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Lecture Outline

Algorithms
* Access methods
¢ External sort
* Nested loops join
e Sort-merge join
¢ Hash join
Evaluation
* Query evaluation plans

e Optimization techniques




Introduction

SQL queries
e SELECT statements

SET operation
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Introduction

Relational algebra
e Basic and inferred operations

= Selection o, projection 7, . ,,, renaming Pbi/ay,....bn)an
= Set operations: union U, intersection M, difference \
* Inner joins: cross join x, natural join x, theta join x,
Left / right natural / theta semijoin x, x, x,, X,
Left / right natural / theta antijoin &, <, >, <,

= Division +
* Extended operations

= Left / right / full outer natural join Ix, XC, 2xC
= Left / right / full outer theta join 14 , <, 0,
= Sorting, grouping and aggregation, distinct, ...



Naive Algorithms

Selection: ¢, (E)
* lIteration over all tuples and removal of those filtered out
Projection: m,, .. (E)
 Iteration over all tuples and removal of excluded attributes
= But also removal of duplicates within the traditional model

Distinct

» Sorting of all tuples and removal of adjacent duplicates
Inner joins: Ep X Es, Ep X Eg, Ep X, Eg

* lIteration over all the possible combinations via nested loops
Sorting

e Quick sort, heap sort, bubble sort, insertion sort, ...



Challenges

Blocks
* Tuples stored in data files are not accessible directly
= Since we have read / write operations for whole blocks only
e That is true for all types of files...

= And so not just data files for tables
= But also files for index structures or system catalog

Latency

* Traditional magnetic hard drives are extremely slow
= Efficient management of cached pages is hence essential

Memory

* Size of available system memory is always limited
= external algorithms are needed
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Objectives

Query evaluation plan

* Based on the database context and available memory...
... suitable evaluation algorithms need to be selected...
... 50 that the overall evaluation cost is minimal

Database context
* Relational schema: tables, columns, data types
* Integrity constraints: primary / unique / foreign keys, ...
» Data organization: heap / sorted / hashed file
* Index structures: B tree, bitmap index, hash index
* Available statistics: min / max values, histograms, ...
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Objectives

Available system memory
* Number of pages allocated for the execution of a given query

e There are two possible scenarios...
= Having a particular memory size...
— Propose its usage and estimate the evaluation cost
= Having a particular cost expectation...
— Determine the required memory and propose its usage

Evaluation algorithms
* Access methods
e Sorting: external sort approaches
* Joining: nested loops, merge join, and hash join approaches



Objectives

Cost estimation

* Expressed in terms of read / write disk operations
= Since hard drives are extremely slow, as already stated...
— And so everything else can boldly be ignored
* We are interested in estimates only

= Since it is unlikely we could provide accurate calculations
= But still...

— The more accurate estimates, the better evaluation plans
= And there can really be huge differences in their efficiency...
— Even up to several orders of magnitude!
* In other words...

* Query optimization is crucial for any database system
= As well as we also need to know what we are doing...
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Available Statistics

Environment

e P: size of a block / page, usually ~ 4 kB

e M: number of available system memory pages
Relation R

* np: number of tuples

* sp: average / fixed tuple size
br =~ | B/sgr]: blocking factor

= Number of tuples that can be stored within one block

pr ~ [ng/br]: number of blocks
e V4 cardinality of the active domain of attribute A
= Number of distinct values of A occurringin R

* ming 4 and mazr 4: minimal and maximal values for A



Access Methods



Data Files

Internal structure

» Blocks of data files for tables are divided into slots
= Each slot is intended for storing exactly one tuple
— By the way, they can easily be uniquely identified
— Using a pair of block and slot logical ordinal numbers

¢ Fixed-size slots
= Usage status of each slot just needs to be remembered

(e [

e Variable-size slots

= When at least one variable-size attribute is involved
= Slot beginnings and lengths need to be remembered

(o '
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Access Methods

Access method

e Particular approach for finding the intended tuples
= |.e., reading blocks with such tuples into the system memory
— Directly from data files for tables
— But also indirectly using index structures
* Full scan (sequential read) is possible under all circumstances
= However, we can do better in certain cases based on...

— Involved selection conditions
— Particular data file organization
— Available index structures (if any)

= |.e., number of blocks to be read can significantly be reduced

— And so the evaluation cost
— Since only relevant blocks are considered instead all of them
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Access Methods

Data file organization
¢ Heap file, sorted file, hashed file
Index structures
e B tree, ...
Selection conditions
¢ Equality tests with respect to unique / non-unique attributes
= A = v, where vis a particular value (not another attribute)

¢ Range queries for one-sided / two-sided intervals
" §A,A§vg,and(v1 SA)/\(AS ’UQ)
— Analogously for other comparison operators (>, <, >)
— As well as their mutual combinations in two-sided intervals
— However, only fixed boundary values are assumed again



Heap File

Heap file
e Tuples are put into individual slots entirely arbitrarily
= |.e., we do not have any specific knowledge of their position

52 [20]10] ] [s]55]sa] 5] [3a]3s] 2] ] [w][]o] [] | | |

Selection costs
¢ Full scan is inevitable in almost all situations

" C=DR
* Equality test with respect to a unique attribute
= ¢c= [pr/2]

— Since we can stop at the moment a given tuple is found
— However, uniform distribution of data and queries is assumed
— And values outside of the active domain may also be queried

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025 15



Sorted File

Sorted file
e Tuples are ordered with respect to a particular attribute

‘6‘11‘18‘18"20‘23‘25‘34"36‘42‘49‘53"53‘71‘75‘82"93‘ ‘ ‘ “

Selection costs
e Binary search (half-interval search) can be used in general
= However, only when the same attribute is queried, of course

— l.e., the same attribute as the one used for sorting
— Otherwise, sequential read as in a heap file would be needed

* Equality test
= ¢ = [log, pr| for a unique attribute
= ¢ = [logy pr| + [pr/ VR 4| for a non-unique attribute



Sorted File

Selection costs (cont’d)
* Range query for two-sided intervals [v;, ;] and other
o | —

MIng 4 V1 vy MATRA

e For "continuous" domains...
= Number of values between any two of them is not limited

— At least potentially
— In practical terms, there can simply be far too many of them
— E.g.: FLOAT, VARCHAR, ...

= ¢ = [logy pr| + [pr - (v2 — v1)/(mazg 4 — ming 4)]
— Boundary types (inclusive / exclusive) are unimportant



Sorted File

Selection costs (cont’d)
* Range query for two-sided intervals [v;, ;] and other

.. ..
' '
' '
O=O-0=C :. =00 :. O—=C
MIng 4 V1 vy MATRA

e For "discrete" domains...
= Number of values between any two of them is finite
— E.g.: INTEGER, CHAR, DATE, ...
* ¢ =[logy pr| + [pr - (v2 — v1 +¢€)/(mazg 4 — ming a4 +1)]
— gis 1 for closed intervals, —1 for open (unless v; = 1;), and
0 otherwise, i.e., half-open and zero-sized open



Sorted File

Selection costs (cont’d)

* Range query for one-sided intervals (—oo, v5] and (—oo, 1)

® ®
' '
' '
H
@ —0
MIng 4 V2 MATRA

* ¢=[pgr- (va — ming 4)/(mazg 4 — ming. 4)]

" ¢c=[pr-(v2 — ming 4 +¢)/(maxg a4 — ming 4 + 1)]
» Range query for one-sided intervals [v;, 00) and (v;, )

= Analogously...

= c=[pr- (mazg g — v1)/(mazg 4 — ming )]

* ¢=[pr-(mazg s — v +¢)/(mazgs — ming 4 + 1)]



Hashed File

Hashed file

e Tuples are put into disjoint buckets (logical groups of blocks)
= Based on a selected hash function over a particular attribute

- E.g, W(A) = Amod 3

‘18‘42‘75‘36"82‘34‘49‘25"53‘20‘23‘53‘
[sfssl [ J|L [ [ | Jjluf[n] | ]
h(A) =0 h(A) =1 h(A) =2

¢ Hash function

= |ts domain are values of a given attribute A

= |ts range provides H distinct values

— There is exactly one bucket for each one of them
— All tuples in a bucket always share the same hash value




Hashed File

File statistics
* Hpg: number of buckets
o Crp= [pr/Hg]: expected bucket size
= Measured as a number of blocks in a bucket
Selection costs
* Equality test when the hashing attribute is queried

= Only the corresponding bucket needs to be accessed
= ¢ = (g for a non-unique attribute
= ¢ = [ Cr/2] for a unique attribute
— Similar assumptions as in the case of heap files
* Any other condition
" c= DR
— l.e., full scan is needed
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B* Tree Index

B tree index structure = self-balanced search tree
* Logarithmic height is guaranteed (the same across all leaves)
* Moreover, very high fan-out is assumed
= |.e., our trees will tend to be significantly wider than taller
— => search times will not only be logarithmic, but also really low
Logical structure
* Internal node (including a non-leaf root node)

= Contains an ordered sequence of dividing values and pointers
to child nodes representing the sub-intervals they determine

e Leaf node

= Contains individual values and pointers to tuples in data file
= Leaves are also interconnected by pointers in both directions
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B™ Tree Index

BT tree index structure (cont’d)
* Sample index for relation R and its attribute A

(2 D ] I | O P o

M_’ ‘10‘11‘14‘ ‘ ‘19‘21‘21‘ ‘ € %‘23‘26‘ ‘ ‘ (428 \
Index

Table




B* Tree Index

Physical structure

* Each node is physically represented by one index file block
= And so they are treated the same way as data file blocks
— le., loaded into the system memory one by one, etc.

Index statistics
* mp 4: maximal number of children (order of tree)

= Usually up to small hundreds in practice
= Actual number is guaranteed to be at least [mp_4/2]

— Except for the root node
* [ 4: index height
= Usually just =~ 2 — 3 for typical real-world tables

* ppr.a: number of leaf nodes
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B™ Tree Index

Search algorithm
* Index is traversed from its root toward the corresponding leaf
= Data tuple then needs to be fetched from the data file

7] | |

) [

O b fonse fol@aml folas  fo]al

Index

Table




Non-Clustered B' Tree Index

Non-clustered index
e Order of items within the leaves and data file is not the same
= |.e., data file is organized as a heap file of hashed file

[s] | |

{814 ZIJ
O0—O0—0——0
] e Iy I s I e [ R e

|||||
Table

\ 1| T = | T | T
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Non-Clustered B' Tree Index

Selection costs
* Equality test for a unique / non-unique attribute
" c= IR.A +1
= c=Ipa+ [pra/VR.Al +min(pr, [nr/VR.al)
* Range query for two-sided intervals [v;, 1;] and other
* c=1Iga+[pra-(v2—v1)/(mazga — minga)]+

min(pg, [ng - (v2 — v1)/(mazg a4 — ming 4)1)
— Analogously for discrete domains

* However, for small domains Vy 4 or large intervals...
= Full scan of the data file is better
— l.e., index is not utilized at all
e Conditions not involving the indexed attribute
= Full scan again, of course



Clustered B™ Tree Index

Clustered index

e On the contrary, order of items is (at least almost) the same
= |.e., data file is a sorted file (with respect to the same attribute)

[ | |

LAAAA‘M////

[81421J

i~




Clustered B™ Tree Index

Selection costs
e Equality tests

= ¢= Ip 4 + 1 for a unique attribute
* ¢=1Igp 4+ [pr/ Vg 4| for a non-unique attribute

* Range query for two-sided intervals [v;, 1;] and other

* c=1Ipa+[pr-(v2—wv)/(mazg . — ming 4)]
— Analogously for discrete domains

* Range query for one-sided intervals

= Data file is read directly as an ordinary sorted file
e Conditions not involving the indexed attribute

= Full scan again, of course



Examples

Sample scenario #1
* Movie ( id, title, year, ...)
= Basic statistics

— npr = 100 000 tuples, by = 10, par = 10 000 blocks
— Varia = nar = 100 000 values (since they are unique)

Heap file
Sorted file (using ids)
Hashed file
~ h(M.id) = M.id mod 50
— Hjyr = 50 buckets, C3; = 200 blocks
BT tree index (using ids)
— mys.sq = 100 followers
- IM.id = 3, PM.id = 1 500 blocks



Examples

Equality test: movie with a particular identifier

* Heap file

* ¢= [py/2] = 5000
* Sorted file

* c=[logypy| =14
¢ Hashed file

= ¢=[Cy/2] = 100

Non-clustered index (BT tree & heap file)
s c=Iyuy+l=3+1=4

Clustered index (B™ tree & sorted file)
s c=Iyut+1=3+1=4



Examples

Sample scenario #2
* Movie ( id, title, year, ...)
= Basic statistics

— nypr = 100 000 tuples, by = 10, par = 10 000 blocks
= VM year = 50 values
= MINM.year = 1943, mazps year = 2022 (i.e., 80 values)

Heap file
Sorted file (using years)
Hashed file

- h(M.year) = M.year mod 20
— Hjy = 20 buckets, C3; = 500 blocks

BT tree index (using years)

— MM.year = 100 followers
- IM,year - 3; pM,year = 1 500 bIOCkS



Examples

Equality test: movies filmed in a particular year

* Heap file

= c¢=py = 10000
* Sorted file

= ¢ = [logy pur] + [Pat/ Viryear] = 14 + 200 = 214
¢ Hashed file

= ¢c= Cy =500
Non-clustered index (BT tree & heap file)

" Cc= IM.year + [pM.year/ VM.year—| + min(pM» [nM/ VM.year—D
=3+30+2000=2033

Clustered index (BT tree & sorted file)
" Cc= IM.year + [pM/ VM.year-‘ =3+ 200 = 203



Examples

Range query: movies filmed during years [y, = 2016, yo = 2020]
* Heap file
= c¢=py = 10000

Sorted file
= Let r < (y2 — y1 + 1)/ (Mazpsyear — Minp year + 1) = 5/80
» ¢ = [logy pum| + [par- 7] = 14 + 625 = 639

Hashed file
= ¢c=pyu=10000

Non-clustered index (BT tree & heap file)

" Cc= IM,yea’r + “)M.year' 7:I + min(pM, [TLM . 7:‘)
=3+94+ 6250 =06 347

Clustered index (B™ tree & sorted file)
"Cc= IM.yeaT+ |VpM' 7’] =3+ 625 =628



External Sort



External Sort

N-way external merge sort
e Sort phase (pass 1)

= Groups of input blocks are loaded into the system memory
= Tuples in these blocks are then sorted

— Any in-memory in-place sorting algorithm can be used
— E.g.: quick sort, heap sort, bubble sort, insertion sort, ...

= Created initial runs are written into a temporary file
* Merge phase (passes 2 and higher)

= Groups of runs are loaded into the memory and merged

= Newly created (longer) runs are written back on a hard drive
= Merging is finished when exactly one run is obtained

— And so the entire input table is sorted
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Sort Phase

Pass 1

e |nput data file
= Relational table R
— E.g., ng = 18 tuples, by = 4 tuples/block, pr = 5 blocks

R‘49‘15‘27‘81"27‘11‘43‘36"92‘19‘72‘68"26‘63‘43‘32"84‘35‘ ‘ ‘

R[] R[2] R[3) R[4] R[5]

¢ System memory layout
= Input buffer 7
— E.g., size M = 2 pages




Sort Phase

Pass 1

e Groups of M blocks are presorted and so initial runs created
= Input blocks from R are first loaded to Z

— Individual tuples in Z are then sorted
— Created runs are stored to a temporary file R!

= [[olTlu] frlufels] .

Memory

Hard disk

(=] [ ]

R |49‘15‘27‘81‘ |27‘11‘43‘36‘ ‘92‘19‘72‘68‘ ‘26‘63‘43‘32‘
R[1] R[2] - > >

= (I ] (< « < /
R}



Sort Phase

Pass 1
 Resulting runs in R! within our sample scenario

R[] R[2) R[3] R4 R3]

R ‘49‘15‘27‘81"27‘11‘43‘36"92‘19‘72‘68"26‘63‘43‘32”84‘35‘ ‘ “
J

Rl ‘11‘15‘27‘27"36‘43‘49‘81"19‘26‘32‘43"63‘68‘72‘92”35‘84‘ ‘ “

Ri R; Ry




Merge Phase

Pass 2

* Groups of M runs are iteratively merged together
= Blocks from these input runs are gradually loaded into 7

— Minimal items are then iteratively selected and moved to O
— Merged (longer) runs are written to a new temporary file R?

A |11|15|27|z7||19|zs|3z|43| o D:I:\:“ ~

A
Memory

Hard disk

R |11|15|27|27|‘36‘43‘49‘81‘|19|26|32|43|‘63‘68‘72‘92”35‘84‘ ‘ “
Ri - Ry —> > > >

- | I [
R}



Merge Phase

Passes 2 and 3

* Merging continues until just a single run is acquired
= And so the entire input table is sorted

Rl ‘11‘15‘27‘27"36‘43‘49‘81"19‘26‘32‘43"53‘68‘72‘92“35‘84‘ ‘ “
R L R} J R;
M v
RZ 11 15 19 26 27 27 32 36 43 43 49 63 68 72 81 92 35 84 ‘
R? L R2 J
v
R3 11 15 19 26 27 27 32 35 36 43 43 49 63 68 72 81 84 92 ‘

Rt



Algorithm

Sort phase (pass 1)

1 p+1

2 foreach group of blocks By, ..., By (if any) from 'R do
3 read these blocks to 7

4 sort all items inZ

5 write all blocks from Z as a new run to R”




Algorithm

Merge phase (passes 2 and higher)

while R? has more then just one run do

6
7 p+—p+1

8 foreach group of runs Ry, ..., Ry (if any) from R?~! do
9 start constructing a new run in R?

10 read the first block from each run R, to Z[z]

11 while 7 contains at least one item do

12 select the minimal item and move it to O

13 if the corresponding Z[z] is empty then

14 | read the next block from R, (if any) to Z[1]
15 if O is full then write O to R? and empty O

16 if O is not empty then write O to R? and empty O




Summary

Memory layout
e Sort phase (pass 1): M
= Input buffer Z: M pages

_—
Input buffer Z
M pages

* Merge phase (passes 2 and higher): M + 1
= Input buffer Z: M > 2 pages
= Qutput buffer O: 1 page

Input buffer 7 Output buffer O
M pages 1 page



Summary

Time complexity
* Single pass (regardless of the phase)
" Cread = Curite = PR
* Number of passes
= t=[logy(pr) ]
e Overall cost
* cgs = t- (Cread + Curite) = [logy(pr) | - 2pR
Limitation of the overall number of passes
* Ingeneral...
" M=[/pr]
» Specifically for t = 2 (i.e., exactly 2 passes)

* M=1ypr]
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Improved Approach

N-way external merge sort with priority queue
e Sort phase is modified

= |nstead of fixed-size initial runs...
= ... we generate them using a priority queue

— In particular, min-heap data structure is used
= The aim is to make the initial runs longer
* Memory layout: M/ +1+1
= Queue container C: M > 1 pages
= |nput buffer Z: 1 page
= Output buffer O: 1 page
NN -3 -0
— —— ——

Queue container C Input buffer Z  Output buffer O
M pages 1 page 1 page



Sort Phase

Pass 1

e Once the queue is initialized, runs are generated on the fly

= Minimal item greater than or equal to the last value is always
extracted and replaced with another item from the input file

A B )|
¢ e e - (] o [T

Memory

Hard disk

R\__

ISZ 72 68“26|63‘43‘32‘|M‘35‘ ‘ “

R3] - > >
w\ltlmlu» | o< /




Sort Phase

Pass 1 (cont’d)
e Two runs are obtained in our scenario

R! ‘11‘15‘19‘27‘ ‘27‘36‘43‘43‘ ‘49‘63‘68‘72‘ ‘81‘84‘92‘ ‘

ns] |

Rl R}

Impact summary

e Created initial runs will tend to be longer
= 2M blocks on average (instead of just M)

— ppg inthe best case
— Min the worst case

o = number of the runs will tend to be lower



Algorithm

Improved sort phase (pass 1)

1 read blocks R[1], ..., R[M] (if any) from R to C
2 read block R[M + 1] (if any) from R to Z

3 while C contains at least one item do

4 start constructing a new run in R', put v < —oo

5 while C contains at least one item 7 > v do

6 let 7 be the minimal one, move ito O, put v < ¢
7 move the next item from Z (if any) to C

8 if Z is empty then

9 | read the next block from R (if any) to Z

10 if O is full then write O to R! and empty O

11 if O is not empty then write O to R! and empty O




Priority Queue

Min-heap data structure

e Complete binary tree

= Key associated with each node must be less than or equal to
keys of all its child nodes

— lL.e., the root node contains the minimal item among them all
e Array representation is possible
= Using a straightforward index arithmetic

@ i15|27|36|27|49|43|81‘
) @

o




Queue Container

Queue container C

* Two separate min-heap structures are in fact used
= Active heap with items greater than or equal to the last value

— And so values that can still be (actually all really will be) used in
the currently constructed run

= Inactive heap with items not satisfying the condition
* Both are represented as arrays
= Directly inside the container blocks
e Container initialization (line 1)
= Active heap is built from the input items, inactive heap is empty

|11‘15‘27‘36‘ ‘27‘49‘43‘81
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Queue Container

Queue container C (cont’d)
* Whenever an item is added to the container (line 7)
= |tis added to the active / inactive heap based on the condition

MEEE B

* Whenever the active heap is fully depleted (line 5)
= |.e., the current run terminated, both the heaps are swapped

2

wlafs] | || ] ]




Nested Loops Join



Nested Loops

Binary nested loops

* Universal approach for all types of inner joins
= Natural join, cross join, theta join
— l.e., arbitrary joining condition can be involved

= Support possible duplicates
= Requires no index structures

* Not the best option in all situations, though
= Suitable for tables with significantly different sizes

Basic idea
e Outer loop: iteration over the blocks of the first table
* Inner loop: iteration over the blocks of the second table
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Nested Loops

Sample input data
* Tables R and S to be joined using a value equality test

R ‘21‘84‘56‘19"41‘72‘69‘35”56‘84‘ ‘ ‘

S ‘31‘56‘75‘43"88‘21‘43‘14"92‘52‘25‘81"72‘37‘64‘35”14‘64‘ ‘ ‘

Basic setup
e Memory layout: 1 +1+1
= Input buffer Z: 1 page
= |Input buffer Zs: 1 page
= : 1 page
H-N -]
—— —— ——

Ir Is o
1 page 1 page 1 page



Nested Loops

Basicsetup (1 +1+ 1)
e Another pair of loops is used for joining tuples in the memory

D A —

yyyyyy

dddddddd

BN

R |21‘84‘56‘19‘ ‘41‘72‘69‘35‘
- > >

S ‘31‘56‘75‘43"88‘21‘43‘14"92‘52‘25‘81"72‘37‘64‘35”14‘64‘ ‘ “
> > >

T‘ - }: ~




Algorithm

Basicsetup (1 +1+ 1)

1 foreach block R from R do
2 read Rinto Zy

3 foreach block S from S do

4 read Sinto Zg

5 foreach item rin Zy do

6 foreach item sin Zg do

7 if and s satisfy the join condition then

8 join rand s and put the result to O

9 L if O is full then write O to T, empty O

10 if O is not empty then write O to 7 and empty O




Observations

Time complexity
e Basicsetup (1 +1+1)
" CNL = PR+ PR DS
* = smaller table should always be taken as the outer one
General setup
* Multiple pages are used for both the input buffers
* Memory layout: Mp + Mg+ 1
= Input buffer Zx: Mg pages
= |nput buffer Z5: Mg pages
= : 1 page

EN-N - 5E -3 - [
H_/

Ir Is o

MFp, pages Mg pages 1 page




Algorithm

General setup (Mpz + Mg+ 1)

1
2
3
4
5
6
7
8
9

foreach group of blocks R, ..., Ry, (if any) from R do
read these blocks into Zx
foreach group of blocks S, ..., Su (if any) from S do

read these blocks into Zg
foreach item rin Z do
foreach item sin Zg do
if rand s satisfy the join condition then
join rand s and put the result to O
L if O is full then write O to T, empty O

10 if O is not empty then write O to 7 and empty O




Observations

Time complexity
e General setup (Mp + Mg+ 1)
" cn = pr + [pr/MR] - ps
* = there is no reason of having Mg > 2
Standard setup
* Memory layout: Mrp +1+1
= |nput buffer Zp: Mg pages
= Input buffer Zs: 1 page
= : 1 page

EN-E -8 - [
— S S
Ir Is o

Mp, pages 1 page 1 page



Standard Approach

Standard setup (My + 1 + 1) with zig-zag optimization
* Multiple pages are used just for the outer table

Ir
S
R |21‘84‘56‘19‘|41‘7Z‘69‘35H56‘84‘ ‘ “
o> > >
S ‘31‘56‘75‘43"88‘21‘43‘14"92‘52‘25‘81"72‘37‘64‘35”14‘64‘ ‘ “
o> > > “« €« <«

T‘ - }: J




Observations

Zig-zag optimization
* Reading of the inner table S

= Odd iterations normally
= Even iterations in reverse order

Time complexity
e Standard setup (Mg + 1+ 1)

* e = pr + [pPrR/MR] - ps (without zig-zag)
= ¢y = pr+ [pr/MR] - (ps—1) + 1 (with zig-zag)




Special Cases

Very small tables
* Smaller table fits entirely within the memory, i.e., pr < My
" cNL = PR+ Ps
Non-brute-force replacement for inner loops
* BT tree index exists in S on attribute A that is unique in S
* ey =pr+ngr- (Isa+1)
— If Ris organized as a heap

" ey =pr+ Isa+psa+ Vga
— If Ris sorted with respect to A

* Sis a hashed file over attribute A that is unique in S
e =pr+ Vra- Cs
— If Ris sorted with respect to A



Non-Binary Nested Loops

Non-binary nested loops

* Nested loops algorithm for multiple tables at once
= In particular, let us have tables Rq,...,R,forn>2,neN
— Let their sizes be p1, ..., pn

* Solution

= We just need to embed more loops into each other
* Memory layout: M; +---+ M, + 1

= Input buffers Z;: M; pages for each table R;

] : 1 page
* Overall cost with zig-zag optimization

© e = (p1)+(Tpr/ M)+ (b2 — M) + Mo+ -+

(Ipu/M0T - Thama /M ] - (pn = M) + M)



Memory Setup

Memory layout: M, + --- + M, + 1
e Optimization problem
= Finding integer M; minimizing the overall cost cy,
e Heuristics

= Let M > nbe all the available pages (for input buffers)
= Let p; < --- < p, (without loss of generality)
= Allocate one page for the innermost table, i.e., M,, = 1
= Allocate the remaining pages uniformlyto R1,..., R,—1
- lLe,letm=|(M—-1)/(n—1)]
— Then put M; = mforeachic {1,...,n— 1}
— It may happen that some pages will still be unallocated
— There will be exactly u = (M — 1) — (n — 1) - mof them
— Assign these remaining pages (if any) between smaller tables
- le, M;+=1foreachic {1,...,u}
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Memory Setup

Memory layout (cont’d)
* Example #1
= n = Jtables, M = 11 pages (for input buffers)
= Allocation: (5,5,1)

IIIII IIIII - D

Ia
M = 5 pages M, = 5 pages Ms=1 1 page

* Example #2
= n =5 tables, M = 11 pages
= Allocation: (3,3,2,2,1)

EEN-NEN-BN-EN-N-=

I I Is
M;=3 My=3 M3=2 M4=2 Ms=1 1page




Sort-Merge Join



Sort-Merge Join

Sort-merge join algorithm (or just merge join)
e Inner joins based on value equality tests only

= Basic version without duplicates
— Could be extended to support them, though

e Suitable for tables with relatively similar sizes

= Especially when they are already sorted
= Or when the final result is expected to be sorted

Phases
e Sort phase
= Both tables are externally sorted, one by one (if not yet)
¢ Join phase
= |tems are joined while simulating the merge of the two tables



Basic Approach

Sample input data
* Input tables R and S

R ‘65‘19‘35‘92”49‘31‘ ‘ ‘

S ‘52‘94‘38‘71"92‘41‘63‘19"75‘54‘46‘68"15‘27‘22‘43"11‘50‘49‘ ‘

Sort phase
* Resulting sorted tables

R ‘19‘31‘35‘49”65‘92‘ ‘ ‘

S’ ‘11‘15‘19‘22‘ ‘27‘38‘41‘43‘ ‘46‘49‘50‘52‘ ‘54‘63‘68‘71‘ ‘75‘92‘94‘ ‘




Basic Approach

Join phase
* Blocks from the sorted tables are processed one by one

dddddddd

4 |19|31|35|49H55‘9z‘ ‘ “
-

S’ ‘11‘15|19‘22"27‘38‘41‘43"46‘49‘50‘52"54‘63‘68‘71"75‘92‘94‘ “
>

r [ -~k /




Algorithm

Join phase

1 read block R’[1] to Zx and block S’[1] to Z
2 while both Z and Zs contain at least one item do

3 let rbe the minimal item in Z and s minimal item in Zg
4 if rand s can be joined then

5 join rand s and put the result to O

6 if O is full then write O to 7 and empty O

7 remove both rfrom Zy and sfrom Zg

8 else remove the lower one of rfrom Zy or s from Zg

9 if 75 is empty then read the next block from R’ (if any)
10 if Z5 is empty then read the next block from &’ (if any)

11 if O is not empty then write O to 7 and empty O




Observations

Join phase
e Memorylayout: 1 +1+1
= Input buffer Zy: 1 page
= Input buffer Zs: 1 page
= Qutput buffer O: 1 page
o0 -]
—— —— ——

Ir Is o
1 page 1 page 1 page

Time complexity
* Sort phase
¢ Join phase
" CM3 = PR+ DS



Extended Version

Duplicate items
* Possible duplicates in one table only
= Letit be S (without loss of generality)
= Algorithm modification is straightforward...

— Having successfully joined rand s, we just remove s from Zg
and not rfrom Zp, (line 7)

I,
" .I,

‘28‘30‘31‘34“35‘38 ‘46‘48‘50‘51‘

L0

‘14‘19‘28‘28‘ ‘37|40|40|40| |40|40|49‘52‘
A
T

L

5

‘52‘57‘61‘65‘

‘54‘54‘57‘57‘

3

5

Is




Extended Version

Duplicate items
* Possible duplicates in both tables

= All matching pairs of rand sjust need to be joined...
= Unfortunately, size of input buffers might not be sufficient

— Since we may span block boundaries, even repeatedly

I,
S

s e[|l v

N

][ | || ]

=\

5

‘31‘31‘31‘34‘

3

2] 8 [10]a]

5

Is i




Integrated Approach

2-pass integrated sort-merge join with priority queue
e Sort phase (pass 1)
= Tables are processed one by one
— They are not sorted entirely, though
= Only initial runs are constructed
— Using just the sort phase (pass 1) of the external sort algorithm
— Priority queue is involved to make these runs longer
— And so their overall number lower
e Join phase (pass 2)
= The same idea as in the basic sort-merge approach
— We only have more runs within each presorted table



Integrated Approach

Sort phase (pass 1)
 Resulting initial runs within tables R! and S*!

R s nss s 2
R}
St ‘19‘38‘41‘46"52‘54‘63‘68"71‘75‘92‘94"11‘15‘22‘27”43‘49‘50‘ “

St 8y




Integrated Approach

Join phase (pass 2)
 All runs from both the tables R' and S' are merged at once

ye
-, | - (M S o[-

A

Memory

Hard disk

R! |19|31|35|49‘ ‘55‘92‘ ‘ “
R} -

St ‘19‘38‘41‘46‘ ‘52‘54‘63‘68‘ ‘71‘75‘92‘94‘ ‘11‘15‘22‘27‘ ‘43‘49‘50‘ “
St - 83 -

r [ >~k /




Algorithm

Join phase (pass 2)

read R1[1] from each run in R' to Zy[1], the same for S*
while both Z; and Zs contain at least one item do
let rbe the minimal item in Zp and s minimal item in Zg
if 7and s can be joined then
join rand s and put the result to O
if O is full then write O to 7 and empty O
remove both rfrom Zr and s from Zg
else remove the lower one of rfrom Zy or s from Zg
9 if the given Zp[z] is empty then refill it from R}
10 if the given Zg[1] is empty then refill it from S}

N oo o W

(o]

11 if O is not empty then write O to 7 and empty O




Observations

Join phase (pass 2)
* Memory layout: Mp + Mg+ 1

= Input buffer Z: My pages = number of runs in R!
= Input buffer Zs: Mg pages = number of runs in S*

= : 1 page
EN - N - @@ -3 - D

Input buffers Zr and Zg
Mp + Mg pages 1 page

Time complexity
* Sort phase: ceory = 2pr + 2ps
* Join phase: ¢join = Pr + Ps
o Overall cost: Cy; = Coort + Cjoin = 3(Pr + Ps)



Observations

Optimized setup
* Motivation
= Balanced memory usage across both phases
* Sort phase (pass 1)

= Required memory: M+ 1+ 1 pages
= Let M = [/p], where p = max(pg, ps)
— As if we wanted 2 passes for the external sort
= |f M pages are used for the priority queue container...

— Expected length of initial runs should be 2M
— And so the expected number of all runs ps/2M + pr/2M <

p/2M+ p/2M = 2p/2M = p/M =~ p/\/p~ /D~ M
* Join phase (pass 2)
= Required memory: Mpr + Mg+ 1 pages
== Mp+ Mg~ M



Observations

Optimized setup (cont’d)
¢ In other words...

= The same number of )M pages should be sufficient for both...

— Queue container C during pass 1, and
— Input buffers 7 and Zg during pass 2

1 +Q+Q

Queue container C A 9]
M pages 1 page 1 page

ﬁ

v R
——
o

~
Input buffers Zg and Zg
Mp + Mg pages 1 page







Hash Join

Hash join approaches
* Basic principle
= |tems of the first table are hashed into the system memory
= |tems of the second table are then attempted to be joined
e Limitations
= Inner joins based on value equality tests only
— Including possible duplicates
= Not suitable for small active domains
e Particular approaches
= Classic hash join, Simple hash join, Partition hash join,
Grace hash join, and Hybrid hash join



Classic Hashing

Classic hash join

¢ Build phase
= Smaller table (let it be R) is hashed into the system memory

— le., itis sequentially loaded into the memory, block by block
— Allits tuples are then emplaced into the hash container

e Hash function his assumed for this purpose

= |ts domain are values of the joining attribute A
= |ts range provides H distinct values

e Hash container internally contains H buckets
= |ts overall size will inevitably be somewhat larger than pgr
- Letussay M = [F- pr] pages for some small factor F
¢ Probe phase
= |tems from the larger table S are attempted to be joined



Build Phase

Build phase
e Tuples from the smaller table are hashed into the memory
= E.g., hash function h(A) = A mod 2 is assumed

I_H

T .

h(A) =0 h(A) =1

Memory

Hard disk

R

|25|14|38l42"57‘69‘13‘93"84‘57‘92‘6”43‘ ‘ ‘ “

- > >




Probe Phase

Probe phase
e Tuples from the larger table are attempted to be joined

( [
[se[ss[ ]| [ s7]eo ] 5]
" o [Elaels] o [ws
[s2[e[ T J|[fsr]e] ]
R(A) =0 h(4) =1
Memory
Hard disk
S ‘87|14|65|19"28‘57‘6‘44"72‘35‘91‘16"14‘37‘93‘28”91‘28‘ ‘ “
- > >
rC1 -~k /




Algorithm

Build phase

1 foreach block R from R do
2 read RintoZ

3 foreach item rin Z do

4 calculate hash value h < h(r.A)
5 add rinto bucket i in H




Algorithm

Probe phase

1 foreach block Sfrom S do

2 read Sinto Z

3 foreach item sin Z do

4 calculate hash value h < h(s.A)

5 foreach item rin bucket /. in H do

6 if 7and scan be joined then

7 join 7and s and put the result to O

8 L if O is full then write O to 7 and empty O

9 if O is not empty then write O to 7 and empty O




Observations

Memory layout
e Build phase: M+ 1
= Hash container 7{: M = [F - pr| pages
= Input buffer Z: 1 page

Hash container H Input buffer 7
M pages 1 page

* Probe phase: M+ 1+1
= Hash container 7{: M pages (preserved from the build phase)
= Input buffer Z: 1 page

= : 1 page
EN-N -8 -
%(—/ —— ——
Hash container Input bufferZ  Output buffer O
M pages 1 page 1 page



Observations

Time complexity
* Build and probe phases
" Cpuild = PR
" Cprobe = PS
* Overall cost
" CCH = Cbuild + Cprobe = PR + DS
Summary
* Interesting approach as for its efficiency

= However, usable only when the smaller table can entirely be
hashed into the system memory...



Simple Hashing

Simple hash join
* Basicidea
= During each pass, just a subset of all tuples is considered

— These are processed via analogous build and probe routines
— The remaining tuples are postponed for the following passes

e Partition function p is assumed for this separation

= Its domain are again values of the joining attribute A
= |ts range provides P distinct values

* Obvious requirement

= Both functions p and & need to be mutually orthogonal
= E.g.: p(A) = Amod 4and h(A) = A mod 2 will not work

— Because all items in a partition would either be even or odd
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Build Phase

Build phase (partition 0)
e |tems from the smaller table are either hashed or postponed

= E.g., partition function p(A) = A mod 4 and hash function
h(A) = (A/4) mod 2 are assumed

(—J% p(4) = oTpm) 40

ol [ ||l ] ]
" 7 |[alulals] 7 o]l |
L]
emory h(4) =0 h(4) =1 p(4) € {1,...,3}
Hard disk
R |28‘17‘51‘16"52‘40‘19‘53"10‘32‘36‘77‘5 R
- > >



Probe Phase

Probe phase (partition 0)

el
[l T [ Jlsefre]z] ]

" 7 |slslall| 7 sl |
vy A =0 h4) =1 p(4) € {1,...,3}
Hard disk (
S “8‘33‘52‘31‘ ‘95‘22‘36‘52‘ ‘49‘74‘63‘11‘ B St
- > >

L [ 1 | J
- <
r |




Algorithm

Overall procedure

put R «+ R

put S? S

foreach partition p € {0,...,P— 1} do

execute build phase for partition p over R? and create
postponed RP+!

5 execute probe phase for partition p over S? and create

postponed SP*!

6 empty hash container H

A W N R




Algorithm

Build phase (for partition K)

1
2
3
4
5
6
7

8
9
10

foreach block R from R do

read RintoZ

foreach item rin Z do

calculate partition value p < p(r.A)
if p = Kthen

calculate hash value h < h(r.A)
add rinto bucket i in H

else

add rinto partition buffer P
if P is full then write P to RX*! and empty P

11 if P is not empty then write P to R5*! and empty P




Algorithm

Probe phase (for partition K)

1 foreach block S from S do

2 read Sinto Z

3 foreach item sin Z do

4 calculate partition value p < p(s.A)

5 if p = Kthen

6 calculate hash value h < h(s.A)

7 foreach item rin bucket 4 in H do

8 if and s can be joined then

9 L join rand s and put the result to O

10 if O is full then write O to T, empty O

\AA4




Algorithm

Probe phase (for partition K) (cont’d)

AAA
11 else
12 add s into partition buffer P
L if P is full then write P to SX*! and empty P

14 if O is not empty then write O to 7 and empty O
15 if P is not empty then write P to S**! and empty P




Observations

Memory layout
e Build phase: M +1+1
= Hash container H: M = [F- (pr/P)] pages
= Input buffer Z: 1 page
= Partition buffer P: 1 page

EN- N -3 -0
— S S

Hash container H Input bufferZ  Partition buffer P
M pages 1 page 1 page




Observations

Memory layout
* Probe phase: M+1+1+1
= Hash container #: M pages (preserved from the build phase)
= Input buffer Z: 1 page
= Partition buffer P: 1 page
= Qutput buffer O: 1 page

HEE- N -8 -8 -
E== e

Hash container H. Input bufferZ  Partition buffer ?  Output buffer O
M pages 1 page 1 page 1 page




Observations

Time complexity
e Build and probe phases

" Cpuild ~ (pR‘l' P pR) (PT %PR
=pR+2—[(P 1)+ (P
=pR+21[(P D+A) |

=P-pr
* Analogously ¢probe = P+ pg

¢ Overall cost
" CsH = Cbuild + Cprobe = P (PR + Dg)
Summary

~2)+ -+ ()] pr
- D)=

) i)

pr+ (P—1)pg

* We are now able to deal even with larger tables
= However, overall cost is still not efficient enough...



Partition Hashing

Partition hash join
* Basic principle
= Both tables are first partitioned
— Using partition function p again
= Pairs of the corresponding partitions are then joined together
— Using the classic hash join approach
— Or actually even nested loops if desired

Overall procedure

1 split R and create partitions R, ..., Rp_1
2 split S and create partitions Sy, ..., Sp_1

3 foreach partition p € {0,..., P— 1} do

4 | join partitions R, and S,,




Partition Phase

Partition phase (for table R)
* Tuples of a given table are split to disjoint partitions

=

p(4) €{0,...,3}

Memory

Hard disk
\4

R

|89l21l46|15"68‘43‘78‘93‘5 Ro R1 R2 R3

- > >




Join Phase

Partition phase
* Resulting partitions for our sample scenario

ma[[almnle W | | s [mnwa |

Rwase nesa vs | s | ssws |

7o [l 2 s 5 [l [

Rs ‘15‘43‘79‘35‘ ‘71‘55‘43‘ “ S3 HE ‘
Join phase

e Pairs of the corresponding partitions are then joined together
= Rgand Sy, R1 and Sy, ...



Algorithm

Partition phase
* Table R is assumed, partitioning of S is analogous

1 foreach block 1t from R do

2 read RintoZ

3 foreach item rinZ do

4 calculate partition value p < p(r.4)

5 add rinto partition buffer P,

6 if P, is full then write P, to R, and empty P,

7 foreach partition p € {0,..., P— 1} do
s | if P, is not empty then write P, to R, and empty P,




Observations

Memory layout
e Partition phase: 1 + P

= |nput buffer Z: 1 page
= Partition buffers 77: P pages

Input buffer Z Partition buffers P
1 page P pages

Time complexity
¢ Partitioning phase
" Csplit ¥ 2 PR+ 2 ps
* Overall cost (with classic hash join involved)

" CPH = Csplit + P Ccu & Csplit + P[% + p—ﬁg]“ 3 (pr + ps)



Grace Hashing

Grace hash join
* Just ordinary partition hash join
= ... with balanced memory requirements across all the phases

Memory setup

o Letm~F-pgr
= |.e., square root of the size of an in-memory container that
would roughly be needed for hashing of the smaller table R

e Partition function p is chosen to ensure that P = m

= = m partitions will be created (for R as well as S)
= = expected size of each partition of R should be...

- s=pr/P=pr/m=pr/VF pr~/pr/Fpages
= = space needed for hashing each of these partitions...

- F-s=F-\/pr/F=~/F-pr~ mpages
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Grace Hashing

Memory setup (cont’d)

¢ l.e., size P of partition buffers P (partition phase) and size M
of hash container  (build and probe phases) are equal to m

N - EN- N
—— e
A Partition buffers P
1 page P pages
EN - N - 0O
—_— ——
Hash container H. o
M pages 1 page
HE-N -0 -0
—_— —— ——
Hash container 1 T 9
M pages 1 page 1 page




Hybrid Hashing

Hybrid hash join
e Basically an improvement of the simple hash join approach

= Instead of using just one buffer for all items to be postponed...

= ... we directly split them to separate partitions
— l.e., asin the partition hash join approach
* In other words...
= Partitions 0 are joined directly during the first pass
— Using the altered build and probe phases
= All the remaining partitions are pairwise joined subsequently
— Using the classic hash join approach
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Build Phase

Build phase
e |tems from the smaller table are either hashed or postponed

= However, when they are to be postponed, they are branched
to individual separated partitions

* f_)%
Lol T J[ss] [ T ]
[TTT T TT]

h(A) =0 h(4) =1

Memory

Hard disk

‘10 ‘32 ‘36 ‘77

‘52 ‘40 ‘19 ‘53

R |28 ‘17 ‘51 ‘16‘

B Ri,...,Rs
> > >



Probe Phase

Probe phase

p(4)=0 | p(4) #0

BEEN
h(A)=0 h(4) =1
Wemory p(4) €{1,...,3}
Hard disk (
S‘lslsalszlsl‘ ‘49‘74‘63‘11‘5 Siyeeny S3
> > >
A ok J

‘95‘22‘36‘52‘




Algorithm

Overall procedure

1 execute build phase over R, hash items from partition 0
and create postponed partitions Rq,..., Rp_1

2 execute probe phase over S, join items from partition 0
and create postponed partitions Sy, ..., Sp_;

3 foreach partitionp € {1,...,P— 1} do

4 | join partitions R, and S,




Algorithm

Build phase
1 foreach block R from R do
2 read RintoZ
3 foreach item rin Z do
4 calculate partition value p < p(r.A)
5 if p = 0 then
6 calculate hash value h < h(r.A)
7 add rinto bucket hin H
8 else
9 add rinto partition buffer P,
10 if P, is full then write P, to R, and empty P,




Algorithm

Build phase (cont’d)

AAA
11 foreach partitonp € {1,...,P— 1} do
12 L if P, is not empty then write P, to R, and empty P,




Algorithm

Probe phase

1 foreach block Sfrom S do

2 read SintoZ

3 foreach item sin Z do

4 calculate partition value p < p(s.4)

5 if p = 0 then

6 calculate hash value h < h(s.A)

7 foreach item rin bucket i in H do

8 if 7and s can be joined then

9 L join rand sand put the result to O

10 if O is full then write O to T, empty O

\AA4




Algorithm

Probe phase (cont’d)

AAA
11 else
12 add sinto partition buffer P,
13 L if P, is full then write P, to S, and empty P,

14 if O is not empty then write O to 7 and empty O
15 foreach partitonp € {1,..., P— 1} do
16 | if P, is not empty then write P, to S, and empty P,




Observations

Memory layout
* Build phase: M+ 1+ (P—1)
= Hash container H: M = [F- (pr/P)] pages
= Input buffer Z: 1 page
= Partition buffers 7: P — 1 pages

Hash container H Input buffer Z Partition buffers P
M pages 1 page P — 1 pages




Observations

Memory layout
* Probe phase: M+ 1+ (P—1)+1
= Hash container #: M pages (preserved from the build phase)
= Input buffer Z: 1 page
= Partition buffers 7: P — 1 pages
= Qutput buffer O: 1 page

Hash container 1. Input buffer 7 Partition buffers P Output buffer O
M pages 1 page P — 1 pages 1 page




Observations

Time complexity

* Build and probe phases for partition 0
- Cbuild%pR'*’pR'% :PR'(l‘l‘%):pR'(?—}la)
= Analogously cprobe = ps- (2 — 1%)
e Overall cost (with classic hash join involved)
" CHH = Cpuild T Cprobe + (P —1) - ccu
~pr- (2= F)+ps- (- F) + (P D[ % + 5]
~ (83— 2) - (pr+ps)




Query Evaluation



Sample Query

Database schema
* Movie ( id, title, year, ...)
* Actor ( movie, actor, character, ...)
= FK: Actor[movie] C Movie[id]
Sample query
e Actors and characters they played in movies filmed in 2000

= SELECT title, actor, character
FROM Movie JOIN Actor

WHERE (year = 2000) AND (id = movie)

* (Movie X Actor)((year = 2000) A (id = movie))
[title, actor, character]

" Ttitle,actor,character (U(year=2000)/\(id:movie) (MOVie X ACtOF))



Sample Query

Sample query (cont’d)
e Actors and characters they played in movies filmed in 2000

® Ttitle,actor,character (J(VEar=2OOO)A(id:movie) (Movie X ACtOI‘))
Projection [title, actor, character]
Selection (year = 2000) A (id = movie)

Cross join

[ose]| [ e |




Query Evaluation

Basic idea
e SQL query — RA query — evaluation plan — query result
Evaluation process

e (1) Scanning [scanner]
= Lexical analysis is performed over the input SQL expression
— Lexemes are recognized and then tokens generated

* (2) Parsing [parser]
= Syntactic analysis is performed
— Derivation tree is constructed according to the SQL grammar
¢ (3) Translation
= Query tree with relational algebra operations is constructed



Query Evaluation

Evaluation process (cont’d)
e (4) Validation [validator]
= Semantic validity is checked
— Compliance of relation schemas with intended operations
e (5) Optimization [optimizer]
= Alternative evaluation plans are devised and compared

— In order to find the most efficient plan
— Based on their evaluation cost estimates

e (6) Code generation [generator]
= Execution code is generated for the chosen plan
* (7) Execution [processor]

= Intended query is finally evaluated
— And the yielded result provided to the user



Query Evaluation

Query tree
* Internal tree structure

= Leaf nodes = input tables
= Inner nodes = individual RA operations (o, 7, X, X, ...)

* Root node represents the entire query
= Nodes are evaluated from leaves toward the root
Query evaluation plan
* Query tree
e For each inner node...

= Calculated statistics (number of tuples, blocking factor, ...)
= Selected algorithm (limited by context and available memory)
= Estimated cost

e Overall cost



Sample Plan #1

Cross join
m1 = njr - n4 = 100 000 000 000
b = (bM . bA)/(bM + bA) =8
p1 = n1/by = 12 500 000 000
Nested loops

M; =25+1+1=27

& = par + (par/25) - pa = 10 010 000
¢y = p1 = 12500 000 000

Sorted file (year)
nas = 100 000

by =10

par = 10000

Vs year = 50

B tree index (year)
M M.year = 100

Ingyear =3

Projection [title, actor, character]
ng = ng = 20000

b3 < 50

p3 = n3/bs =400

c5 = pa =2500

cj = p3 =400

N/ Selection (year = 2000) A (id = movie)
ng =np - (1/VM4yem') . (1/TLM) = 20000

by =b; =8

D2 =n2/b2 = 2500

c3 = p1 = 12 500 000 000
¢y = pa =2500

Heap file
n4 = 1000 000
by =40

pa = 25000




Evaluation Plan Cost

Overall evaluation cost

e Let us first assume that all intermediate results are always
written to temporary files and so each involved operation...

= Reads its inputs from / writes its output to a hard drive

e Overall cost then equals to the sum of all the partial costs
Cost of Plan #1

* M= 25414 1 memory pages
c=[q+d]+ G+ ]+ [g]
o c¢=[pa+ (pa/25) - pa+ pi] + [p1 + po] + [p2]

c=|

[

10 010 000 -+ 12 500 000 000] + [12 500 000 000 + 2 500]+
2 500]

* ¢= 25010015000



Sample Query

Intuitive optimization
e Actors and characters they played in movies filmed in 2000
= SQL expression

SELECT title, actor, character
FROM Movie JOIN Actor ON (id = movie)
WHERE (year = 2000)

= RA expression

Ttitle,actor,character (U(year:2000) (MOVie X (id=movie) ACtOI’))




Sample Plan #2

Projection [title, actor, character]
ng = ng = 20 000

bg + 50

p3 = n3/b; = 400

c3 = py = 2500

c3 = p3 =400

Theta join [id = movie]
ni =n4 = 1000 000
by = (bar-ba)/(bar +ba) =8
P11 = n1/b1 = 125000

Nested loops

My =25+1+1=27

¢f = pu + (pn/25) - p4 = 10010 000
¢¥ = p; = 125000

Selection (year = 2000)
x/. 1y = ny - (1/Vaz year) = 20 000

by =by =8

p2 = n2/by = 2500

¢§ = p; =125000

Sorted file (year) 8 = py =2500
nyr = 100 000

by = 10

par = 10000

VM.year =50 | Movie | | Actor | Heap file

BT tree index (year) n4 = 1000 000
MM year = 100 \/ bs = 40

IM_yem =3 pa = 25000




Sample Plan #2

Cost of Plan #2

Again M = 25 + 1 + 1 memory pages

c= [+ d]+ [+ &+ [c]

¢ = [pm+ (Pm/25) - pa + p1] + [p1 + p2) + [p2]

¢ = [10 010 000 + 125 000] 4 [125 000 + 2 500] + [2 500]
c= 10265000

= That is approximately 2 400 times better than the first plan




Pipelining

Pipelining mechanism
* Intermediate results are passed between the operations
directly without the usage of temporary files on a disk
= And so just within the system memory
— It may even be possible to do it in-place without extra pages

e Unfortunately, such an approach is not always possible...

Cost of Plan #2 with pipelining
e Still M =25+ 1+ 1 memory pages

o« o= [+ X+ DX+ W+ X

= Joined tuples are filtered and projected immediately in-place
e ¢=10010000
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Query Optimization

Objective = finding the most optimal query evaluation plan
* Itis not possible to consider all plans, though
= Simply because there are far too many of them
= And so pruning and heuristics need to be incorporated
Optimization strategies
e Algebraic
= Proposal of alternative plans using query tree transformations
e Statistical
= Estimation of costs and result sizes based on available statistics
e Syntactic
= Manual modification of query expressions by users themselves

— In order to involve plans that would otherwise be unreachable
— Breaches the principle of declarative querying, though
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Statistical Optimization

Objective
» Capability of calculating necessary result characteristics...
= Of both the final result as well as all intermediate ones
— lLe., all individual nodes within a given evaluation plan tree
e ... so that the overall cost can be estimated
= And thus alternative plans mutually compared
Basic statistics
* Data file for table R

= nr number of tuples, sy tuple size, br blocking factor
" pr number of pages
= Hashed file: Hr number of buckets, C'r bucket size

¢ Index file for attribute A from table R
= Bt tree: I 4 tree height, pr 4 number of leaf nodes

NDBIO49: Query Languages | Lectures 2 —5: Query Evaluation | 7. 10. —4. 11. 2025

133



Statistical Optimization

Additional statistics
* Provide deeper insight into the active domain

= May even be implicitly derivable from index structures
= Unfortunately, they may also be missing or unavailable

— Especially as for intermediate results
e Vpk 4 number of distinct values
* ming 4 and maxp 4 minimal and maximal values

¢ Histograms
= Provide even more accurate understanding of the domain
— And so better estimates

= Especially useful for non-uniform distributions



Histograms

Histogram = approximate representation of data distribution
e Active domain is split into sub-intervals called buckets
= Usually consecutive and non-overlapping
* Frequency of values is determined for each one of them
= |.e., count of values that fall into that bucket
Sample data
* Integer values from interval [15, 26] and their frequencies

-JJ]]L-:

3 2 4 3 12 7 5 6 1 0 3 2

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

A A

MINR. A MaTg.A



Histograms

Equi-width histogram
* Buckets have equal widths (count of distinct values)
* Discrete domains: average frequencies are stored
= So that frequency [ 4 (v) can be retrieved for any value v
e Continuous domains: probabilities are stored instead
= So that probability ¢5 4 () can be retrieved for any bucket b

= e

3.0 73 4.0 17

—
3 2 4(3 122 7|5 6 1|0 3 2
13 14|15 16 17|18 19 20|21 22 23|24 25 26|27 28




Histograms

Equi-depth histogram
* Buckets are designed so that they have equal depths

= |.e., absolute frequencies are the same

— Or at least almost the same
— Since real-world data will likely not be nice enough

* We also need to explicitly store bucket placement information
= Since it is not derivable automatically

L ] |

3.0 12.0 6.0 24

3 2 4 31217 5|6 1 0 3 2

13 14|15 16 17 181920 21|22 23 24 25 26|27 28



Size Estimates: Selection

Selection: T'= 0,(E)
Tuple size

¢ ST = SE

= Tuples are just filtered out and so their size remains untouched

Blocking factor

* br=bg
Number of tuples

* Basicidea: ny = [ng- 7,

e 1, € [0, 1] is an estimated reduction factor

= Describes how much the original tuples will be reduced

— Depends on a particular condition ¢
— As well as particular available statistics...



Size Estimates: Selection

Reduction factors

* Equality test with respect to a unique attribute
= 1, =1/ng(and so ny = 1)
* Equality test with respect to a non-unique attribute
"1, =1/Vga
= 1, = fp.a(v)/ng if histogram for discrete domains is available
— As a consequence, nr = g 4(v)
= 1, = tg a(bucket(v)) analogously for continuous domains
= 1, = 1/10 when no information is available at all
» Estimates using constants in general
= May work well, not bad, as well as totally wrong...

— But when nothing better is available, it must simply suffice
— Of course, particular constant is just a matter of discussion
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Size Estimates: Selection

Reduction factors (cont’d)
* Range query for two-sided intervals I = [v;, v;| and other
= 1, = (v2 — v +¢)/(mazg 4 — ming 4 + 1)
" 1o = (LyerfBalv)/ne
= 7, = (v2 —v1)/(Mmazg 4 — ming 4)
T = Zbe buckets(1) tE-A(b)
=, =1/4
* Range query for one-sided intervals (—oo, v5] and (—oo, v5)
= Works analogously...
=1, =1/2
— Unfortunately, there are certain undesired consequences...
— E.g., reduction factors of A < 1and A < 1000 are the same

* Range query for one-sided intervals [v;, 00) and (v;, o)
= Works analogously again...



Size Estimates: Selection

Reduction factors (cont’d)
e Conjunction: p; A ©o
" T = Toy T
= Independence of both conditions is assumed
¢ Disjunction: p; V ¢,
" T =Ty 1 Tpy — Ty~ Tipn
* Negation: — ¢,
"o =1—r1y
* ...
Improved estimates might also be useful for access methods
* Since it is also about selection
= However, technical possibilities of data files must be respected



Size Estimates: Projection

Projection: T'= 7,, . 4. (F)
Tuple size
e sp is simply calculated using sizes of all preserved attributes
Blocking factor
e bp=|B/sr]
Number of tuples

* Default SQL projection without the DISTINCT modifier
= |.e., removal of potential duplicates is not performed
" ny=mng

* With duplicates removal enabled
= np = ng if at least one key of F'is preserved



Size Estimates: Joins

Inner joins: T'= Ep x Egor Egr M Egor Ep X, Eg
Tuple size
® S7 A Sp+ Sg
= Less for natural join since shared attributes are not repeated
Blocking factor

s |~ (] = L) = [
re ST - SR + Sg - B/bR+B/bS h br + bs

= Can be calculated exactly from the actual resulting tuple size
= As well as estimated just using the original blocking factors

Number of tuples
° np= [ng-ns-r,| with r, € [0, 1] for joining condition ¢
= Similar approach with reduction factors as in selections



Size Estimates: Joins

Reduction factors
¢ Cross join
= 1, = 1 (hence ny = np - ng)
* Foreign key lookup
= Let us assume that ¢ traverses a foreign key from R to S
— Then for each tuple r € R there must exist exactlyone s € S

= Andso 7, = 1/ng (hence ny = np)
* Equality test over an attribute Ain S

"1, =1/Vsa
= 1, = 1/ng specifically for a unique attribute (again 77 = nz)




Algebraic Optimization



Equivalence Rules: Selection

Commutativity of selection

¢ 0802 (0801 (E>> = 0901 (0902 (E>>
* Mutual order of selections can be changed
= Condition with higher selectivity can be applied first
— l.e., condition which yields a fewer number of tuples

Cascade of selections
° Oy (0801 (E)) = Op1 Ay (E)
¢ Direction —

= Selections can be merged together into just one
— Via a conjunction over the original conditions

e Direction
= Conjunctive selection can be split into separate selections



Equivalence Rules: Projection

Cascade of projections
¢ TAy (WA1 (E)) =TAy (E)
e —: only the outermost projection actually matters
= And so the inner one can entirely be omitted as meaningless
Commutativity of selection and projection
* Ta(0y(E)) = 0,(ma(E))
¢ Selection and projection can be mutually swapped

= < without any limitation
= —: only when all attributes in  are still available
— When this assumption is not satisfied...

e ma(0,(E)) =ma(o,(maus(E)))
= Attributes S from E are those that are needed for the selection



Equivalence Rules: Joins

Commutativity of joins

e Crossjoin: By X Fr = Fy X F

e Natural join: £ X £y = Ey X F)

e Thetajoin: £y W, Fr = Fy M, [

e Operands of inner joins can be mutually swapped

= Such a thing is not possible for outer joins

Associativity of joins

* Inner joins are also associative (again, not outer)

e (Ey X Ey) X E3=F; X (Fy X E3)
o (Ey X Ep) ) E3=F; X (Ey X Ej)

¢ (El Mo, EZ) M1 Ap2s Ey=Ey M1 Apis (E2 M o3 E3)
= Assuming that each ¢ ; only involves attributes from E; and E



Equivalence Rules: Joins

Integration of selection into joins
* Any inner join can be rewritten using theta join...

... and then combined with selection
= Intended for conditions of joining nature
— l.e., conditions that involve attributes from both the operands
° U@S(E1XE2) = E1 Mg E2
 Ops(Br My, Bp) = By My pp By
¢ USDS(EI M E2) =E Moy Aps Es
=y involves pairwise equality tests for all the shared attributes
— l.e., attributes occurring in both the operands



Equivalence Rules: Joins

Distribution of selection over joins

e Let us have an inner join wrapped by a selection...
= ... and this selection contains a condition of filtering nature
— l.e., condition with attributes from just one join operand

¢ It can then be executed before the join over just that operand
= And so the join evaluation cost can be decreased
° Ugos(El X Ez) = Ogos(El) X E2
= Assuming that, in particular, ¢ g involves attributes from E;
only

° U@S(El X Ez) EG@S(El) X E2
¢ UAOS(EI My, EQ) = U@S<E1> My, Ey



Equivalence Rules: Joins

Distribution of projection over joins
¢ Let us assume that attributes A; are from E; and A, from E,
L4 WAIUAQ(EI X EQ) = 7TA1(E1) X 7TA2(E2>
L4 WAIUAQ(El X EQ) = WAI(El) X 7TA2<E2)
= —: only works when all joining attributes are still available
© 7TA1 U As (El D EQ) = 7TA1 U As <7TA1 UN(El) X 7TA2 UN<E2>>
= Attributes N are those that are needed for the natural join
= Despite looking strange, the impact may be significant
— Since unnecessary attributes are removed earlier
o Tayuay (B Xy Ba) =ma, (B1) Xy ma,(En)
= —: analogous assumption again
¢ TA U Ay (El N EQ) =TA UA, <7TA1 UJi (El) Xo TAU Jo (E2)>
= Attributes J; from F; are those needed for the theta join



Equivalence Rules: Set Operations

Commutativity of set operations
e BFHUE=EUE,
e EENEy=ENE
» Set difference is not commutative

Associativity of set operations
e (B{UE)UE3=E U (EyU E3)
e (BxNEy)NE;=FE N (EyN Es)
» Set difference is also not associative




Equivalence Rules: Set Operations

Distribution of selection over set operations
° 0 (BN U Ey) =0,(E) Uoy(Es)
° 0 (BN N Ey) =0,(E1) Noy(E)
© 0p(B1\ B2) = 0,(Er) \ 0p(F)
Distribution of projection over set operations
o TA(E1 U Ey) =7ma(E) Uma(Er)
e Such a thing is not possible for intersection and difference




Recommendations

Basic heuristics
* Push filtering selections as close as possible to leaves
= To throw away not needed tuples as soon as possible

Push projections toward leaves the same way
= So that size of intermediate results is decreased

Integrate joining selections into joins
= |.e, rewrite other types of joins to theta joins

Simplify cascades of projections or selections
Transform sub-queries to joins whenever possible
= Since optimization only works for simple SELECT blocks

Exploit commutativity and associativity of operations
= Especially joins but also set operations



Examples
Sample transformations
© 7"'t'itle,actor,character( O (year=2000) A (id=movie) (MOVie X ACtOF)) // #1
© 7""citle,actor,character< O (id=movie) U(year:2000) (MOVie X ACtOI’)))
¢ Ttitle,actor,character (U(year 2000) O (id=movie) (MOVie X ACtOI‘)))
© 7Tt'itle,actor,character( O (year=2000) (MOVIE M(|d movie) ACtOF)) // #2
®  Ttitle,actor,character (U(year:2000)(M0Vie) |>q(id:movie) ACtOF)

® Tltitle,actor,character <7Tid,title (U(year:QOOO) (MOVie)) X (id=movie)

7T'movie,actor,character(ACtor)) // #3



Algebraic Optimization

Objective
e Capability of finding alternative query evaluation plans

= Based on the so far introduced equivalence rules
— As well as other not covered rules and heuristics

e Ultimate challenge

= Space of all possible plans may be enormous
= And so significant pruning must be involved

Basic strategy for SPJ queries = select-project-join queries

* They allow to be approached at two separate levels...
= Single-relation plans / multi-relation plans

e But still an NP-complete problem
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Alternative Plans

Single-relation plans
* Finding the best access method for each individual table
= Including optional filtering selections and projections
Multi-relation plans
* Finding the best join plan for a given set of tables

= Only binary joins are usually assumed
= And so we just need to take into account all possible orderings

— Since inner joins are commutative and associative
Observation

* Optimal plan may not consist of optimal sub-plans
= And so it may happen that the truly best plan will not be found
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Algorithm

Basic top-down approach
* Finding the best plan for a set of relations S
= Using a dynamic programming method

1 if the best plan for S'is already calculated then
2 P < fetch the best plan for S
return P
else
if S contains just a single relation R then
P < find the best access method for R
store P as the best plan for S
return P

w

0o N o b

vvy




Algorithm

Basic top-down approach (cont’d)

AAA
9 else
10 foreach S, C Ssuchthat S, # 0 A S, # Sdo
11 P, < recursively find the best plan for S;,
12 Pr < recursively find the best plan for S\ S;,
13 P + find the best join plan over P, and Py
14 if P is so far the best plan for S (if any) then
15 |_ store P as the best plan for S
16 P + fetch the best plan for §
17 return P




Left-Deep Linear Trees

Only left-deep linear trees are usually taken into account...
¢ Linear tree
= Each non-leaf node must have at least one child with relation

o Left-deep linear tree
= Moreover, that child must be the right-hand one
— Since that also increases the chance of attainable pipelining

> do s

((apaB) b (CraD)) (A|><1 Bl><1C))><1D (AI><IB)I><1C)I><1D




Algorithm

Restricted top-down approach
e For left-deep linear trees only
= This means there will be just O(n - 2") instead of O(3") plans

1 if the best plan for S'is already calculated then
2 P < fetch the best plan for §
return P
else
if S contains just a single relation R then
‘P < find the best access method for R
store P as the best plan for S
return P

w

0o N o b

vvy




Algorithm

Restricted top-down approach (cont’d)

9
10
11
12
13
14
15

16
17

AAA

else

foreach single relation R € Sdo
P, < recursively find the best plan for S\ {R}
Pr < recursively find the best plan for {R}
P + find the best join plan over P, and Pp
if P is so far the best plan for S (if any) then
L store P as the best plan for S

P «+ fetch the best plan for S
return P




Algorithm

Restricted bottom-up approach
* We proceed by induction on the number of relations

= All single-relation plans are found first

= Then gradually all multi-relation plans
— The best plan for n relations is found by considering all possible
means of joining any of its n — 1 relations with the 1 remaining

1 foreach single relation R € Sdo
2 P + find the best access method for R
store P as the best plan for {R}

\AAJ

3




Algorithm

Restricted bottom-up approach (cont’d)

AAA
4 foreach pass p € {2,...,|S5|} do
foreach 7' C Ssuch that | 7] = pdo
foreach single relation R € T'do
Py, < fetch the best plan for 7'\ {R}
Pr < fetch the best plan for {R}
P + find the best join plan over P, and Pp
10 if P is so far the best plan for 7'(if any) then
11 | store P as the best plan for T

O 00 N O un

12 P < fetch the best plan for S
13 return P




Query Evaluation



Sample Plan #3

Theta join [id = movie]

Projection [title, actor, character] — ng =13 - (1/Viryear) =20 000

ns = n4 = 20 000 by = (ba - bs)/(b2 +b3) =35
bs < 50 Nested loops
p5:n5/b5:400 My=py+1+1=27

ci = ps =400

Projection [movie, actor, character]
n3 = n4 = 1000 000

Projection [id, title]
Ny = ny = 2000 ‘_\ b3 + 65
by < 80 c3 = pa = 25000
p2 = ’nz/bz =25 (

7r
Heap file
. n4 = 1000 000
Sorted file (year) ba =40

nar = 100 000 Ppa = 25000
bar =10

par = 10000

Vit year =50 Selection (year = 2000)

BT tree index (year) n1 =ny - (1/Vryear) = 2 000
M gear = 100 by = by = 10

Intyear =3 p1=n1/by =200

cf = IM.year +pm- (I/VM.year) =203




Sample Plan #3

Cost of Plan #3 with pipelining

e M=25+1+ 1 memory pages for buffers Z;, Z, and O
= |.e., still the same amount of system memory pages used

ce=[d X+ XX+ 0 X+ DX+
= 7 is used for index traversal and then reading of movies
= All filtered and projected movies are put into Z;
= Actors are read into Z, their projection is postponed
= Joined tuples are put into O and projected

o ¢=Iuyear + prr - (1) Visyear)] + [14]

e ¢=[203] + | ]

o ¢=25203
= That is approximately 400 times better than the second plan

— And so almost 1 million times better than the first plan
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Explain Statements

EXPLAIN statement

* Allows to retrieve the evaluation plan for a given query
= When ANALYZE modifier is provided...
— Query is also executed and the actual run times are returned

-~ @D~ —~ e~

ANALYZE

Example

e EXPLAIN
SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)



Observations

False assumptions and simplifications
e Size of tuples
= Real-world tuples usually have variable size
— Because data types such as VARCHAR are often used
= That complicates internal block structure and cost estimates
e Unused slots
= Not all slots within data file blocks may really be used
— l.e., there can be gaps because of, e.g., deleted tuples
= And so the actual file size may be greater than assumed
¢ Inner fragmentation
= |t may not be possible to utilize inner block space entirely

— lLe., there can be unused space after the last slot
— Or even around the slots in case of variable-size tuples
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Observations

False assumptions and simplifications (cont’d)
e Overflow areas in sorted files

= New tuples are usually not inserted to their correct positions
= Instead, special dedicated area is used for that purpose

— So that time-complicated insertion (up to linear) is avoided
= Only time to time the whole file is reorganized (resorted)
e Overflow areas in hashed files
= Allocated size of buckets may not be sufficient

e Outer fragmentation
= Layout of file blocks on a hard drive may not be continuous

— That may significantly increase time costs
— Because of repeated seeks and rotational delays
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Observations

False assumptions and simplifications (cont’d)
¢ Impact of caching manager
= Blocks we require may already be loaded into the memory
— And so the actual cost may be lower
* Extent of available statistics
= Not all statistics we worked with may be available
— Or derivable in case of inner nodes
= And so less accurate estimates can then be made
¢ Lazy maintenance of statistics
= Statistics we do have may already be obsolete
— Simply because some of them are updated only occasionally



Observations

False assumptions and simplifications (cont’d)
¢ Non-uniform distribution
= Assumption of uniform distribution is often not realistic
— And it is not just about the data
— But also queries
¢ Independence of conditions
= When reduction factors for conditions are estimated...
— Their independence is assumed
— But this may not be realistic again
e Cost estimation in general
= QOur formulae provide only estimates, not precise calculations

— Moreover, there was a lot of simplification
— And the statistics we relied on may really be unavailable

= And so despite the effort, they may not always work well






Conclusion

Evaluation algorithms
* Access methods
e Sorting
= External merge sort with / without priority queue
e Joining
= Binary / non-binary nested loops join with / without zig-zag
= Basic / integrated sort-merge join
= Classic / simple / partition / grace / hybrid hash join
Query evaluation and optimization
* Evaluation plans
= Cost estimates, pipelining

 Statistical / algebraic optimization
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