NDBIO49: Query Languages
http://www.ksi.mff.cuni.cz/~svoboda/courses/NDBI049/

Lecture 1

Advanced SQL

Martin Svoboda
martin.svoboda@ matfyz.cuni.cz

30. 9. 2025

Charles University, Faculty of Mathematics and Physics

http://www.ksi.mff.cuni.cz/~svoboda/courses/NDBI049/
mailto:martin.svoboda@matfyz.cuni.cz

Outline

* SQL

= Data definition
— Definition of tables
— Data types
— Integrity constraints
— Schema modification

= Data manipulation
— INSERT, UPDATE, and DELETE statements
— SELECT statements

Structured Query Language (SQL)

Structured Query Language

* SQL
= Standard language for accessing relational databases
— Data definition (DDL)
* Creation of table schemas and integrity constraints
— Data manipulation (DML)
* Querying
* Data insertion, deletion, updates
— Transaction management
— Modules (programming language)
— Database administration

Structured Query Language

* SQL standards
= Backwards compatible ANSI/ISO standards

SQL-86 — intersection of IBM SQL implementations
SQL-89 — small revision, integrity constraints

SQL-92 - schema modification, transactions, set operators, new data
types, cursors, referential integrity actions, ...

SQL:1999 - recursive queries, triggers, object-relational features, regular
expressions, types for full-text, images, spatial data, ...

$QL:2003 — SQL/XML, sequence generators

SQL:2006 — other extensions of XML, integration of XQuery
SQL:2008

SQL:2011 — temporal databases

SQL:2016, SQL:2019, SQL:2023

Structured Query Language

* Commercial systems

= Current implementations at different standard levels
— Most often SQL:2011, SQL:2016
= However (and unfortunately)...
— Some extra proprietary features supported
— Some standard features not supported
— Even syntax may differ
* And so data migration is usually not straightforward
= Specific extensions

— Procedural, transactional and other functionality, e.g.,
TRANSACT-SQL (Microsoft SQL Server), PL/SQL (Oracle)

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025

SQL Syntax Diagrams

* Syntax (railroad) diagrams
= Graphical representation of context-free grammars

— l.e. a practical approach how to describe languages
(such as SQL) in a graphical and user-friendly way
= Technically...

— Directed graph representing an automaton accepting SQL
— Terms in diagrams:

* Capital letters on blue — keywords

* Small letters on green — literals

* Small letters on orange — subexpressions

o (KEwWORD

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025

SQL: Schema Definition

Table Creation

* CREATE TABLE

= Construction of a table schema (and an empty table)
— Table name
— Definition of table columns
* Together with their column-scope integrity constraints

— Definition of table-scope integrity constraints

IF NOT EXISTS J

o»(_CREATE)~(_TABLE) (iable-name)
Ciror exsts) R

column-definition J @"0
—

Table Creation

* CREATE TABLE

= Definition of table columns
— Column name
— Data type

— Default value

* When a new row is about to be inserted and not all its values
are specified, then the default values are used (if defined)

— Definition of column-scope IC

t»(column-nameH type-name I J
(e~ (i)

Table Creation

* Example
= Simple table without integrity constraints

CREATE TABLE Product (
Id INTEGER,
Name VARCHAR (128),
Price DECIMAL (6,2),
Produced DATE,
Available BOOLEAN DEFAULT TRUE,
Weight FLOAT

Data Types

e Available data types

* Precise numeric types
— INTEGER, INT, SMALLINT, BIGINT

— DECIMAL(precision, scale)
* Precision = number of all digits (including decimal digits)
* Scale = number of decimal digits

= Approximate numeric types
— FLOAT, REAL, DOUBLE PRECISION — real numbers

= Logical values
~ BOOLEAN

Data Types

* Available data types

= Character strings
— CHAR(length), CHARACTER(length) — fixed-length strings
* Shorter strings are automatically right-padded with spaces
— VARCHAR(length), CHARACTER VARYING(length)
* Strings of a variable length
= Temporal types
— DATE, TIME, TIMESTAMP

* Type conversions

= Meaningful conversions are defined automatically
— Otherwise see CAST...

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025

13

Data Types

* Example
= Simple table without integrity constraints

CREATE TABLE Product (
Id INTEGER,
Name VARCHAR (128),
Price DECIMAL(6,2),
Produced DATE,
Available BOOLEAN DEFAULT TRUE,
Weight FLOAT

Integrity Constraints

e Column integrity constraints
= Allow us to limit domains of the allowed values

n»T(CONSTRAINT)--(constraint-name)7—}

(_NOT NULL)
(_ UNIQUE

PRIMARY KEY

REFERENcss)—»(foreign-table 7
CcHECK ([expression ()

' referential-action '

Integrity Constraints

e Column integrity constraints
= NOT NULL
— Values must not be NULL

= UNIQUE
— All values must be distinct
* But can there be just one or multiple NULL values?

* PRIMARY KEY
— Only one primary key is allowed in a table!
— Equivalent to NOT NULL + UNIQUE

Integrity Constraints

e Column integrity constraints
* FOREIGN KEY

— Referential integrity

* Values from the referencing table must also exist in the
referenced table

* NULL values are ignored
* Only unique / primary keys can be referenced

= CHECK

— Generic condition that must be satisfied
* However, only values within a given row may be tested

Integrity Constraints: Example

CREATE TABLE Producer (
Id INTEGER PRIMARY KEY,
Name VARCHAR (128),
Country VARCHAR (64)

);

CREATE TABLE Product (
Id INTEGER CONSTRAINT IC_Product_PK PRIMARY KEY,
Name VARCHAR(128) UNIQUE,
Price DECIMAL(6,2) CONSTRAINT IC_Product_Price NOT NULL,
Produced DATE CHECK (Produced >= '2015-01-01"'),
Available BOOLEAN DEFAULT TRUE NOT NULL,
Weight FLOAT,
Producer INTEGER REFERENCES Producer (Id)

Integrity Constraints: Example

* Example
= Referential integrity within a single table

CREATE TABLE Employee (
Id INTEGER PRIMARY KEY,

Name VARCHAR (128),
Boss INTEGER REFERENCES Employee (Id)

)

Integrity Constraints

* Table integrity constraints

C»T(CONSTRAINT)—»(constraint—name \7—}

L. w0 © - (-
oO—)

- CPRMARY KV~ Ceoamrae)y~
o—

\’ji)j'@*(REFERENCES)
' W

forelgn -table column -name j—>(
f referentlal action

“CCHECK)—>®—>| expressmn

Integrity Constraints

* Table integrity constraints

— Analogous to column IC, just for multiple columns,
i.e. for tuples of values

UNIQUE
PRIMARY KEY

FOREIGN KEY
— Tuples containing at least one NULL value are ignored

CHECK
— Even with more complex conditions testing the entire tables

* However, table integrity constraints are considered to be
satisfied on empty tables (by definition, without evaluation)

° See CREATE ASSERTION...

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025 21

Integrity Constraints: Example

CREATE TABLE Producer (
Name VARCHAR (128),
Country VARCHAR(3),
CONSTRAINT IC_Producer PK PRIMARY KEY (Name, Country)

);

CREATE TABLE Product (
Id INTEGER PRIMARY KEY,

ProducerName VARCHAR (128),

ProducerCountry VARCHAR (3),

CONSTRAINT IC_Product_Producer FK
FOREIGN KEY (ProducerName, ProducerCountry)
REFERENCES Producer (Name, Country)

) ;

Referential Integrity

¢ Referential actions

= When an operation on the referenced table would
cause violation of the foreign key in the referencing
table...

— l.e. value of the foreign key of at least one row in the
referencing table would become invalid as a result

= ...then...
— this operation is blocked and an error message is generated
— but if a referential action is defined, it is triggered...

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025 23

Referential Integrity

¢ Referential actions

@D

SET DEFAULT
NO ACTION
RESTRICT

= Triggering situations
— ON UPDATE, ON DELETE
* When the action is triggered

* Once again, these are considered to be operations
on the referenced table

Referential Integrity

» Referential actions
= CASCADE
— Row with the referencing value is updated / deleted as well
SET NULL — referencing value is set to NULL
SET DEFAULT - referencing value is set to its default

NO ACTION — default — no action takes place
- l.e. as if no referential action would be defined at all

RESTRICT — no action takes place as well...

— However, the integrity check is performed at the beginning,
i.e. before the operation is even tried to be executed

* ...and so triggers or the operation itself have no chance to remedy the situation even if
they could be able to achieve such a state (and so RESTRICT is different to NO ACTION)

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025

25

Referential Integrity: Example

CREATE TABLE Producer (
Id INTEGER PRIMARY KEY,
Name VARCHAR (128),
Country VARCHAR (64)

)i

CREATE TABLE Product (
Id INTEGER PRIMARY KEY,

Producer INTEGER
REFERENCES Producer (Id) ON DELETE CASCADE

Schema Modification

* ALTER TABLE
= Addition/change/removal of table columns/IC

o> ALTER)->(_TABLE)~(table-name)7

Lﬁ-\—{ RENAME TO)-~(_new-table-name) ~
m COLUMN) column-definition I—b/

ALTER COLUMN SET DEFAULT
DROP DEFAULT

-(_brop COLUMN)——>(column-name)—————————/

\>.—>| constraint-definition

>(_bRoP)~(_CONSTRAINT) constraint-name)
)
o/

Schema Modification

* DROP TABLE

= Complementary to the table creation
— |.e. table definition as well as table content are deleted

DROP TABLE table-name)—>o

IF EXISTS

SQL: Data Manipulation

SQL Data Manipulation

e Data manipulation language

= Data modification
— INSERT INTO — insertion of rows
— DELETE FROM - deletion of rows
— UPDATE — modification of rows

= Data querying
— SELECT - retrieval of rows

Data Insertion

* INSERT INTO

= |nsertion of new rows into a table
- ...by an explicit enumeration / from a result of a selection
— Default values are assumed for the omitted columns

o INSERT INTO)~(table-name)
o=y
@,

select-statement

Data Insertion: Example

CREATE TABLE Product (
Id INTEGER PRIMARY KEY,
Name VARCHAR (128) UNIQUE,
Price DECIMAL(6,2) NOT NULL,
Produced DATE,
Available BOOLEAN DEFAULT TRUE,
Weight FLOAT,
Producer INTEGER
)

INSERT INTO Product
VALUES (0, 'Chairl', 2000, '2015-05-06', TRUE, 3.5, 11);

INSERT INTO Product
(Id, Name, Price, Produced, Weight, Producer)
VALUES (1, 'Chair2', 1500, '2015-05-06', 4.5, 11);

Data Updates

 UPDATE
= Modification of existing rows in a table

— Only rows matching the given condition are considered

= Newly assigned values can be...

- NULL, literal, value given by an expression, result of a scalar
subquery

o~(UPDATE 7

{—* column-name)—>®—>| expression WWHERE)—>| expression }7*0
()
o/

Data Updates: Example

CREATE TABLE Product (
Id INTEGER PRIMARY KEY,
Name VARCHAR (128) UNIQUE,
Price DECIMAL(6,2) NOT NULL,
Produced DATE,
Available BOOLEAN DEFAULT TRUE,
Weight FLOAT,
Producer INTEGER
)i

UPDATE Product
SET Name = 'Notebook'
WHERE (Name = 'Laptop');

UPDATE Product
SET Price = Price * 0.9
WHERE (Produced < '2015-01-01");

Data Deletion

e DELETE FROM
= Deletion of existing rows from a table

— Only rows matching the given condition are considered

o>(_DELETE FROM)—»(table-namew WHERE)->[expression }7+o

Data Deletion: Example

CREATE TABLE Product (
Id INTEGER PRIMARY KEY,
Name VARCHAR (128) UNIQUE,
Price DECIMAL(6,2) NOT NULL,
Produced DATE,
Available BOOLEAN DEFAULT TRUE,
Weight FLOAT,
Producer INTEGER
)i

DELETE FROM Product
WHERE (Price > 2000);

DELETE FROM Product;

SQL: Select Queries

Select Queries

e SELECT statements in a nutshell

— Consist of 1-5 clauses and optionally also ORDER BY clause
= SELECT clause: which columns should be included in the result table
= FROM clause: which source tables should provide data we want to query
= WHERE clause: condition a row must satisfy to be included in the result
= GROUP BY clause: which attributes should be used for the aggregation
= HAVING clause: condition an aggregated row must satisfy to be in the result
= ORDER BY clause: attributes that are used to sort rows of the final result

0—>| select-clause }—»T{ from-clause W where-clause
(\’ f \ order-by-clause
l group-by-and-having-clauses |

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025 38

Sample Tables

» Database of flights and aircrafts

Flights:

gt | company | Destintion | Pasanger |

0K251
LH438
0K012
0K321
AC906
KL7621
KL1245

|

CSA
Lufthansa
CSA
CSA
Air Canada
KLM
KLM

New York
Stuttgart
Milano
London
Toronto
Rotterdam

Amsterdam

276
68
37

156

116
75

130

Aircrafts:
Boeing 717 CSA 106
Airbus A380 KLM 555
Airbus A350 KLM 253

Select Queries: Example

e Which aircrafts can be used for the scheduled flights?
= Only aircrafts of a given company and sufficient capacity can be used

SELECT Flights.*, Aircraft Boeing 717 csA 106

. . Airbus A380 KLM 555
FROM Flights NATURAL JOIN Aircrafts —
Airbus A350 KLM 253
WHERE (Passengers <= Capacity)
ORDER BY Flight e | company | oo | pasrgrs |
Q 0K251 CSA New York 276
LH438 Lufthansa Stuttgart 68
KL1245 KIM Amsterdam Airbus A380 OER | @R tondon 156
AC906 Air Canada Toronto 116
KL1245 KLM Amsterdam 130 Airbus A350
KL7621 KM Rotterdam 75
KL7621 KLM Rotterdam 75 Airbus A380 KL1245 KLM AT 130
KL7621 KLM Rotterdam 75 Airbus A350
0OK012 CSA Milano 37 Boeing 717

Select Clause

e SELECT ... FROM ... WHERE ... ORDER BY ...

= List of columns to be included in the result
— Projection of input columns
* Column name
* *(all columns), table.* (all from a given table)
— Definition of new, derived and aggregated columns
* Using expressions based on literals, functions, subqueries, ...

— Columns can also be assigned (new) names using AS

SELECT
lable -name-or-alias ‘ @4{
DISTINCT expressmn

\».»—J

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025 41

Select Clause

* SELECT

= Output modifiers
— ALL (default) — all the rows are included in the output
— DISTINCT — duplicities are removed

= Examples
— SELECT ALL * ...
— SELECT Flights.*, Aircraft ...
— SELECT DISTINCT Company AS Carrier ...
— SELECT ((3*5) + 5) AS MyNumber, 'Hello' AS MyString ...
— SELECT SUM(Capacity) ...
— SELECT (SELECT COUNT(*) FROM Table) AS Result ...

Where Clause

e SELECT ... FROM ... WHERE ... ORDER BY ...
= Selection condition

— l.e. condition that a row must satisfy to get into the result

— Simple expressions may be combined using conjunctions
* AND, OR, NOT

°-><WHERE)—»I search-condition }-»o

= Examples
— ... WHERE (Capacity > 200) AND (Aircraft LIKE 'Airbus%') ...
— ... WHERE (Company IN ('KLM', 'Emirates')) ...
— ... WHERE NOT (Passengers BETWEEN 100 AND 200) ...

Search Conditions

e Comparison predicates --[soeo}-~-)— - opeson}-

<>

= Standard comparison

2
&
)
= Works even for tuples (=

— Example: (1,2,3) <=(1,2,5) g
¢ Interval predicate

= Value BETWEEN Min AND Max
is equivalent to
(Min <= Value) AND (Value <= Max)

o BETWEEN)——| expression expression |—>°

NOT

Search Conditions

e String matching predicate
= Tests whether a string value matches a given pattern

— This pattern may contain special characters:
* % matches an arbitrary substring (even empty)
* _matches an arbitrary character

— Optional escaping character can also be set

°—>| expression LIKE H
o/
(
= Example

— Company LIKE '%Airlines%'

Search Conditions

e NULL values detection predicate
= Tests whether a given value is / is not NULL

— Note that, e.g., (expression = NULL) cannot be used!

o]

NULL Values

* Impact of NULL values
— NULL values were introduced to handle missing information
— But how such values should act in functions a predicates?
= When a function (or operator) cannot be evaluated,
NULL is returned
— For example: 3 + NULL is evaluated as NULL
= When a predicate cannot be evaluated, special logical
value UNKNOWN is returned
— For example: 3 < NULL is evaluated to UNKNOWN

— This means we need to work with a three-value logic
* TRUE, FALSE, UNKNOWN

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025 47

Truth tables

TRUE TRUE
TRUE FALSE
TRUE UNKNOWN
FALSE TRUE
FALSE FALSE

FALSE UNKNOWN
UNKNOWN TRUE
UNKNOWN FALSE
UNKNOWN UNKNOWN

TRUE
FALSE
UNKNOWN
FALSE
FALSE
FALSE
UNKNOWN
FALSE
UNKNOWN

NDBI049: Query Languages | Lecture 1: Advanced SQL | 30.9.2025

pORq NOT q

TRUE
TRUE
TRUE
TRUE
FALSE
UNKNOWN
TRUE
UNKNOWN
UNKNOWN

FALSE
TRUE
UNKNOWN

48

Search Conditions

* Set membership predicate

= Tests whether a value exists in a given set of values
— Example: Company IN (‘KLM', 'Emirates’)

°—>| expression @—>® expression @—»o
oD =)

* Note that...
- ...IN (@) = FALSE
* @ represents an empty table
— ... IN (X) = UNKNOWN
* N represents any table having rows with only NULL values

Search Conditions

 Existential quantifier predicate
= Tests whether a given set is not empty
= Can be used to simulate the universal quantifier too

— V corresponds to =3

°-><EXIST5)—>G>—>| unordered-select }-»@—»o

= Note that...
— EXISTS (@) = FALSE
— EXISTS (X) = TRUE

Search Conditions

* Set comparison predicates
= ALL

— All the rows from the nested query must satisfy the operator
— ALL (@) = TRUE
— ALL (X) = UNKNOWN

°->| expression

unurdered select o °

=]

&
(=)
©
(<)
G
&

Search Conditions

* Set comparison predicates
= ANY and SOME (synonyms)

— At least one row from the nested query must satisfy the
given comparison operator

— ANY (@) = FALSE
— ANY (X) = UNKNOWN

From Clause

e SELECT ... FROM ... WHERE ... ORDER BY ...
= Description of tables to be queried

* Actually not only tables, but also nested queries or views
— Old way

* Comma separated list of tables (...)

* Cartesian product of their rows is assumed

* Required join conditions are specified in the WHERE clause

* Example: SELECT ... FROM Flights, Aircrafts WHERE ...
- New way

» Usage of join operators with optional conditions

* Example: SELECT ... FROM Flights JOIN Aircrafts WHERE ...

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025

53

From Clause

e SELECT ... FROM ... WHERE ... ORDER BY ...
= Description of tables to be queried

— Overall diagram 0—>(FROM table-or-subquery
* Both old and new ways

join-clause

— Tables and subqueries
* Table name, auxiliary parentheses, direct select statement

table-name

@ (e
table-or-subquery J)

W

G~ (aeman)-

From Clause

e SELECT ... FROM ... WHERE ... ORDER BY ...
= Description of tables to be queried

— Basic structure of joins

o>| table-or-subquery

join-operator |—>| table-or-subquery H join-condition })—»

* Examples
» Flights NATURAL JOIN Aircrafts
» Flights JOIN Aircrafts USING (Company)

» .

— What types of joins are we provided?

Table Joins

* Cross join
= Cartesian product of all the rows from both the tables
°->| table-or-subquery

= SELECT * FROM T1 CROSS JOIN T2
ENEEE BN O
1 1

N

2 4
3

o - T S

1
1
2
2
3
3

Table Joins

* Natural join

= Pairs of rows are combined only when they have equal
values in all the columns they share
— l.e. columns of the same name

0—>1 table-or-subquery |—>(NATURAL JOIN table-or-subquery o

= SELECT * FROM T1 NATURALJOIN T2
ENET WNERE © REEEEERE
1 1 1

2 4
3

Table Joins

* Inner join
= Pairs of rows are combined only when...

— ON.: ... they satisfy the given join condition
— USING: ... they have equal values in the listed columns

* Note that inner join is a subset of the cross join

o> table-or- Y | JOIN table-or-subquery
“>(_INNER J

(
@

Table Joins

* Inner join
= SELECT * FROM T1JOIN T2 ON (T1.A<=T2.A)

ENETI WWETE O
1 1

N

1
2 4 1
3 2

3

B A b R

= SELECT * FROM T1 JOIN T2 USING (A)
— Equals to the corresponding natural join

= SELECT * FROM T1 JOIN T2

— Equals to the corresponding cross join

Table Joins

e QOuter join
= Pairs of rows from the standard inner join +
rows that cannot be combined, in particular, ...

— LEFT / RIGHT: ... rows from the left / right table only
— FULL (default): ... rows from both the tables

table -Or-! e table-or-subquery
FULL

(on) fomcandiion
CORORIETTY 0
®

Table Joins

e QOuter join
* Note that...

- NULL values are used to fill missing information in rows that
could not be combined

= SELECT *
FROM T1 LEFT OUTER JOIN T2 ON (T1.A=T2.A)

ENET WuEE O
1 1 1 1

2 4 2 NULL NULL
3 3 NULL NULL

Aggregation

* Basic idea of table aggregation

= First...
— FROM and WHERE clauses are evaluated in a standard way
* This results into an intermediate table
= Then...

— GROUP BY: rows of this table are divided into groups
according to equal values over all the specified columns

— HAVING: and, finally, these aggregated rows (superrows)
can be filtered out using a provided search condition

D->(GROUP BY) Ccolumn—name—or—alias\ \KHAVING >—>| search-condition }7—’0
J

®)

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025 62

Aggregation: Example

* How many flights does each company have scheduled?
= However, we are not interested in flights to Stuttgart and Munich
= As well as we do not want companies with just one flight or less

SELECT Company, COUNT (*) AS Flights FROM Flights
WHERE (Destination NOT IN ('Stuttgart', 'Munich'))
GROUP BY Company HAVING (Flights > 1)

0K251 CSA New York 276 0K251 New York 276 CSA
LH438 Lufthansa Stuttgart 68 0K012 CSA Milano 37 Air Canada 1
0K012 CSA Milano 37 0K321 London 156 KLM 2
0K321 CSA London 156 AC906 Air Canada Toronto 116 @
AC906 Air Canada Toronto 116 KL7621 Rotterdam 75
KL7621 KLm Rotterdam 75 KL1245 Amsterdam 130 = 5
A
KL1245 KLmM Amsterdam 130
KLm 2

Aggregation

* What columns can be used...
— in the SELECT clause as well as in the HAVING clause
= ... when table aggregation takes place?
= Answer (for both the cases): only...

— Aggregating columns (i.e. those from the GROUP BY clause)
— Columns newly derived using aggregation functions

column-name @j
@—| -

DISTINCT

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025 64

Aggregation

* Aggregate functions
— Allow to produce values from the rows within a group
= COUNT(*)
— Number of all the rows including duplicities and NULL values
= COUNT /SUM / AVG / MIN / MAX
— Number of values / sum of values / average / min / max
- NULL values are always and automatically ignored
— Modifier ALL (default) includes duplicities, DISTINCT not
— COUNT(®) =0
- SUM(@) = NULL (which is strange!)
- AVG(Q) = NULL, MIN(@) = NULL, MAX(@) = NULL

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025

65

Aggregation: Example

¢ Find basic characteristics for all the scheduled flights

= |e. return the overall number of flights, the overall number of the involved companies,
the sum of all the passengers, the average / minimal / maximal number of passengers

SELECT
| AT e ey ey

COUNT (*) AS Flights,

0K251 New York
COUNT (DISTINCT Company) AS Companies, 438 Lufthansa Stuttgart o8
SUM (Passengers) AS PSum, 0K012 CsA Milano 37
AVG (Passengers) AS PAvg, 0K321 CsA London 156
MIN (Pas sengers) AS PMin , AC906 Air Canada Toronto 116

KL7621 KLM Rotterdam 75
MAX (Passengers) AS PMax

KL1245 KLm Amsterdam 130

FROM Flights ;

| fiights | Companies | Psum | pavg | pwin | PViax |
7 4 858 123 37 276

Set Operations

* Available set operations
= UNION — union of two tables (without duplicities)
= UNION ALL — union of two tables (with duplicities)
= INTERSECT — intersection of two tables
= EXCEPT — difference of two tables

UNION core-select
UNION ALL

INTERSECT

EXCEPT

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025 67

core- select

Set Operations: Example

* Merge available companies from tables of flights and aircrafts

SELECT Company FROM Flights
UNION csA

Lufthansa
Air Canada
KLM

SELECT Company FROM Aircrafts

* Note that...

= Both the operands must be compatible
— l.e. they have the same number of columns
— And these columns must be of the same types

Ordered Queries

* ORDER BY
= Note that rows in the result have no defined order!

— ... unless this order is explicitly specified
= Multiple columns (...) can be used for such order
= NULL values precede any other values

= Directions
— ASC (default) — ascending
— DESC — descending

0—% unordered-select |—>< ORDER BY D! Ccolumn-name)
)
&/

NDBIO49: Query Languages | Lecture 1: Advanced SQL | 30.9. 2025 69

Ordered Queries: Example

e Return an ordered list of all the scheduled destinations
SELECT DISTINCT Destination

FROM Flights
ORDER BY Destination ASC

Destination

0K251 New York 276 Amsterdam
LH438 Lufthansa Stuttgart 68 London
oKo12 csA Milano 37 E> Milano
oK321 CsA London 156
New York
AC906 Air Canada Toronto 116
Rotterdam
KL7621 KLM Rotterdam 75
KL1245 KLM Amsterdam 130 Stuttgart
Toronto

Nested Queries

* Where the nested queries can be used?

= In predicates...
— ANY, SOME, ALL
~IN
— EXISTS
= For definition of tables in the FROM clause

= Almost in any expression if scalar values are produced

Nested Queries: Example

¢ Find all the scheduled flights which have higher than average
number of passengers.

SELECT *
FROM Flights
WHERE (Passengers > (SELECT AVG (Passengers) FROM Flights))

0OK251 New York 276 —
m Company Destination Passengers
LH438 Lufthansa Stuttgart 68

T — R — - |f‘> 0K251 CSA New York 276
oK1 csA London 156 0K321 CSA London 156
AC906 Air Canada Toronto 116 KL1245 KLM Amsterdam 130
KL7621 KLm Rotterdam 75
KL1245 KLm Amsterdam 130

Nested Queries: Example

e Return the number of suitable aircrafts for each flight.
= Only aircrafts of a given company and sufficient capacity can be used
= Note how values from the outer query are bound with the inner one

SELECT 0OK251 New York
Flights.*, LH438 Lufthansa Stuttgart 68 0
0K012 csA Milano 37 1
(0K321 csA London 156 0
SELECT COUNT (*) AC906 Air Canada Toronto 116 0
FROM Al rcra ft s AS A KL7621 KLM Rotterdam 75 2
KL1245 KLM Amsterdam 130 2
WHERE
e e
(A.Capacity >= F.Passengers) Boeing 717 = e
) AS Aircrafts Airbus A380 KLM 555
Airbus A350 KLM 253

FROM Flights AS F

