write Pp toRp and empty Pp

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 104

Observations
Memory layout

• Partition phase: 1 + P
Input buffer I: 1 page
Partition buffers P : P pages

Partition buffers

 pages

...

Input buffer

 page

+

Time complexity
• Partitioning phase

csplit ≈ 2 · pR + 2 · pS

• Overall cost (with classic hash join involved)
c PH = csplit + P · c CH ≈ csplit + P

[
pR
P + pS

P

]
≈ 3 · (pR + pS)

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 105

Grace Hashing
Grace hash join

• Just ordinary partition hash join
… with balanced memory requirements across all the phases

Memory setup
• Let m ≈

√
F · pR

I.e., square root of the size of an in‐memory container that
would roughly be needed for hashing of the smaller tableR

• Partition function p is chosen to ensure that P = m
⇒m partitions will be created (forR as well as S)
⇒ expected size of each partition ofR should be…

– s = pR/P = pR/m = pR/
√

F · pR ≈
√

pR/F pages
⇒ space needed for hashing each of these partitions…

– F · s = F ·
√

pR/F ≈
√

F · pR ≈ m pages

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 106

Grace Hashing
Memory setup (cont’d)

• I.e., size P of partition buffers P (partition phase) and size M
of hash containerH (build and probe phases) are equal to m

Partition buffers

 pages

...

 page

+

Hash container

 pages

...

Hash container

 pages

...

+

 page

 page

+

 page

+

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 107

Hybrid Hashing
Hybrid hash join

• Basically an improvement of the simple hash join approach
Instead of using just one buffer for all items to be postponed…
… we directly split them to separate partitions

– I.e., as in the partition hash join approach
• In other words…

Partitions 0 are joined directly during the first pass
– Using the altered build and probe phases

All the remaining partitions are pairwise joined subsequently
– Using the classic hash join approach

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 108

Build Phase
Build phase

• Items from the smaller table are either hashed or postponed
However, when they are to be postponed, they are branched
to individual separated partitions

Memory

Hard disk

17

51

28 17 51 16 52 40 19 53 10 32 36 77

28 17 51 16
16 28

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 109

Probe Phase
Probe phase

Memory

Hard disk

33

31

52 52

16 40

48

32 16 28 52

44 76

36 68

12

31 5252 3633 228 95 11637449

8 33 52 31

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 110

Algorithm
Overall procedure

1 execute build phase overR, hash items from partition 0
and create postponed partitionsR1, . . . ,RP−1

2 execute probe phase over S , join items from partition 0
and create postponed partitions S1, . . . ,SP−1

3 foreach partition p ∈ {1, . . . ,P− 1} do
4 join partitionsRp and Sp

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 111

Algorithm
Build phase

1 foreach block R fromR do
2 read R into I
3 foreach item r in I do
4 calculate partition value p← p(r.A)
5 if p = 0 then
6 calculate hash value h← h(r.A)
7 add r into bucket h inH
8 else
9 add r into partition buffer Pp

10 if Pp is full then write Pp toRp and empty Pp

▼▼▼

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 112

Algorithm
Build phase (cont’d)

▲▲▲
11 foreach partition p ∈ {1, . . . ,P− 1} do
12 if Pp is not empty then write Pp toRp and empty Pp

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 113

Algorithm
Probe phase

1 foreach block S from S do
2 read S into I
3 foreach item s in I do
4 calculate partition value p← p(s.A)
5 if p = 0 then
6 calculate hash value h← h(s.A)
7 foreach item r in bucket h inH do
8 if r and s can be joined then
9 join r and s and put the result toO

10 ifO is full then writeO to T , emptyO

▼▼▼

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 114

Algorithm
Probe phase (cont’d)

▲▲▲
11 else
12 add s into partition buffer Pp
13 if Pp is full then write Pp to Sp and empty Pp

14 ifO is not empty then writeO to T and emptyO
15 foreach partition p ∈ {1, . . . ,P− 1} do
16 if Pp is not empty then write Pp to Sp and empty Pp

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 115

Observations
Memory layout

• Build phase: M + 1 + (P− 1)
Hash containerH: M = ⌈F · (pR/P)⌉ pages
Input buffer I: 1 page
Partition buffers P : P− 1 pages

Hash container

 pages

...

Input buffer

 page

+ +

Partition buffers

 pages

...

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 116

Observations
Memory layout

• Probe phase: M + 1 + (P− 1) + 1
Hash containerH: M pages (preserved from the build phase)
Input buffer I: 1 page
Partition buffers P : P− 1 pages
Output bufferO: 1 page

Hash container

 pages

... +

Input buffer

 page

+

Output buffer

 page

+

Partition buffers

 pages

...

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 117

Observations
Time complexity

• Build and probe phases for partition 0
cbuild ≈ pR + pR · P−1

P = pR · (1 + P−1
P) = pR · (2− 1

P)

Analogously cprobe ≈ pS · (2− 1
P)

• Overall cost (with classic hash join involved)
c HH = cbuild + cprobe + (P− 1) · c CH

≈ pR · (2− 1
P) + pS · (2− 1

P) + (P− 1)
[

pR
P + pS

P

]
≈ (3− 2

P) · (pR + pS)

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 118

Query Evaluation

Sample Query
Database schema

• Movie (id, title, year, …)
• Actor (movie, actor, character, …)

FK: Actor[movie]⊆Movie[id]
Sample query

• Actors and characters they played in movies filmed in 2000
SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)
(Movie × Actor)((year = 2000) ∧ (id = movie))
[title, actor, character]
πtitle,actor,character

(
σ(year=2000)∧(id=movie)

(
Movie×Actor

))
NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 120

Sample Query
Sample query (cont’d)

• Actors and characters they played in movies filmed in 2000
πtitle,actor,character

(
σ(year=2000)∧(id=movie)

(
Movie×Actor

))

Movie Actor

Selection (year = 2000) (id = movie)

Cross join

Projection [title, actor, character]

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 121

Query Evaluation
Basic idea

• SQL query→ RA query→ evaluation plan→ query result
Evaluation process

• (1) Scanning [scanner]
Lexical analysis is performed over the input SQL expression

– Lexemes are recognized and then tokens generated
• (2) Parsing [parser]

Syntactic analysis is performed
– Derivation tree is constructed according to the SQL grammar

• (3) Translation
Query tree with relational algebra operations is constructed

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 122

Query Evaluation
Evaluation process (cont’d)

• (4) Validation [validator]
Semantic validity is checked

– Compliance of relation schemas with intended operations
• (5) Optimization [optimizer]

Alternative evaluation plans are devised and compared
– In order to find the most efficient plan
– Based on their evaluation cost estimates

• (6) Code generation [generator]
Execution code is generated for the chosen plan

• (7) Execution [processor]
Intended query is finally evaluated

– And the yielded result provided to the user

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 123

Query Evaluation
Query tree

• Internal tree structure
Leaf nodes = input tables
Inner nodes = individual RA operations (σ, π,×,⋊⋉, …)

• Root node represents the entire query
Nodes are evaluated from leaves toward the root

Query evaluation plan
• Query tree
• For each inner node…

Calculated statistics (number of tuples, blocking factor, …)
Selected algorithm (limited by context and availablememory)
Estimated cost

• Overall cost
NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 124

Sample Plan #1

Movie Actor Heap file

 1 000 000

 40

 25 000

Selection (year = 2000) (id = movie)

 20 000

 8

 2 500

 12 500 000 000

 2 500

Cross join

 100 000 000 000

 8

 12 500 000 000

Nested loops

 27

 10 010 000

 12 500 000 000

Projection [title, actor, character]

 20 000

 50

 400

 2 500

 400

Sorted file (year)

 100 000
 10

 10 000

 50

B tree index (year)

 100

 3

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 125

Evaluation Plan Cost
Overall evaluation cost

• Let us first assume that all intermediate results are always
written to temporary files and so each involved operation…

Reads its inputs from / writes its output to a hard drive
• Overall cost then equals to the sum of all the partial costs

Cost of Plan #1
• M = 25 + 1 + 1 memory pages
• c = [cr

1 + cw
1] + [cr

2 + cw
2] + [cr

3]

• c = [pM + (pM/25) · pA + p1] + [p1 + p2] + [p2]

• c = [10 010 000+ 12 500 000 000] + [12 500 000 000+ 2 500]+
[2 500]

• c = 25 010 015 000

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 126

Sample Query
Intuitive optimization

• Actors and characters they played in movies filmed in 2000
SQL expression
SELECT title, actor, character
FROM Movie JOIN Actor ON (id = movie)
WHERE (year = 2000)

RA expression

πtitle,actor,character

(
σ(year=2000)

(
Movie⋊⋉(id=movie) Actor

))

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 127

Sample Plan #2

Movie Actor Heap file

 1 000 000

 40

 25 000

Selection (year = 2000)

 20 000

 8

 2 500

 125 000

 2 500

Theta join [id = movie]

 1 000 000

 8

 125 000

Nested loops

 27

 10 010 000

 125 000

Projection [title, actor, character]

 20 000

 50

 400

 2 500

 400

Sorted file (year)

 100 000
 10

 10 000

 50

B tree index (year)

 100

 3

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 128

Sample Plan #2
Cost of Plan #2

• Again M = 25 + 1 + 1 memory pages
• c = [cr

1 + cw
1] + [cr

2 + cw
2] + [cr

3]

• c = [pM + (pM/25) · pA + p1] + [p1 + p2] + [p2]

• c = [10 010 000 + 125 000] + [125 000 + 2 500] + [2 500]
• c = 10 265 000

That is approximately 2 400 times better than the first plan

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 129

Pipelining
Pipeliningmechanism

• Intermediate results are passed between the operations
directly without the usage of temporary files on a disk

And so just within the system memory
– It may even be possible to do it in‐place without extra pages

• Unfortunately, such an approach is not always possible…
Cost of Plan #2 with pipelining

• Still M = 25 + 1 + 1 memory pages
• c = [cr

1 + ��SScw
1] + [��SScr

2 + ��SScw
2] + [��SSc

r
3]

Joined tuples are filtered and projected immediately in‐place
• c = 10 010 000

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 130

Query Optimization
Objective = finding the most optimal query evaluation plan

• It is not possible to consider all plans, though
Simply because there are far too many of them
And so pruning and heuristics need to be incorporated

Optimization strategies
• Algebraic

Proposal of alternative plans using query tree transformations
• Statistical

Estimation of costs and result sizes based on available statistics
• Syntactic

Manual modification of query expressions by users themselves
– In order to involve plans that would otherwise be unreachable
– Breaches the principle of declarative querying, though

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 131

Statistical Optimization

Statistical Optimization
Objective

• Capability of calculating necessary result characteristics…
Of both the final result as well as all intermediate ones

– I.e., all individual nodes within a given evaluation plan tree
• … so that the overall cost can be estimated

And thus alternative plans mutually compared
Basic statistics

• Data file for tableR
nR number of tuples, sR tuple size, bR blocking factor
pR number of pages
Hashed file: HR number of buckets, CR bucket size

• Index file for attribute A from tableR
B+ tree: IR.A tree height, pR.A number of leaf nodes

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 133

Statistical Optimization
Additional statistics

• Provide deeper insight into the active domain
May even be implicitly derivable from index structures
Unfortunately, they may also bemissing or unavailable

– Especially as for intermediate results

• VR.A number of distinct values
• minR.A and maxR.A minimal and maximal values
• Histograms

Provide even more accurate understanding of the domain
– And so better estimates

Especially useful for non‐uniform distributions

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 134

Histograms
Histogram = approximate representation of data distribution

• Active domain is split into sub‐intervals called buckets
Usually consecutive and non‐overlapping

• Frequency of values is determined for each one of them
I.e., count of values that fall into that bucket

Sample data
• Integer values from interval [15, 26] and their frequencies

2714 2813 15 16 17 18 19 20 21 22 23 24 25 26

3 2 4 3 12 7 5 6 1 0 3 2

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 135

Histograms
Equi‐width histogram

• Buckets have equal widths (count of distinct values)
• Discrete domains: average frequencies are stored

So that frequency fE.A(v) can be retrieved for any value v
• Continuous domains: probabilities are stored instead

So that probability tE.A(b) can be retrieved for any bucket b

2714 2813 15 16 17 18 19 20 21 22 23 24 25 26

3 2 4 3 12 7 5 6 1 0 3 2

9 22 12 5
3.0 7.3 4.0 1.7

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 136

Histograms
Equi‐depth histogram

• Buckets are designed so that they have equal depths
I.e., absolute frequencies are the same

– Or at least almost the same
– Since real‐world data will likely not be nice enough

• We also need to explicitly store bucket placement information
Since it is not derivable automatically

2714 2813 15 16 17 18 19 20 21 22 23 24 25 26

3 2 4 3 12 7 5 6 1 0 3 2

12 12 12 12
3.0 12.0 6.0 2.4

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 137

Size Estimates: Selection
Selection: T = σφ(E)
Tuple size

• sT = sE
Tuples are just filtered out and so their size remains untouched

Blocking factor
• bT = bE

Number of tuples
• Basic idea: nT = ⌈nE · rφ⌉
• rφ ∈ [0, 1] is an estimated reduction factor

Describes how much the original tuples will be reduced
– Depends on a particular condition φ
– As well as particular available statistics…

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 138

Size Estimates: Selection
Reduction factors

• Equality test with respect to a unique attribute
rφ = 1/nE (and so nT = 1)

• Equality test with respect to a non‐unique attribute
rφ = 1/VE.A
rφ = fE.A(v)/nE if histogram for discrete domains is available

– As a consequence, nT = fE.A(v)
rφ = tE.A(bucket(v)) analogously for continuous domains
rφ = 1/10 when no information is available at all

• Estimates using constants in general
May work well, not bad, as well as totally wrong…

– But when nothing better is available, it must simply suffice
– Of course, particular constant is just a matter of discussion

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 139

Size Estimates: Selection
Reduction factors (cont’d)

• Range query for two‐sided intervals I = [v1, v2] and other
rφ = (v2 − v1 + ε)/(maxE.A −minE.A + 1)
rφ = (

∑
v∈ I fE.A(v))/nE

rφ = (v2 − v1)/(maxE.A −minE.A)
rφ =

∑
b∈ buckets(I) tE.A(b)

rφ = 1/4
• Range query for one‐sided intervals (−∞, v2] and (−∞, v2)

Works analogously…
rφ = 1/2

– Unfortunately, there are certain undesired consequences…
– E.g., reduction factors of A ≤ 1 and A ≤ 1000 are the same

• Range query for one‐sided intervals [v1,∞) and (v1,∞)

Works analogously again…

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 140

Size Estimates: Selection
Reduction factors (cont’d)

• Conjunction: φ1 ∧ φ2
rφ = rφ1 · rφ2

Independence of both conditions is assumed
• Disjunction: φ1 ∨ φ2

rφ = rφ1 + rφ2 − rφ1 · rφ2

• Negation: ¬φ1
rφ = 1− rφ1

• …
Improved estimates might also be useful for access methods

• Since it is also about selection
However, technical possibilities of data files must be respected

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 141

Size Estimates: Projection
Projection: T = πa1,...,an(E)
Tuple size

• sT is simply calculated using sizes of all preserved attributes
Blocking factor

• bT = ⌊B/sT⌋
Number of tuples

• Default SQL projection without the DISTINCT modifier
I.e., removal of potential duplicates is not performed
nT = nE

• With duplicates removal enabled
nT = nE if at least one key of E is preserved
…

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 142

Size Estimates: Joins
Inner joins: T = ER × ES or ER ⋊⋉ ES or ER ⋊⋉φ ES

Tuple size
• sT ≈ sR + sS

Less for natural join since shared attributes are not repeated
Blocking factor

• bT ≈
⌊

B
sT

⌋
≈

⌊
B

sR + sS

⌋
≈

⌊
B

B/bR + B/bS

⌋
≈

⌊
bR · bS

bR + bS

⌋
Can be calculated exactly from the actual resulting tuple size
As well as estimated just using the original blocking factors

Number of tuples
• nT = ⌈nR · nS · rφ⌉ with rφ ∈ [0, 1] for joining condition φ

Similar approach with reduction factors as in selections

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 143

Size Estimates: Joins
Reduction factors

• Cross join
rφ = 1 (hence nT = nR · nS)

• Foreign key lookup
Let us assume that φ traverses a foreign key fromR to S

– Then for each tuple r ∈ R there must exist exactly one s ∈ S
And so rφ = 1/nS (hence nT = nR)

• Equality test over an attribute A in S
rφ = 1/VS.A
rφ = 1/nS specifically for a unique attribute (again nT = nR)

• …

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 144

Algebraic Optimization

Equivalence Rules: Selection
Commutativity of selection

• σφ2(σφ1(E))≡ σφ1(σφ2(E))
• Mutual order of selections can be changed

Condition with higher selectivity can be applied first
– I.e., condition which yields a fewer number of tuples

Cascade of selections
• σφ2(σφ1(E))≡ σφ1 ∧φ2(E)
• Direction→

Selections can be merged together into just one
– Via a conjunction over the original conditions

• Direction←
Conjunctive selection can be split into separate selections

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 146

Equivalence Rules: Projection
Cascade of projections

• πA2(πA1(E))≡ πA2(E)
• →: only the outermost projection actually matters

And so the inner one can entirely be omitted as meaningless
Commutativity of selection and projection

• πA(σφ(E))≡ σφ(πA(E))
• Selection and projection can be mutually swapped

←: without any limitation
→: only when all attributes in φ are still available

– When this assumption is not satisfied…
• πA(σφ(E))≡ πA(σφ(πA∪S(E)))

Attributes S from E are those that are needed for the selection

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 147

Equivalence Rules: Joins
Commutativity of joins

• Cross join: E1 × E2 ≡ E2 × E1

• Natural join: E1 ⋊⋉ E2 ≡ E2 ⋊⋉ E1

• Theta join: E1 ⋊⋉φ E2 ≡ E2 ⋊⋉φ E1

• Operands of inner joins can be mutually swapped
Such a thing is not possible for outer joins

Associativity of joins
• Inner joins are also associative (again, not outer)
• (E1 × E2)× E3 ≡ E1 × (E2 × E3)

• (E1 ⋊⋉ E2) ⋊⋉ E3 ≡ E1 ⋊⋉ (E2 ⋊⋉ E3)

• (E1 ⋊⋉φ12 E2) ⋊⋉φ13 ∧φ23 E3 ≡ E1 ⋊⋉φ12 ∧φ13 (E2 ⋊⋉φ23 E3)

Assuming that each φij only involves attributes from Ei and Ej

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 148

Equivalence Rules: Joins
Integration of selection into joins

• Any inner join can be rewritten using theta join…
• … and then combined with selection

Intended for conditions of joining nature
– I.e., conditions that involve attributes from both the operands

• σφS(E1×E2)≡ E1 ⋊⋉φS E2

• σφS(E1 ⋊⋉φJ E2)≡ E1 ⋊⋉φJ ∧φS E2

• σφS(E1 ⋊⋉ E2)≡ E1 ⋊⋉φN ∧φS E2
φN involves pairwise equality tests for all the shared attributes

– I.e., attributes occurring in both the operands

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 149

Equivalence Rules: Joins
Distribution of selection over joins

• Let us have an inner join wrapped by a selection…
… and this selection contains a condition of filtering nature

– I.e., condition with attributes from just one join operand
• It can then be executed before the join over just that operand

And so the join evaluation cost can be decreased
• σφS(E1 × E2)≡ σφS(E1)× E2

Assuming that, in particular, φS involves attributes from E1
only

• σφS(E1 ⋊⋉ E2)≡ σφS(E1) ⋊⋉ E2

• σφS(E1 ⋊⋉φJ E2)≡ σφS(E1) ⋊⋉φJ E2

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 150

Equivalence Rules: Joins
Distribution of projection over joins

• Let us assume that attributes A1 are from E1 and A2 from E2

• πA1 ∪A2(E1 × E2)≡ πA1(E1)× πA2(E2)

• πA1 ∪A2(E1 ⋊⋉ E2)≡ πA1(E1) ⋊⋉ πA2(E2)

→: only works when all joining attributes are still available
• πA1 ∪A2(E1 ⋊⋉ E2)≡ πA1 ∪A2(πA1 ∪N(E1) ⋊⋉ πA2 ∪N(E2))

Attributes N are those that are needed for the natural join
Despite looking strange, the impact may be significant

– Since unnecessary attributes are removed earlier
• πA1 ∪A2(E1 ⋊⋉φ E2)≡ πA1(E1) ⋊⋉φ πA2(E2)

→: analogous assumption again
• πA1 ∪A2(E1 ⋊⋉φ E2)≡ πA1 ∪A2(πA1 ∪ J1(E1) ⋊⋉φ πA2 ∪ J2(E2))

Attributes Ji from Ei are those needed for the theta join

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 151

Equivalence Rules: Set Operations
Commutativity of set operations

• E1 ∪ E2 ≡ E2 ∪ E1

• E1 ∩ E2 ≡ E2 ∩ E1

• Set difference is not commutative
Associativity of set operations

• (E1 ∪ E2) ∪ E3 ≡ E1 ∪ (E2 ∪ E3)

• (E1 ∩ E2) ∩ E3 ≡ E1 ∩ (E2 ∩ E3)

• Set difference is also not associative

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 152

Equivalence Rules: Set Operations
Distribution of selection over set operations

• σφ(E1 ∪ E2)≡ σφ(E1) ∪ σφ(E2)

• σφ(E1 ∩ E2)≡ σφ(E1) ∩ σφ(E2)

• σφ(E1 \ E2)≡ σφ(E1) \ σφ(E2)

Distribution of projection over set operations
• πA(E1 ∪ E2)≡ πA(E1) ∪ πA(E2)

• Such a thing is not possible for intersection and difference

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 153

Recommendations
Basic heuristics

• Push filtering selections as close as possible to leaves
To throw away not needed tuples as soon as possible

• Push projections toward leaves the same way
So that size of intermediate results is decreased

• Integrate joining selections into joins
I.e, rewrite other types of joins to theta joins

• Simplify cascades of projections or selections
• Transform sub‐queries to joins whenever possible

Since optimization only works for simple SELECT blocks
• Exploit commutativity and associativity of operations

Especially joins but also set operations

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 154

Examples
Sample transformations

• πtitle,actor,character

(
σ(year=2000)∧(id=movie)

(
Movie×Actor

))
// #1

• πtitle,actor,character

(
σ(id=movie)

(
σ(year=2000) (Movie×Actor)

))
• πtitle,actor,character

(
σ(year=2000)

(
σ(id=movie) (Movie × Actor)

))
• πtitle,actor,character

(
σ(year=2000)

(
Movie⋊⋉(id=movie) Actor

))
// #2

• πtitle,actor,character

(
σ(year=2000)(Movie)⋊⋉(id=movie) Actor

)
• πtitle,actor,character

(
πid,title

(
σ(year=2000)(Movie)

)
⋊⋉(id=movie)

πmovie,actor,character(Actor)
)

// #3

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 155

Algebraic Optimization
Objective

• Capability of finding alternative query evaluation plans
Based on the so far introduced equivalence rules

– As well as other not covered rules and heuristics
• Ultimate challenge

Space of all possible plansmay be enormous
And so significant pruningmust be involved

Basic strategy for SPJ queries = select‐project‐join queries
• They allow to be approached at two separate levels…

Single‐relation plans / multi‐relation plans
• But still an NP‐complete problem

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 156

Alternative Plans
Single‐relation plans

• Finding the best access method for each individual table
Including optional filtering selections and projections

Multi‐relation plans
• Finding the best join plan for a given set of tables

Only binary joins are usually assumed
And so we just need to take into account all possible orderings

– Since inner joins are commutative and associative

Observation
• Optimal planmay not consist of optimal sub‐plans

And so it may happen that the truly best plan will not be found

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 157

Algorithm
Basic top‐down approach

• Finding the best plan for a set of relations S
Using a dynamic programmingmethod

1 if the best plan for S is already calculated then
2 P ← fetch the best plan for S
3 return P
4 else
5 if S contains just a single relationR then
6 P ← find the best access method forR
7 store P as the best plan for S
8 return P
▼▼▼

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 158

Algorithm
Basic top‐down approach (cont’d)

▲▲▲
9 else

10 foreach SL ⊆ S such that SL ̸= ∅ ∧ SL ̸= S do
11 PL← recursively find the best plan for SL
12 PR← recursively find the best plan for S \ SL
13 P ← find the best join plan over PL and PR
14 if P is so far the best plan for S (if any) then
15 store P as the best plan for S

16 P ← fetch the best plan for S
17 return P

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 159

Left‐Deep Linear Trees
Only left‐deep linear trees are usually taken into account…

• Linear tree
Each non‐leaf node must have at least one child with relation

• Left‐deep linear tree
Moreover, that child must be the right‐hand one

– Since that also increases the chance of attainable pipelining

A B C D A

D

B C

D

C

A B

A B C D A B C D A B C D

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 160

Algorithm
Restricted top‐down approach

• For left‐deep linear trees only
This means there will be just O(n · 2n) instead of O(3n) plans

1 if the best plan for S is already calculated then
2 P ← fetch the best plan for S
3 return P
4 else
5 if S contains just a single relationR then
6 P ← find the best access method forR
7 store P as the best plan for S
8 return P
▼▼▼

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 161

Algorithm
Restricted top‐down approach (cont’d)

▲▲▲
9 else

10 foreach single relationR ∈ S do
11 PL← recursively find the best plan for S \ {R}
12 PR← recursively find the best plan for {R}
13 P ← find the best join plan over PL and PR
14 if P is so far the best plan for S (if any) then
15 store P as the best plan for S

16 P ← fetch the best plan for S
17 return P

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 162

Algorithm
Restricted bottom‐up approach

• We proceed by induction on the number of relations
All single‐relation plans are found first
Then gradually allmulti‐relation plans

– The best plan for n relations is found by considering all possible
means of joining any of its n− 1 relations with the 1 remaining

1 foreach single relationR ∈ S do
2 P ← find the best access method forR
3 store P as the best plan for {R}
▼▼▼

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 163

Algorithm
Restricted bottom‐up approach (cont’d)

▲▲▲
4 foreach pass p ∈ {2, . . . , |S|} do
5 foreach T ⊆ S such that |T| = p do
6 foreach single relationR ∈ T do
7 PL← fetch the best plan for T \ {R}
8 PR← fetch the best plan for {R}
9 P ← find the best join plan over PL and PR

10 if P is so far the best plan for T (if any) then
11 store P as the best plan for T

12 P ← fetch the best plan for S
13 return P

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 164

Query Evaluation

Sample Plan #3

Movie

Actor

Heap file

 1 000 000

 40

 25 000

Selection (year = 2000)

 2 000

 10

 200

 203

Projection [movie, actor, character]

 1 000 000

 65

 25 000

Projection [id, title]

 2 000

 80

 25

Theta join [id = movie]

 20 000

 35

Nested loops

 27

Projection [title, actor, character]

 20 000

 50

 400

 400

Sorted file (year)

 100 000
 10

 10 000

 50

B tree index (year)

 100

 3

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 166

Sample Plan #3
Cost of Plan #3 with pipelining

• M = 25 + 1 + 1 memory pages for buffers I1, I2 andO
I.e., still the same amount of system memory pages used

• c = [cr
1 + ��SScw

1] + [��SScr
2 + ��SScw

2] + [cr
3 + ��SSc

w
3] + [��SScr

4 + ��SScw
4] + [��SSc

r
5]

I2 is used for index traversal and then reading of movies
All filtered and projected movies are put into I1
Actors are read into I2, their projection is postponed
Joined tuples are put intoO and projected

• c = [IM.year + pM · (1/VM.year)] + [pA]

• c = [203] + [25 000]
• c = 25 203

That is approximately 400 times better than the second plan
– And so almost 1 million times better than the first plan

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 167

Explain Statements
EXPLAIN statement

• Allows to retrieve the evaluation plan for a given query
When ANALYZE modifier is provided…

– Query is also executed and the actual run times are returned

EXPLAINEXPLAIN

ANALYZEANALYZE

SELECT querySELECT query

Example
• EXPLAIN

SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 168

Observations
False assumptions and simplifications

• Size of tuples
Real‐world tuples usually have variable size

– Because data types such as VARCHAR are often used
That complicates internal block structure and cost estimates

• Unused slots
Not all slots within data file blocksmay really be used

– I.e., there can be gaps because of, e.g., deleted tuples
And so the actual file size may be greater than assumed

• Inner fragmentation
It may not be possible to utilize inner block space entirely

– I.e., there can be unused space after the last slot
– Or even around the slots in case of variable‐size tuples

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 169

Observations
False assumptions and simplifications (cont’d)

• Overflow areas in sorted files
New tuples are usually not inserted to their correct positions
Instead, special dedicated area is used for that purpose

– So that time‐complicated insertion (up to linear) is avoided
Only time to time the whole file is reorganized (resorted)

• Overflow areas in hashed files
Allocated size of buckets may not be sufficient

• Outer fragmentation
Layout of file blocks on a hard drivemay not be continuous

– That may significantly increase time costs
– Because of repeated seeks and rotational delays

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 170

Observations
False assumptions and simplifications (cont’d)

• Impact of caching manager
Blocks we requiremay already be loaded into the memory

– And so the actual cost may be lower
• Extent of available statistics

Not all statistics we worked with may be available
– Or derivable in case of inner nodes

And so less accurate estimates can then be made
• Lazy maintenance of statistics

Statistics we do havemay already be obsolete
– Simply because some of them are updated only occasionally

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 171

Observations
False assumptions and simplifications (cont’d)

• Non‐uniform distribution
Assumption of uniform distribution is often not realistic

– And it is not just about the data
– But also queries

• Independence of conditions
When reduction factors for conditions are estimated…

– Their independence is assumed
– But this may not be realistic again

• Cost estimation in general
Our formulae provide only estimates, not precise calculations

– Moreover, there was a lot of simplification
– And the statistics we relied on may really be unavailable

And so despite the effort, they may not always work well

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 172

Conclusion
Evaluation algorithms

• Access methods
• Sorting

External merge sort with / without priority queue
• Joining

Binary / non‐binary nested loops join with / without zig‐zag
Basic / integrated sort‐merge join
Classic / simple / partition / grace / hybrid hash join

Query evaluation and optimization
• Evaluation plans

Cost estimates, pipelining
• Statistical / algebraic optimization

NDBI049: Query Languages | Lectures 2 – 5: Query Evaluation | 7. 10. – 4. 11. 2025 174

	Outline
	Introduction
	Access Methods
	File Organization
	Index Structures
	Examples

	External Sort
	Basic Approach
	Priority Queue Approach

	Nested Loops Join
	Binary Nested Loops
	Non-Binary Nested Loops

	Sort-Merge Join
	Basic Approach
	Integrated Approach

	Hash Join
	Classic Hashing
	Simple Hashing
	Partition Hashing
	Grace Hashing
	Hybrid Hashing

	Query Evaluation
	Evaluation Process

	Statistical Optimization
	Histograms
	Size Estimates

	Algebraic Optimization
	Equivalence Rules
	Alternative Plans

	Query Evaluation
	Simplifying Assumptions

	Conclusion

