
NSWI170 – Computer Systems – 2024/25 Summer – Martin Svoboda

Assignment A3: Counter

301. [Decomposition into classes] All code related to the operation of diodes, buttons, and timers, as
well as code for the counter itself, will be decomposed and encapsulated in appropriately designed
classes. Their data members will then be solely private.

302. [Universal functions] An exception to the previous requirement could be standalone global functions
if they are usable universally even outside of the context of our particular problem.

303. [Separation of application from drivers] Implementation of our counter, diodes, and buttons
must be consistently separated from each other. Counter, as an analogy to a user application, will,
of course, use services provided by diodes and buttons, but from the opposite point of view, it is
necessary to strictly ensure that our drivers for diodes and buttons will not solve any aspect of the
counter, they must not even be aware of its mere existence.

304. [Systematic names for constants] Given that the number of various constants in our program is
increasing, it is reasonable to start naming them in a systematic way, i.e., so that it is clear just from
their names at first glance what they relate to (diodes, buttons, …).

305. [Analogy of buttons to diodes] In general, we have basically the same or similar requirements for
working with buttons as we had with diodes before. Therefore, we represent them using an appropriate
class, maintain a global array of their instances, etc.

306. [Logical button numbers] Specifically, this also means that we will again use logical numbers 0 to 2
when working with buttons B1 to B3 instead of low-level pins corresponding to constants button1_pin
to button3_pin.

307. [Class for button representation] Class for a button driver encapsulates all data members and
methods we might need for seamless work with the buttons, including necessary internal states or
timing. Its implementation must be universal and robust enough, because we cannot preconceive how
in particular they will be used by our applications.

308. [Concealing internal implementation] Interface of public button methods will be designed in a
way to be as simple, intuitive, and elegant for the users as it is possible. In other words, we again want
to deliberately hide all the internal implementation or technical details so that we do not need to be
aware of them from the outside, let alone understand them or be forced to deal with them in any way.

309. [Types of button events] Although we are only interested in the button press event within this
task, we will also find useful to detect the release event in the future. When it comes specifically to
the press event, it could even be useful to distinguish its specific variant, i.e., whether it is the initial
or recurring events when the button is held for a longer time.

310. [Merging press events] On the other hand, it would also be useful to have the possibility to query
the button press events without distinguishing such variants of the initial or recurring presses, simply
because we want to handle them exactly the same way (like us right now).

311. [Event occurrence detection] Event detection depends not only on the return value yielded by the
digitalRead function, but also on the correct work with our internal button state logic. This means
that such a detection is not repeatable, though. If we tried it for multiple times in one iteration of
the loop function, we might get unexpected results. So either we rely (without any guarantee) on
the discipline of our users that repeated calls will not occur, or we simply separate event occurrence
detection from querying over them completely.

312. [Repeated press detection] However we decide, even the press detection using the digitalRead
function as such cannot be invoked repeatedly. Not only its execution is very slow, but, at the same
time, each call could give different values (if the actual state has already changed).

313. [Public button interface] In addition to the button initialization method, we will offer an update
function (for the actual event detection) and query functions (for individual types of events). We
will always call the update function for each button at the beginning of the loop function, remember
the detected conclusions internally and declare them valid for the entire given iteration of the loop
function. Thanks to this, it will then be possible to safely carry out queries even repeatedly.

314. [Activation of recurring events] If we did not want to handle recurring button events, it would
perhaps be possible to simply ignore them. However, it would be better if we could explicitly enable
or disable such a functionality during the button initialization.

315. [Button debouncing] As a part of the internal button logic, we should also be capable to filter out
short state fluctuations caused by mechanical aspects and button imperfections. Specifically, we will
work with the idea that a state change (both press and release) must last continuously for at least, let
us say, 10 ms in order to register it. If the commenced intention is violated during this time, no change
will occur at all. On the contrary, until a successful transition really takes place, we will continue to
function without any change, e.g., we will not stop triggering any recurring press events.

316. [Timer class exploitation] For the timing control within the buttons, we will, of course, use
instances of the timer class we already have from the previous assignment.

317. [Commenting code] At least the more complicated parts of the code should be accompanied by
sufficiently explanatory comments to make their understanding easier. In particular, we can focus on,
for example, solving the state logic of buttons and explaining the actions performed.

318. [Use of selected buttons] The way in which we will work with instances of individual buttons in
our code cannot be influenced by the fact whether we really want to work with all of them or just with
some selected ones. Therefore, we need to have them all available, only the application itself (i.e., our
counter) will determine which ones it really wants to work with and which ones it does not.

319. [Class for counter representation] Entire logic of our counter will again be solved by a suitably
designed class. As for the interface of its public methods, we will distinguish at least the counter
initialization, operations changing its value, handling of events triggered by buttons, or displaying its
value on diodes.

320. [Separation of counter methods] Specifically, the counter increment and decrement methods
will not invoke displaying of its value on the diodes in order to ensure consistent separation of data
manipulation from its visualization and so independence of these operations.

321. [Counter value representation] Even though we will have to obtain binary decomposition of the
counter value in order to display it on diodes, the counter as such should remember information about
this value at the logical level, i.e., as an ordinary integer number. It is certainly not appropriate to
use an array of binary digits, let alone an array of diode logical states.

322. [Counter overflow checking] Value of the counter as such must always fall within the allowed
interval, therefore we must check for a possible overflow during each increment or decrement operation.
In addition, this must be handled without any undue delay in order to ensure consistency at the
expected level of atomicity.

323. [Correction of overflowed values] If an overflow occurs, we would certainly be able to adjust the
new value using conditional branching. However, it is also possible to do it via a simple calculation
without branching, which is certainly the preferred option. Just be aware that the modulo operation
for integer division can return negative numbers, too (this is important for the correct implementation
of the decrement action).

324. [Maximal counter value] When dealing with overflows, we cannot do it without determining and
then using the maximal allowed value of our counter. We will, of course, introduce this value using a
named constant. However, be careful that it can be derived from other already known information,
and, therefore, it is necessary to calculate it and not define it as a fixed literal.

325. [Initial counter value] Part of the counter initialization at the end of the setup function should
be setting its current, i.e., initial value. Even though it is specifically equal to 0 in our context, that
might not be the case in general. I.e., we could legitimately start with some other initial value.

326. [Displaying the initial value] And it is not just about setting this value, we also have to ensure
that we will display it on the diodes.

327. [Order of initialization actions] Initialization actions performed during the setup function should,
by nature, be arranged in such a way that we first deal with the hardware aspects and only then with
the application aspects.

328. [Calculation of binary decomposition] When calculating the binary decomposition of a counter
value, we should focus on its efficiency. In particular, we should avoid functions that calculate general
powers. I.e., specifically for powers of two, we can easily do without them. We just need to elegantly
use selected bitwise operations and masks.

329. [Conversion of boolean values] If a boolean value is expected somewhere in our code, we should
not rely on automatic language-driven conversions to determine it (0 means false and anything else
true). For example, the result of bit operations is a number, so we first need to convert it to the
required logical value explicitly, for example, using comparison.

330. [Unnecessary diode updates] Since the diode lighting state remains valid until the next change
and calling the digitalWrite function is very slow, it is appropriate to avoid readjustment of the
diodes in every single run of the loop function. In other words, we will only perform it when it
becomes necessary, i.e., only when the counter value really changed. And even in that case, we will
give instructions only to those particular diodes whose state we really need to change.

331. [Assigning actions to buttons] Assignment of user functions handling the respective events of our
individual buttons must not be hard-wired in the code, so we must be able to change it easily. In this
sense, it is fully sufficient to use suitable named constants.

332. [Misused for loops] Loops are generally suitable in situations where we expect each of their iterations
to look, let us say, similar. Therefore, if we have buttons and each of them is supposed to invoke a
different action, it does not make sense to handle the events triggered by them using a for loop, so
that we would, in turn, need branching for the individual cases using a switch or otherwise. Such a
loop would then be completely meaningless.

333. [Independence of individual buttons] Individual buttons are independent on each other, therefore,
we must be able to handle even situations when an event is triggered by several of them at once within
just one run of the loop function.

334. [Simple loop content] Like the main function in a normal program, the loop function should not
contain any complex or low-level code. On the other hand, it also does not make sense to just take all
the intended actions and only wrap them into one auxiliary function that would solely be called here.

335. [Disallowed system functions] In addition to the already prohibited system functions, we will also
not use functions bitRead (because we can easily do without it), and pow (is not accurate).

	301: Decomposition into classes
	302: Universal functions
	303: Separation of application from drivers
	304: Systematic names for constants
	305: Analogy of buttons to diodes
	306: Logical button numbers
	307: Class for button representation
	308: Concealing internal implementation
	309: Types of button events
	310: Merging press events
	311: Event occurrence detection
	312: Repeated press detection
	313: Public button interface
	314: Activation of recurring events
	315: Button debouncing
	316: Timer class exploitation
	317: Commenting code
	318: Use of selected buttons
	319: Class for counter representation
	320: Separation of counter methods
	321: Counter value representation
	322: Counter overflow checking
	323: Correction of overflowed values
	324: Maximal counter value
	325: Initial counter value
	326: Displaying the initial value
	327: Order of initialization actions
	328: Calculation of binary decomposition
	329: Conversion of boolean values
	330: Unnecessary diode updates
	331: Assigning actions to buttons
	332: Misused for loops
	333: Independence of individual buttons
	334: Simple loop content
	335: Disallowed system functions

