501.

002.

503.

004.

205.

506.

507.

508.

509.

510.

NSWI170 — Computer Systems — 2024/25 Summer — Martin Svoboda

Assignment A5: Stopwatch

[Numeric display class] We will extend the current display driver with the newly needed functions
for displaying whole numbers using the concept of inheritance. We will therefore propose a new class
for a numeric display by deriving it from the basic one. If need be, we can, of course, modify the
existing functions of the basic display or also add new ones.

[Division of display responsibilities] We will, however, adhere to the idea that the basic display
will only be responsible for low-level instructions for displaying various individual glyphs themselves,
while more complex mechanisms for displaying whole numbers will be solved with its help by the
numeric display.

[Domain of supported numbers| Only the numeric display as such thus gains the ability of
displaying whole numbers using all the available display positions at once. In particular, we will
support at least non-negative integers and non-negative decimal numbers.

[Displaying digits with a dot] For displaying digits, we will still use the already existing function
of the basic display, we just need to modify and extend it to support lighting up the dot segment in
case the optional decimal point was requested. We can use a suitable bitwise operation to mutually
combine masks of the corresponding glyphs together.

[Hard-wired dot | It goes without saying that our display implementation needs to be universal, and
so the position of the decimal dot cannot be hard-wired in any way, let alone tied to the requirements
we specifically pose on the stopwatch.

[Time multiplexing idea | We obviously need our display to be capable of showing different glyphs at
different positions at the same time in order to display whole numbers. However, that is not structurally
possible. Fortunately, we can apply a trick where we just remember the number requested to be
displayed at a given moment and unfold its actual displaying in time over the individual positions. This
means that we will continuously alternate the individual display positions and during each iteration of
the loop function we will give an instruction to display just one of them. This will allow us to achieve
an optical illusion where we get the feeling that all the positions are lit at once, although technically
this will not be the case.

[Requested number representation] Besides the actual number requested for displaying, we can
remember other necessary information inside the numeric display class, too. Let us just add that it
is not appropriate to come with a different representation of integer and decimal numbers. Especially
when it comes to the decimal ones, we certainly cannot use floating point data types like float due
to their inaccuracy. It is also not practical to split such numbers into two parts, integer and decimal.

[Setting a new number| Let us further note that an integer number without a dot is something
else to a decimal number with a dot at any of the positions 0 through 3. We should remember this
when designing the interface of a function or functions we will use to set such numbers.

[Prohibition of invalid values| To distinguish between the two situations, we could perhaps come
with some special position like -1 and use it just for the case we actually do not want the decimal dot
to be included. However, we have already explained earlier that we cannot use such invalid values in
general. Therefore, we need to find another solution.

[Function overloading mechanism | In this sense, we only need to separate the function for integers
from the function for decimal numbers. Moreover, we can even go further and elegantly use the
overloading mechanism. It allows us to have multiple functions of the same name under the condition
that they have a different number or different types of parameters.

511.

512.

513.

014.

515.

516.

017.

o18.

519.

520.

521.

[Atomicity of setting numbers] No matter how we design the interface of these setting functions,
we should be able to set everything needed atomically with a single instruction. I.e., we should not be
forced to gradually call several separate functions, for example, to set the intended number, activate
the dot, and determine its position. This would worsen the code clarity and reduce user-friendliness.
At the same time, we do not even want to leave our display in an internally inconsistent or otherwise
invalid state, however temporarily.

[Omission of leading zeros| We will display the numbers on our display with unnecessary leading
zeros before the first valid position omitted. Be careful to correctly detect such a position especially
for decimal numbers, as well as avoid unnecessarily repeated calculations of this position.

[Displaying the minus symbol| If we voluntarily decide to support negative numbers as well,
we will place the minus glyph immediately before the first valid position of the number, not at the
beginning of the display on the very left.

[Uniform alternating of positions] When performing the time multiplexing, we must pay equal
attention to each individual position on the display, otherwise we would be able to notice uneven
lighting intensity. This also applies to positions where we do not want to display anything.

[Uniform duration of loop iterations | Implementation of our time multiplex also apparently relies
on the yet unspoken assumption that each run of the loop function will last the same amount of time.
Such an expectation is generally not entirely realistic, but it will work well in our case.

[Merging the same positions] We could also come with an idea that if the same glyph is to be
displayed on two or even more positions, we could do it simultaneously, thus optimizing our code in
that sense. However, this is actually not a good idea, because it would only make the whole mechanism
more confusing from the logical point of view, and we would not achieve any real benefit anyway due
to the increased code volume and branching. Therefore, we will not pursue it.

[Achieving efficient code| On the other hand, this does not mean that we should give up and not
optimize the time multiplex code. Quite the opposite, because it is a mechanism that will be executed
during each individual iteration of the loop function, i.e., perpetually over and over.

[Invoking the multiplex mechanism | To be complete, the entire multiplex mechanism is inherently
a hardware aspect of our display driver, therefore we must invoke it directly from the loop function,
not indirectly from our stopwatch, which is supposed to be just an application using our display.

[Display turning off | We would like to have an opportunity to explicitly turn off the entire numeric
display. In other words, we want to be capable of deactivating and bypassing the time multiplex
mechanism and returning back to the manual control of the basic display through direct instructions
for displaying glyphs. Otherwise, we would continuously need to show some number on the display,
which may apparently not always suit us. Even though we do not need such a functionality in this
assignment, it will become useful in the following one.

[Single display instance]| Thanks to the inheritance concept we used, our numeric display will
automatically be able to do and contain everything the basic one was able to. This means that we
will create only one single instance of the display, namely the numerical one. Creating kind of dual
instances of the both would be more than just a technical mistake. Physically, of course, we only have
one display device, and both logical instances could also influence each other in an uncontrolled way.

[Chaining of initialization functions] Both basic and numeric display classes understandably
need their own initialization methods. In order to provide the most user-friendly interface possible, we
intentionally name both these methods the same. Thanks to that, we can invoke the overall display
initialization during the setup function in a unified way, without needing to guess which variant of
the driver was chosen. However, in order to make everything working correctly, we need to explicitly
call the initialization function of the basic display from the initialization function of the numeric one,
right at the beginning as its first step. But since the name of this ancestor method is overridden, we
have to use a fully qualified name Display: :initialize().

522.

523.

024.

025.

526.

527.

928.

529.

530.

531.

932.

533.

534.

[Names of display methods] When finding suitable names of display methods, we should distinguish
functions that really perform active displaying of some glyphs and functions for setting the intended
numbers. They do not display anything by themselves, we should hence not confuse the users.

[Class for the stopwatch| As expected, we will encapsulate all the functionality of our stopwatch
into a separate class. It will use the services of buttons and display, but the stopwatch logic itself must
be strictly separated from these drivers.

[Stopwatch design procedure] Proposal of the stopwatch class is worth not to be underestimated.
If nothing else, we should thoroughly think about the extent of the stored information, internal states
and transitions between them, detection of events triggered by individual buttons, execution of the
corresponding actions, correctness of the time measurement, preparation of values to be displayed,
and control of the numerical display itself. Careful consideration and separation of all these aspects
will lead to better code and save our time during debugging.

[Global variables for drivers] Let us remind that we have not changed anything in the way how
we work with the global variables for button or display instances, nor we will change it in the future.
We therefore continue to access them directly and not pass them through function parameters. Let us
also add that we cannot even store them as data members inside the stopwatch class, since no aspect
of our hardware handling can depend on specific applications such as our stopwatch.

[Enumeration class for states| Although even different means exist, it is probably most reasonable
to represent the internal states of the stopwatch using values of an enumeration class. We just need
to declare it via enum class MyEnum { VALUE_1, ... 1}, individual values are then accessed using
MyEnum: : VALUE_1.

[Repetition of the same code| As always, we should not forget to appropriately decompose the
internal stopwatch functionality so as not to repeat similar or the same code fragments unnecessarily.

[Logical stopwatch actions| In this sense, we completely separate the implementation of various
logical stopwatch actions from the event handling of individual buttons, i.e., invocation of these actions
based on the detected events and also the current internal stopwatch state.

[Placement of the buttons handling] Due to the non-trivial extent and the need to correctly
reflect the aforementioned internal stopwatch state, it is advisable to place the entire button handling
code in some stopwatch method and so no longer keep it directly in the loop function, where we should
not focus on low-level details of individual applications.

[Decimal dot position] Even though we assume the time is measured with the accuracy of tenths
of a second as specified in the assignment, and therefore placement of the decimal dot at position 1,
we will program the code so that the position of this dot (i.e., let us say accuracy of the stopwatch) is
easily configurable within the meaningful limits.

[Granularity of the internal time | Let us also realize that in order to achieve the expected accuracy
and correctness of the measurement, we have to record the accumulated time inside the stopwatch
with a significantly more precise granularity than what we expect at the output.

[Time overflow checking| We must also not forget that we should solve the overflow issue as well
when counting the elapsed time, both from the point of view of the displayed value on our display as
well as the system time as such.

[Output time calculation]| When converting the internal time into the expected output format,
we just perform a simple division operation. That means we should, of course, introduce a named
constant for this purpose, the value of which we also derive. And let us emphasize using a formula
that is correct.

[Gradual time addition | We should not update the internally stored item with the overall measured
time in every single run of the loop function in order to avoid possible accumulation errors arising
from small inaccuracies. In other words, this means separating the internal measured time from the
output values intended for displaying.

535.

536.

537.

938.

539.

[Unnecessary display updates| We will undoubtedly instruct the display to show the required
time value only when necessary, i.e., only when this value truly changed.

[Change detection efficiency] This is especially important in situations when the stopwatch is
currently on. Not only we cannot unnecessarily adjust the display in every single run of the loop
function, but at the same time we must also ensure that the detection of the right moment to update
the display is not too computationally demanding. In this sense, an approach where we would calculate
the current output value in each run of the loop function and only compare it with the previous one
seems not appropriate enough in this sense.

[Scheduling display updates] A more efficient way will be to use the familiar timing control
mechanism we already used several times during the previous assignments. We will just not consider
a fixed interval, we will plan the next event appropriately instead, i.e., specifically according to the
current stopwatch state and situation.

[Validity of the displayed value | Whatever approach we choose, we must always show the current
value of the measured time on the display, not one that would no longer be valid, however briefly.

[Visual correctness checks]| Finally, in relation to the debugging process of the entire application,
let us add that the human eye is nowhere near capable of detecting anything at the level of individual
milliseconds, so a mere visual verification of the correct operation of our application cannot ensure its
true correctness and so the accuracy of the stopwatch measurement.

	501: Numeric display class
	502: Division of display responsibilities
	503: Domain of supported numbers
	504: Displaying digits with a dot
	505: Hard-wired dot
	506: Time multiplexing idea
	507: Requested number representation
	508: Setting a new number
	509: Prohibition of invalid values
	510: Function overloading mechanism
	511: Atomicity of setting numbers
	512: Omission of leading zeros
	513: Displaying the minus symbol
	514: Uniform alternating of positions
	515: Uniform duration of loop iterations
	516: Merging the same positions
	517: Achieving efficient code
	518: Invoking the multiplex mechanism
	519: Display turning off
	520: Single display instance
	521: Chaining of initialization functions
	522: Names of display methods
	523: Class for the stopwatch
	524: Stopwatch design procedure
	525: Global variables for drivers
	526: Enumeration class for states
	527: Repetition of the same code
	528: Logical stopwatch actions
	529: Placement of the buttons handling
	530: Decimal dot position
	531: Granularity of the internal time
	532: Time overflow checking
	533: Output time calculation
	534: Gradual time addition
	535: Unnecessary display updates
	536: Change detection efficiency
	537: Scheduling display updates
	538: Validity of the displayed value
	539: Visual correctness checks

