
NSWI170 – Computer Systems – 2024/25 Summer – Martin Svoboda

Assignment A2: Bead

201. [Decomposition into functions and classes] It is expected that the whole code will be decomposed
into appropriately designed global functions, classes and their member functions (methods), at different
levels of abstraction from the user-friendly control of individual diodes to the actual logic of the running
bead itself.

202. [Class for diode representation] Individual diodes will be represented as instances of a class that
will encapsulate all the necessary data items and expected functionality. The objective is thus nothing
else than to design a diode driver that will allow its user-friendly usage, offer a comprehensive interface,
and intentionally hide internal technical and implementation details at the same time.

203. [Private data members] When designing classes of our kind, a good practice is to make all their
data members private. Therefore, manipulating with them will not be possible directly from outside,
only indirectly through public methods we design for this purpose. Thanks to that, we will be in full
control of their content. Otherwise, they could be changed by anyone and from anywhere without our
knowledge. We should also analogously mark as private all other auxiliary methods that would be
purely internal in nature.

204. [Public diode interface] The diode class will offer at least two public functions, one to initialize a
given diode and the other to change its lighting state. Their task is to wrap the respective low-level
Arduino system calls, allowing the users to control the diodes at a higher level of abstraction.

205. [Logical diode numbers] In order to really achieve this higher abstraction across the whole code, we
will use logical numbers 0 to 3 to denote our diodes D1 to D4, in this order, instead of the corresponding
low-level pins led1_pin to led4_pin. The only exception will be the two functions mentioned above,
being the only ones that will internally perform the necessary translation.

206. [Translation array for pins] For the purpose of this translation, we will use an ordinary C-style
array to define the necessary mapping of diode logical numbers to the corresponding pins.

207. [Pin number values] By looking into the attached header file, we can easily find out that pin
numbers of individual diodes have values 13 to 10. However, we cannot work with them, regardless of
directly or indirectly. We cannot even assume they are ordered or they form a continuous interval.

208. [Independence on constant values] We can generalize this idea and extend it to the work with
any other constants that we do not fully control. Unless their author has explicitly promised us certain
special guarantees, we simply cannot make any assumptions about their specific values. Thus we have
to be completely independent on them.

209. [Variable number of diodes] The entire application will be implemented in a way that we do not
assume any specific fixed number of diodes anywhere. In other words, everything must be universal
and work even with a different number of diodes than just 4, even without any enforced modifications
of the code. We will derive the actual number of available diodes from the size of the translation array
for pins.

210. [Initial diode states] As a part of Arduino initialization, in addition to setting the pin modes, it is
also necessary to switch off all the diodes, because we are generally not guaranteed in which current
state they may occur.

211. [Premature system calls] Although we should actually not get into such a situation with resources
we learned, let us emphasize that we must not call any Arduino system functions before the setup
function, i.e., before its initialization. While such calls would usually pass without any effect on a real
Arduino, the emulator in ReCodEx monitors these situations strictly.

212. [Construction of diode objects] The complication described above could specifically occur in a
situation where we would like to define explicit constructors for our diode objects, within which we
would like to, for example, set the pin modes. Instances of objects in global variables are created
at the beginning of the program, i.e., before the setup function. If we therefore decide to use such
constructors, we need to be aware of that behavior.

213. [Implicit constructors] It will actually be even better if we do not use explicit constructors at all.
It would only bring us additional technical complications without any advantages, and we did not
learn to use them anyway. In other words, we will rely on the implicit constructors that the compiler
creates for us automatically. These cause the respective objects are created in such a form that their
data members are not initialized in any way. We will therefore arrange setting of their initial values
by ourselves via an appropriate initialization method called from the setup function.

214. [Creation of class instances] If we want to use such a parameterless constructor to create a new
diode object, we just need to write Diode diode. Analogously for arrays. We do not write the new
keyword, it has a completely different meaning in the C++ language. Also note that the diode variable
will really contain an instance of the diode itself, not a pointer or some reference to it.

215. [Diode control] The diode class will at least offer methods through which we can turn a given diode
on or off. However, it would not be a good idea to provide two separate methods in the style of
on and off for this purpose, because then the caller would not be able to dynamically express their
request without having to conditionally branch their code somehow. It therefore seems better to offer
a method with a true / false parameter that would allow for such on / off intent distinction easily.

216. [Diode state preservation] Let us also add that until we give a given diode a new low-level
instruction to light up / light down via the digitalWrite call, its state will be preserved unchanged.

217. [Internal state representation] If we decide to remember or otherwise express the current internal
diode state, we should represent it at the logical level. Hence, ideally using the bool data type, not
using the low-level constants LOW and HIGH.

218. [Internal state transformation] Such logical states also need to be correctly transformed into the
mentioned int constants. In other words, the C++ language is strictly typed and even automatic
conversions cannot help us here because of the reasons described earlier.

219. [Named constants] All constants having some logical meaning in the relation to our application
must be declared and appropriately named.

220. [Deriving values of dependent constants] Moreover, if it is possible regarding to the other already
defined constants, it is also necessary to calculate or otherwise derive their values with the help of such
constants, and do that correctly.

221. [Global variables] Considering the Arduino programming model, we will need to remember certain
information through global variables, although such an approach would not be suitable in the case of
standard applications. Otherwise, we would not be able to transfer it between the setup function and
the individual calls of the loop function. However, we will keep the number of such variables to a
necessary minimum, we will especially not use global variables in situations where ordinary local ones
would, in fact, suffice.

222. [Accessing global variables] We will consider the global variables so significant that we will access
them directly and therefore not pass them through function parameters. In the case of more complex
objects such as our diodes, this would even not be possible with the knowledge we have, because their
copies would be created and these would become completely separated from the original objects.

223. [Simple loop content] However we decompose the logic of our running bead, it is necessary to ensure
that the code put directly into the body of the loop function will not be too large, complicated, or
technical. Ideally, we should only work here with some basic operations at the highest possible level
of abstraction, similarly as was the case with the main function.

224. [Efficient loop implementation] Function loop forms the core of our programming model, therefore
it has a key impact on the efficiency of our entire application. Obviously, it is not only about the
function itself, but also all the other functions we will directly or indirectly call from within it. It is
performed perpetually over and over, approximately 1000× per second. Depending on the program
complexity, this may be an order of magnitude higher as well as lower, though.

225. [Class for timer representation] It is expected we solve the functionality for event timing using
a suitably designed separate class, too. It will become useful in the future, when we will need to use
even more parallel and mutually independent timers at once.

226. [Timer functionality] We will also appreciate the possibility to subsequently use different values of
the expected intervals, as well as to initialize (start) the timer at any time needed (not only during
the setup function). Finally, let us add that the timer should only be a passive resource offering us
the timing control through an elegant interface, but it should not trigger any actions on its own.

227. [Time control mechanisms] In principle, there are two possible mechanisms for timing control. We
may either remember the time of the previous event and detect if the intended interval has already
passed, or we may schedule the time of the next event and detect if it has already occurred. Although
each approach offers certain advantages and disadvantages, the first option will be more suitable,
flexible and technically simpler for us.

228. [Elapsed time detection] Checking whether a required time interval elapsed needs to be resolved
carefully. As we have already discussed, one iteration of the loop function can take significantly less
time than 1 ms, but it can also take longer. As a result, we are not guaranteed to be able to detect the
intended moment of the next event with absolute accuracy, i.e., at the level of individual milliseconds.
We might therefore succeed only with a slight delay.

229. [Previous event timestamp] If we are not able to detect particular time moments precisely, it
would be a mistake to save the actual current time of the currently triggered event for the purpose
of remembering the previous event timestamp. If we did that, it could cause systematic and repeated
delaying that would gradually accumulate and disrupt the required overall regularity of events.

230. [Retrieving the current time] Each call of the millis function is a relatively time-consuming
matter. In addition, if we were to retrieve the current time repeatedly within one iteration of the loop
function, we could receive different values. Depending on our code, such an inconsistency could lead
to very unpleasant error situations.

231. [Passing the current time] For this reason, we will call it only once within the loop function
and declare the value obtained in this way as the current time valid for the entire given iteration.
Technically, we can save it in a global variable, or we can pass it to our relevant functions as a
parameter when calling them.

232. [Time value overflow] For the system time representation, the unsigned long data type is used,
in particular. Although it allows us to store time values in milliseconds corresponding up to almost
50 days, sooner or later its overflow will inevitably occur. Therefore, we must be able to treat such
situations correctly, too.

233. [Sizes of data types] Just by the way, whenever we want to work with time values, we should
consistently use the mentioned type unsigned long. Even with the signed variant, let alone the int
type, we would risk problems with a smaller range. Also note that the sizes of these types can vary
on different platforms, so while long is typically 8 B, it is only 4 B on Arduino.

234. [Arithmetic over diode numbers] We should always work with variables in accordance with their
data type, but also with the expectations arising from their logical nature. For example, if we represent
positions of diodes by their logical numbers, we cannot incorporate them in multiplication nor calculate
their absolute value, although such operations would be allowed by integers as such from the technical
point of view.

235. [Prohibition of invalid values] Analogously, we also cannot work with positions like -1, which
are not even valid by themselves. We can then generalize this idea so that we can never reserve and

use any otherwise normal values to represent erroneous, marginal or perhaps unexpected situations,
values, etc. even in other situations.

236. [Execution of the initial action] Various initialization actions are expected within the setup
function, including, e.g., setting the initial position of our bead. Whether we perform the actual
lighting up of the corresponding diode immediately, or postpone it with a simple trick and perform
it only within the standard running logic of our application in the loop function, the first lit diode
should be the diode number 0.

237. [Timer initialization] As for setting the initial value of the timer, note that the current time during
the setup function may no longer necessarily be equal to 0.

238. [Zombie actions in loop] Following our efficiency requirement on the loop function, it is always
necessary to think very carefully about what actions we want to carry out within it. It would be
unacceptable, for example, if we put some conditional action in it while knowing in advance that it
would actually be executed only once in the very first iteration and then never again.

239. [Meaning of the current position] In order to manage the logic of the running bead, we will
probably need to deal with its current position somehow. We should therefore think about what
exactly the word current actually means in this context. In other words, we should make sure that
the current position actually does not reference, for example, the previous position or the following
one, on the contrary.

240. [Template of bead positions] Although it would actually be a nice idea, we do not want to solve
our bead movement problem by creating kind of a template for the sequence of the expected bead
positions, which we would subsequently iterate through. It does not correspond to the logic of our
assignment, which we must of course always respect.

241. [Logical order of actions] When realizing the actual bead movement, it is more than appropriate
to respect the intuitive order of individual actions, i.e., first turning off the current diode, then moving
to the next position, and only then turning on the new diode. Different orderings would be misleading.

242. [Disallowed system functions] Our entire application must be programmed in a way that we do
not need to use delay or delayMicroseconds functions, just as we must not block the course of the
loop function in any other way. Simply because such attempts would go directly against the very
logic of the entire Arduino programming model.

243. [Error signals] If we encounter an error signal while debugging the program in ReCodEx (which is
something else than a return code), a failure so serious occurred that the program had to be terminated.
The causes can be the following: signal 4 (division by zero or other invalid instruction), 6 (system
calls before the setup function), 9 (unavailable memory), or 11 (access to unallocated memory, e.g.
to elements outside of an array).

244. [Continuity of assignments] The remaining assignments directly follow each other and we will
need to use components such as our diodes, timer or, in the future, e.g., buttons repeatedly. It is
therefore suitable to view them as smaller parts of a bigger and gradually built project. From the
very beginning, it is worth not underestimating their proposal and, on the contrary, implementing
everything in the highest possible quality, so that we do not need to return to them later on. Any
further interventions in the form of extensions or even corrections will be much more time-consuming
and will only bring the risk of introducing new and difficult-to-debug issues.

	201: Decomposition into functions and classes
	202: Class for diode representation
	203: Private data members
	204: Public diode interface
	205: Logical diode numbers
	206: Translation array for pins
	207: Pin number values
	208: Independence on constant values
	209: Variable number of diodes
	210: Initial diode states
	211: Premature system calls
	212: Construction of diode objects
	213: Implicit constructors
	214: Creation of class instances
	215: Diode control
	216: Diode state preservation
	217: Internal state representation
	218: Internal state transformation
	219: Named constants
	220: Deriving values of dependent constants
	221: Global variables
	222: Accessing global variables
	223: Simple loop content
	224: Efficient loop implementation
	225: Class for timer representation
	226: Timer functionality
	227: Time control mechanisms
	228: Elapsed time detection
	229: Previous event timestamp
	230: Retrieving the current time
	231: Passing the current time
	232: Time value overflow
	233: Sizes of data types
	234: Arithmetic over diode numbers
	235: Prohibition of invalid values
	236: Execution of the initial action
	237: Timer initialization
	238: Zombie actions in loop
	239: Meaning of the current position
	240: Template of bead positions
	241: Logical order of actions
	242: Disallowed system functions
	243: Error signals
	244: Continuity of assignments

