NSWI090: Computer Networks

http://www.ksi.mff.cuni.cz/~svoboda/courses/242-NSWI090/

Addressing

Martin Svoboda

martin.svoboda@matfyz.cuni.cz

23. 4. 2025

Charles University, Faculty of Mathematics and Physics

Lecture Outline

Addresses and addressing

- L2: MAC addresses
- L3: IP addresses
 - IPv4 addresses
 - Subnetting and supernetting
 - CIDR
 - Registries
 - Private addresses and NAT
 - IPv6 addresses
- L4: port numbers
- L7: URI identifiers

Addressing at L2

MAC addresses (hardware addresses)

- Used at L2
 - More precisely at the MAC sublayer (Media Access Control)
- Assigned to network interface controllers
 - I.e., individual L2 interfaces of end nodes as well as routers
 - Bridges / switches only have one MAC address, if any
 - In case they should explicitly be accessible as ordinary devices
 - Not because of fulfilling their L2 tasks (filtering / forwarding)
- Types of addresses
 - Standard unicast, but also multicast and broadcast
- Different technologies may have different mechanisms
 - However, sharing of address spaces may be desirable
 - So that **Wi-Fi and Ethernet** can coexist in one network

Addressing at L2

MAC addresses (cont'd)

Must be <u>locally</u> unique within a given network

- So that senders can **identify** the intended recipients
- And these recipients are able to recognize their frames
 - Since everything is / may be delivered to everyone
 - Because all nodes are mutually visible and reachable
- Assignment strategies
 - Locally administered addresses would suffice
 - However, globally unique addresses simplify everything
 - Otherwise newly connected devices would need to be treated
 - So that they do not potentially use conflicting addresses
- ⇒ globally unique burned-in addresses assigned by device manufacturers are primarily used in practice
 - Exceptions exist, though

EUI Addresses

EUI numbering systems (Extended Unique Identifier)

- EUI-48 (48 bits, 6 bytes, \approx 281 trillion addresses)
 - Formerly denoted as MAC-48
 - Which is inappropriate since MAC denotes the entire sublayer
 - And so this label should no longer be used since it is obsolete
 - Notation
 - Six hexadecimal numbers separated by hyphens or colons
 - **E.g.:** FC-77-74-19-41-1E or FC:77:74:19:41:1E
 - Deployment: Ethernet, Wi-Fi, Bluetooth, ATM, ...
- EUI-64 (64 bits, 8 bytes)
 - Newer version with larger address space
 - Conversion of EUI-48 possible by adding FF-FE in the middle
 - **E.g.:** FC-77-74-<u>FF-FE</u>-19-41-1E
 - Deployment: FireWire (IEEE 1394), ...

EUI Addresses

Internal structure

- Organizationally Unique Identifier (OUI)
 - Higher 3 bytes (24 bits)
 - Describes a particular vendor or manufacturer
 - E.g.: FC-77-74 (Intel), 90-F6-52 (TP-Link), ...
- Interface number
 - Lower 3 bytes (24 bits) in case of EUI-48
 - Lower 5 bytes (40 bits) in case of EUI-64
 - Serial number of a given network interface controller

OUI Identifiers

OUI component details

- M bit (I/G bit) = the least significant bit of the first byte
 - 0 = individual address (unicast)
 - 1 = group address (multicast, broadcast)
- X bit (U/L bit) = the second least significant bit of the first byte
 - 0 = Universally Administered Addresses (UAA)
 - Intended for globally unique addresses
 - 1 = Locally Administered Addresses (LAA)
- Examples
 - Individual (M = 0) and universal (X = 0)

- FC-77-74-19-41-1E: in binary 11111100-...

• Group (M = 1) and local (X = 1)

- FF-FF-FF-FF-FF (L2 broadcast): in binary 11111111111...

OUI Identifiers

Observations

- Why M and X bits are the two least significant bits?
 - Ethernet uses Big Endian for the individual bytes
 - But Little Endian for individual bits within these bytes
 - Therefore the first two transmitted bits become M and X
 - And so various address modes can be distinguished easily
- Both M and X bits are set to zeros in OUI identifiers as such
 - Only when they are exploited in EUI addresses...
 - ... they can then be changed as required and so their special meaning activated and utilized

OUI Identifiers

Organizationally Unique Identifier (OUI) (cont'd)

- Unique vendor, manufacturer, or other organization identifier
 - Purchased from the IEEE Registration Authority
 - One organization may actually have multiple OUIs at a time
- Various usages
 - Our EUI-48 and EUI-64 addresses
 - But also SNAP Protocol Identifiers (IEEE 802.2 LLC extension)
 - ...
- Online list: http://standards-oui.ieee.org/oui/oui.txt
 - Current status (April 2021)
 - Almost 30 thousand OUIs are assigned
 - Huawei pprox 1100, Cisco pprox 1060, Apple pprox 890, Samsung pprox 690, ...
 - TP-Link pprox 160, Technicolor pprox 80, D-Link pprox 60, Zyxel pprox 40, ...
 - More than 17 thousand organizations only have a single OUI

Addressing at L3

IP addresses

- Primary objective is addressing of nodes as a whole
- In spite of that...
 - IP addresses are actually assigned to their network interfaces
 - I.e., individual L3 interfaces of end nodes as well as routers
 - Note that end nodes used to usually have only one IP address
 - But nowadays, **multi-homed** hosts with more IPs are common
- Another observation...
 - Routing algorithms perceive networks as a whole
 - \Rightarrow networks themselves must also be uniquely identified
 - Though two separate network / node identifiers could work
 - Internally structured atomic IP addresses are more practical
 - Otherwise hop-to-hop routing and forwarding would not work

IP Addresses

Requirements on IP addresses

- <u>Globally</u> unique within the whole system of networks
- And internally structured...

Internal components

- Network part (Network ID)
 - Prefix of the whole address
 - I.e., certain part from the beginning
 - Uniquely identifies a given network as a whole
 - Determines affiliation of nodes to a particular network
- Relative part (Host ID)
 - Remaining part of the whole address
 - Uniquely identifies a given node within a given network

Assignment Principles

Observations = rules that must be followed

- Two nodes in the same network...
 - Must have the same network parts
 - And different relative parts
 - So that they can be mutually distinguished
- Two nodes in different networks...
 - Must have different network parts
 - So that we can detect they belong to different networks
 - And as for relative parts, they do not matter
 - They may be the same as well as not

Assignment Principles

Block principle

- (1) **network as a whole** must first be assigned with a whole contiguous **block of addresses**
 - I.e., set of IP addresses belonging to a specific range
 - All with the same prefix (network part)
 - Assignment process must be globally coordinated
 - IANA and regional providers
- (2) only than individual nodes can be given their addresses
 - Of course, from this range
 - Manually or using DHCP or similar protocols

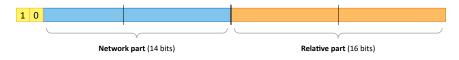
Consequence

- Unused addresses cannot be used by anyone else!
 - This may lead / actually led to unacceptable wasting

IPv4 Addresses

IPv4 addresses

- 4 bytes (32 bits) potentially \approx 4 billion values
 - Which is certainly not much from today's perspective
 - But was initially thought of as generously sufficient
- Notation
 - Four decimal numbers, one for each byte, separated by dots
 - E.g.: 195.113.19.170
- Internal structure: network and relative parts
 - Where the divide between the parts should be located?
 - 3 possible divide placements are possible
 - This gives us Classes A, B and C of IP addresses
 - If more options exist, though, how to recognize them?
 - Since it must be possible just from the IP address itself


Class A

- Divide is positioned after the first byte
 - \approx 128 networks
 - Each with pprox 17 million addresses
- Overall range: 0.0.0.0 127.255.255.255
 - Covers 1/2 of the entire space
- Highest bit is 0
- Suitable for very large networks

Class B

- Divide is positioned after the second byte
 - pprox 16 thousand networks
 - Each with pprox 66 thousand addresses
- Overall range: 128.0.0.0 191.255.255.255
 - Covers 1/4 of the entire space
- Highest bits are 10
- Suitable for medium-sized networks

Class C

- Divide is positioned after the third byte
 - pprox 2 million networks
 - Each with \approx 256 addresses only
- Overall range: 192.0.0 223.255.255.255
 - Covers 1/8 of the entire space
- Highest bits are 110
- Suitable for very small networks

Apparently the available space is not yet fully utilized...

- The rest is covered by Classes D and E
 - They have specific usage and they are internally unstructured

Class D: multicast addresses

- 224.0.0.0 239.255.255.255 (1/16 of the entire space)
- Highest bits are 1110

Class E: reserved for future extensions, but never used

- 240.0.0.0 255.255.255.255 (1/16 of the entire space)
- Highest bits are 1111

Special Addresses

Special addresses

- Certain addresses (even whole ranges) have dedicated usage
 - Basic principle: bit 0 = this, bit 1 = all

Nodes

- Self node: 0.0.0.0
 - Useful when standard unicast address is not yet known
- Node in a local network: 0.X.Y.Z, 0.0.X.Y, or 0.0.0.X

Networks

Network as a whole: X.0.0.0, X.Y.0.0, or X.Y.Z.0

Broadcasts

- Targeted broadcast: X.255.255.255, X.Y.255.255, or X.Y.Z.255
- Limited broadcast: 255.255.255.255

Special Addresses

Loopback

- 1 A-block: 127.X.Y.Z
 - 127.0.0.1 is in particular usually used
 - But the whole block is in fact available

Link local addresses

- 1 B-block: 169.254.X.Y
 - Auto-configuration when standard address cannot be obtained

Private addresses

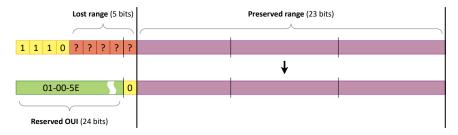
- 1 A-block: 10.X.Y.Z
- 16 B-blocks: 172.16.X.Y 172.31.X.Y
- 256 C-blocks: 192.168.0.X 192.168.255.X

Multicast transmissions

- Intended recipients are all nodes in a given group
 - This group is predefined or created dynamically on demand
 - IGMP (Internet Group Management Protocol)
- Certain blocks are assigned and approved by IANA
 - https://www.iana.org/assignments/multicast-addresses/
 - Current status (April 2021)
 - -~pprox 60 static multicast addresses (beside other)
- Class D addresses are used
 - Start with 1110 and they are internally unstructured
 - I.e., there is no network / relative part

Static groups (well known groups)

- Node membership is fixed and given in advance
- Range: 224.0.0.0 224.0.0.255 (≈ 256 addresses)
 - Reserved for routing and other low-level protocols
 - Topology discovery, maintenance, ...
 - 224.0.0.1: all hosts in a given network
 - 224.0.0.2: all routers in a given network
 - ...


Dynamic groups

- Global: 224.0.1.0 238.255.255.255 (≈ 252 million)
 - Group scope can span multiple different networks
- Local: 239.0.0.0 239.255.255.255 (≈ 17 million)
 - Group scope is limited to a particular network

Translation of multicast addresses (IP \rightarrow EUI-48)

- L3 multicast IP address
 - 4 bits at the beginning are fixed ⇒ only 28 bits are relevant
 - Unfortunately, only the last 23 bits can be considered
 - And so the remaining 5 bits in the middle must be truncated
 - \Rightarrow 32 different addresses are mapped to the same value!
- L2 multicast EUI-48 address
 - 00-00-5E reserved OUI is used (24 bits)
 - Of course, altered to 01–00–5E so that M bit = 1
 - The 25th bit is set to 0
 - The remaining 23 bits are taken from the original IP address

Translation of multicast addresses (IP \rightarrow EUI-48) (cont'd)

Allocation Strategies

Basic principle

- Whole blocks of addresses are / must be assigned to networks
- These blocks correspond to our classes
 - One Class A block pprox 17 million individual addresses
 - One Class B block \approx 66 thousand individual addresses
 - One Class C block pprox 256 individual addresses

Strategies

- Formerly: one closest larger block principle
 - E.g.: 1 Class B address for 1000 requested individual addresses
 - Extremely wasteful approach...
- Later: multiple closest smaller blocks principle
 - E.g.: just 4 Class C addresses for the same requested number
 - Better, but still not enough...

IPv4 Address Exhaustion

Temporary mitigating solutions

- 1985: Subnetting
 - One larger network is divided into separate sub-networks
- 1988: Allocation mechanism
 - One larger block → more smaller blocks principle
- 1993: CIDR (Classless Inter-Domain Routing)
 - Original concept of IP address classes is entirely dropped
- 1994: Private addresses
 - Usage of private IPv4 addresses instead of globally unique ones
 - Requires NAT (Network Address Translation)

Permanent solution

- 1995: IPv6 protocol and its IPv6 addresses
 - 16 bytes instead of 4 bytes ⇒ significantly larger address space

Subnetting

Motivation

- One closest larger block allocation principle is used
- \Rightarrow inner block address space may not be used efficiently
 - Since unused addresses cannot be used by anyone else
 - This in fact led to unacceptable wasting
- Objective
 - Higher utilization of addresses within allocated blocks
- Principle
 - Division of larger blocks into smaller ones
 - In terms of decomposition of networks into subnetworks

Subnetting

Subnetting

- Standard network is internally divided into subnetworks
 - Standard means Class A, B, or C block
- Divide position is shifted to the right (toward lower bits)
 - By one or more bits as needed
- \Rightarrow divide position must be somehow remembered
 - Since the traditional class boundaries will no longer work
 - And we still must be able to recognize IP address parts
 - Which will now be impossible without extra information
- Netmask (subnet mask) was proposed for this purpose
 - Written as an ordinary IP address
 - Contains bits 1 in the intended network part, bits 0 elsewhere
 - E.g.: 255.255.0.0 as an equivalent of Class B network

Subnetting: Example

Assume we have a Class C network 195.113.19.0

• Permits \approx 256 addresses, netmask would be 255.255.255.0

It can be divided into the following subnetworks

- Subnetwork 195.113.19.0 with netmask 255.255.255.128
 - I.e., 195.113.19.0000000_B, netmask 255.255.255.10000000_B
 - Divide shifted by +1, allows \approx 128 individual addresses
- Subnetwork 195.113.19.128 with netmask 255.255.255.192
 - I.e., 195.113.19.10000000_B, netmask 255.255.255.11000000_B
 - Divide shifted by +2, allows \approx 64 individual addresses
- Subnetwork 195.113.19.192 with netmask 255.255.255.192
 - I.e., 195.113.19.11000000_B, netmask 255.255.255.11000000_B
 - Divide shifted by +2, allows \approx 64 individual addresses

Subnetting

Observations

- Both routers and end nodes must support the whole concept
 - Which is not a big deal since...
 - We are the owners of the infrastructure within the network
 - End nodes can easily be adapted via software updates
- Subnetting is always limited to a given standard network only
 - Its impact must not be visible from outside
 - I.e., network as a whole still must act as an atomic unit
 - And so global routing and forwarding are not impacted at all

Supernetting

Motivation

- More closest smaller blocks allocation principle is used
- \Rightarrow size of **routing tables** increases
 - Since each individual network must have its own record
 - Routing tables therefore became unacceptably large
 - As well as routing tables lookup slowed down
- Objective
 - Reducing overall size of routing tables in backbone routers
 - And so with no impact on depletion of IP addresses themselves
- Principle
 - Aggregation of smaller blocks into larger ones
 - In terms of records in routing tables

Supernetting

Supernetting (Aggregation)

Several adjacent aligned blocks are merged together

- They must share the same prefix of their network IDs
- Entire address space defined by this prefix must be covered
- All the original blocks must have the same routing direction
- Divide position is shifted to the left (toward higher bits)
- ⇒ once again, netmasks are needed

Observations

- Supernetting is entirely transparent
 - Contrary to subnetting...
 - And so all routers within the system must support the concept

Supernetting: Example

Assume we have the following individual Class C networks

- Or just one network with the following address blocks...
 - Target network 195.113.16.0 (i.e., 195.113.00010000B.0)
 - Target network 195.113.17.0 (i.e., 195.113.00010001_B.0)
 - Target network 195.113.18.0 (i.e., 195.113.00010010_B.0)
 - Target network 195.113.19.0 (i.e., 195.113.00010011_B.0)
- They all have the same routing direction

Their routing records can thus be grouped together

- Target network 195.113.16.0 with netmask 255.255.252.0
 - I.e., 195.113.00010000_B.0, netmask 255.255.11111100_B.0
 - Divide shifted by -2

Regional Registries

Original arrangement

- Entire address space was managed by IANA
 - I.e., individual blocks were directly assigned to end users
 - In terms of Class A, B, or C blocks
- Involved agenda became far too extensive and demanding
 - \Rightarrow individual regional registries were gradually founded
 - And related agenda correspondingly transferred

Regional Internet Registry (RIR)

- **Organization** managing **allocation** and **registration** of Internet resources within a given region
 - IP addresses and Autonomous System Numbers
- 5 individual RIRs around the world exist nowadays
 - Each obtains larger blocks of IP addresses from IANA

Regional Registries

Regional registries

- 1992: RIPE NCC (Réseaux IP Européens Network Coordination Centre)
 - Europe, Central Asia, Russia, West Asia
- 1993: APNIC (Asia Pacific Network Information Centre)
 - South, East, and Southeast Asia, Oceania
- 1997: ARIN (American Registry for Internet Numbers)
 - USA, Canada, Antarctica, ...
 - Operating in fact since 1991
- 1999: LACNIC (Latin America and Caribbean Network Information Centre)
 - Latin America, Caribbean
- 2004: AFRINIC (African Network Information Centre)
 - Africa

Regional Registries

CIDR

Motivation

• Allocation of address blocks is still not flexible enough

- Because of coarse granularity of possible block sizes
- Especially for networks of mid-sized organizations
 - $-\,$ Class C with \approx 256 addresses is too small
 - $-\,$ Class B with \approx 66 thousand addresses is too large
- Subnetting and supernetting both helped...
 - But transparent solution is needed so that the entire address space can be exploited efficiently enough (not just parts of it)
- Objective
 - Hierarchical allocation of address blocks with arbitrary sizes
 - So that block sizes can better match projected needs
- Principle: fully classless routing mechanism

CIDR

CIDR (Classless Inter-Domain Routing)

• Concept of classes is now definitely abandoned

- Except for Classes D (multicast addresses) and E (future use)
 - Their meaning and ranges were preserved untouched
 - Including the meaning of other special addresses

• Divide can now be placed anywhere

- I.e., leading bits no longer determine anything
- And so divide position must once again be explicitly declared
 - Though analogous to netmasks...
 - ... different and more convenient notation was introduced
- CIDR Prefix (or simply prefix)
 - Number of bits forming the network part
 - Written as a decimal number after the slash symbol at the end
 - E.g.: 172.217.0.0/16 as an equivalent of former Class B network

CIDR: Example

Assume we have an allocated block 195.113.19.0/24

- It can internally be divided into the following networks
 - Network A: 195.113.19.0/25 (i.e., 195.113.19.00000000_B/25)
 - Network B: 195.113.19.128/26 (i.e., 195.113.19.10000000_B/26)
 - Network C: 195.113.19.192/26 (i.e., 195.113.19.11000000_B/26)

Detailed routing information...

- Can remain entirely undisclosed
 - 195.113.19.0/24 for all our networks
- As well as intentionally fully or partially exposed if needed
 - 195.113.19.0/25 for network A
 - 195.113.19.128/25 for aggregated networks B and C

CIDR

Observations

CIDR is deployed globally and fully transparent

- I.e., its scope is not limited just to a particular internetwork
 - As was the case of subnetting alone
- Meaning of former classes can be preserved
 - Class A / B / C blocks correspond to CIDR prefixes 8 / 16 / 24
 - By the way, individual addresses have CIDR prefix 32
- However, they can also be transparently decomposed...
 - E.g., 172.217.23.0/24 is a CIDR block with prefix 24
 - $-\,$ I.e., it provides \approx 256 individual addresses
 - As if it was just an ordinary Class C block
 - But it is not, since it is just a part of a former Class B block
 - Such a thing would not be possible without CIDR
- As a consequence, entire address space is treated uniformly

CIDR

Observations (cont'd)

- Ideas of both subnetting and supernetting are supported
 - Larger blocks can be divided into smaller ones
 - In terms of decomposition of networks
 - So that the address space can be utilized more efficiently
 - Because block sizes can be chosen with finest granularity

Smaller blocks can be aggregated into larger ones

- In terms of grouping of routing records
- So that size of routing tables can hopefully be reduced
- And so detailed routing information can remain localized
- Without needing it to be disseminated globally
- Allows for hierarchical assignment of address blocks
 - And so the whole hierarchy of registries
 - Which also helps with the growing agenda

Hierarchy of Registries

Hierarchy levels

- CIR (Central Internet Registry) = IANA
- RIR (Regional Internet Registry)
 - RIPE NCC, APNIC, ARIN as well as later on LACNIC and AFRINIC
 - Later on liaised through NRO (Number Resource Organization)
 - Informal body coordinating matters of global importance
- Optional NIR (National Internet Registry)
 - National allocators in larger countries only
 - APNIC region: China, India, Japan, Korea, Indonesia, ...
 - LACNIC region: Brazil, Mexico
- LIR (Local Internet Registry)
 - ISPs, larger enterprises, or academic institutions
 - Membership in a given RIR / NIR is required

Example: end node 195.113.19.170

- IANA
 - 195.0.0/8 (≈ 17 million addresses) → RIPE NCC
- RIR: RIPE NCC
 - 195.113.0.0/16 (\approx 66 thousand addresses) \rightarrow Cesnet
 - Autonomous System AS2852
 - 195.113.0.0/18 (\approx 16 thousand) \rightarrow Charles University
 - Publicly invisible as for routing records
- Internal invisible decomposition
 - ...
 - 195.113.18.0/23 (≈ 512 individual addresses)
- Target end node
 - 195.113.19.170/32 \rightarrow nosql.ms.mff.cuni.cz

Allocation process

- IANA
 - Delegates /8 blocks to individual RIRs
 - Certain blocks are assigned to particular organizations directly
 - E.g.: US Postal Service, US Department of Defense, ...
 - Online database
 - https://www.iana.org/assignments/ipv4-address-space/
 - Contains only records for /8 blocks
- RIRs / NIRs
 - Delegate parts of allocated blocks to subordinated LIRs
- LIRs
 - Assign smaller blocks to end users
 - Often singleton addresses only
 - Consequence: addresses became dependent on particular LIRs

IANA top level database for /8 blocks

- Types of records
 - Allocated
 - Delegated entirely to a specific RIR or other organization
 - Legacy
 - Formerly allocated by IANA prior to the foundation of RIRs
 - Later on transferred to and administered by individual RIRs
 - Reserved
 - Designated for **specific purposes** (e.g., loopback, ...)
 - Unallocated
 - Not yet allocated or reserved and so available for assignment

Current situation (May 2021)

- Distribution of /8 blocks between individual RIRs
 - ARIN (93), APNIC (50), RIPE NCC (40), LACNIC (10), AFRINIC (6)
 - Class D multicast addresses (16), Class E future use (16), ...
- Overall allocation of /8 blocks
 - 2011: IANA delegated the very last available blocks
 - One to every individual of all 5 RIRs
 - \Rightarrow there is **no longer any unallocated /8 block**
- Situation in RIPE NCC
 - 2019: the very last block from the pool was allocated
 - Only recovered addresses via a waiting list are now available
 - I.e., blocks returned by former LIR holders
 - Currently \approx 320 thousand individual addresses available

Private Addresses

Motivation

- Each node must have a globally unique IP address
 - I.e., address distinct within the whole system of networks
 - Otherwise routing will not work
 - Number of available addresses is still decreasing, though
 - Despite all the other already discussed mitigating measures
- Idea
 - Nodes in a private network can use private addresses instead
 - These private addresses will then be translated to public ones
 - In order to ensure they do not leave a given private network
- Two basic translation mechanisms are available
 - NAT (Network Address Translation)
 - L7 Gateways

Private Addresses

Observations

• Any range of addresses could theoretically be used

- However, it is not desirable and correct
- In particular, when such addresses would (even accidentally) leak out from a given private network...
 - It will not be possible to remedy the situation later on
 - Simply because other routers will not be able to detect them
- Therefore dedicated addresses should be used
 - 1 Class A block: 10.X.Y.Z
 - I.e., 10.0.0/8
 - 16 Class B blocks: 172.16.X.Y 172.31.X.Y
 - I.e., 172.16.0.0/12
 - 256 Class C blocks: 192.168.0.X 192.168.255.X
 - I.e., 192.168.0.0/16

Network Address Translation

Network Address Translation (NAT)

- Generic translation mechanism
 - Allows not just to spare public IP addresses
 - Probably the most successful mitigating solution
- Deployment
 - Inner private and outer public networks
 - Separated by a router implementing the NAT mechanism
- Disadvantages
 - Decreases the overall throughput
 - May not always work
 - Since the translation primarily works at L3 / L4 layers
 - Therefore it is incapable of modifying L7 data which may also contain the same addresses otherwise subjected to translation

NAT Principle

Delivery mechanism

- Outgoing transmission
 - (1) inner node sends an IP datagram in a standard way
 - Source address is set to private IP_s address of a given node
 - Destination address is IP_T address of the intended recipient
 - (2) this datagram is captured by the router and NAT is applied
 - <u>Source</u> address is replaced with appropriate public IP_P address
 - (3) modified datagram is then sent to the public network
 - As if its sender was actually the router itself
- Incoming transmission
 - (4) response from the target recipient is delivered back to IP_P
 - (5) this response is captured by our router and translated
 - <u>Destination</u> address is replaced with the original IPs
 - (6) modified response is internally sent to our node

Static and Dynamic NAT

Static NAT

- Mapping table is fixed and given in advance
 - Each node will always be mapped to the same public address
 - And so individual bindings are predictable in advance
- Inner nodes are always reachable from outside
 - In terms of incoming transmissions initiated from outside
 - I.e., not in terms of responses to our outgoing transmissions
 - Since these are always deliverable
- Disadvantage
 - Sizes of both public and private blocks must be identical
 - And so there is no saving effect
 - At least unless certain inner nodes shall not communicate at all

Static and Dynamic NAT

Dynamic NAT

- Records in mapping tables are added / removed dynamically
 - I.e., individual bindings are created on demand
 - Only when they are really needed (new outgoing connection)
 - And will only exist for a limited period of time
 - Assigned address may always be different for a given node
 - And so it cannot be determined in advance
- Inner nodes are not (automatically) reachable from outside
 - Unless their bindings already exist
 - This may be treated as a disadvantage
 - As well as on the contrary...
 - Since NAT can therefore act as a kind of firewall

Not all inner nodes must necessarily have their bindings

And so we can really save public addresses

Port Address Translation

Network Address and Port Translation (NAPT)

- Also abbreviated just as Port Address Translation (PAT)
- Motivation
 - Suitable when we do not have as many public addresses as nodes in our private network
 - This often means we may only have just a single public address

• Principle

- All inner nodes are mapped to the same public address
- Individual transmissions are distinguished via different ports

PAT Principle

Delivery mechanism

- Outgoing transmission
 - (1) inner node sends an IP datagram in a standard way
 - Source transport private address is IP_S:port_S
 - Destination transport address of recipient is IP_T:port_T
 - (2) this datagram is captured by the router and PAT is applied
 - Source address is replaced with appropriate public IP_P:port_P
 - Datagram TCP / UDP payload is also accordingly translated
 - (3) modified datagram is then sent to the public network
 - As if its sender was actually the router itself
- Incoming transmission
 - Steps (4), (5), and (6) for response delivery are analogous...

PAT Observations

Dynamic character

- Created bindings always exist only for a limited period of time
 - And so responses can only be delivered during this window
- Depends on a particular L4 protocol and its implementation
 - UDP: 30 300 seconds
 - TCP: 30 60 minutes

PAT alternatives

- How the assigned public IP_P:port_P address is to be resolved?
 - It can depend solely on the source private IP_S:port_S address
 - Full / IP Restricted / Port Restricted Cone NAT
 - As well as even on the intended destination IP_T:port_T address

Symmetric NAT

Incoming transmissions from which nodes will be accepted?

PAT Alternatives

Full Cone NAT

- Assigned public IP_P:port_P depends...
 - Solely on private IP_S:port_S address
 - I.e., assigned public address remains the same even for further connections to possibly different intended destinations
- Responses to IP_P:port_P are accepted from...
 - All IP addresses and all their ports without any limitation
- IP Restricted Cone NAT (or just Restricted Cone NAT)
 - Assignment rules are the same
 - Responses to IP_P:port_P are accepted only from...
 - Contacted IP addresses and still all their ports

PAT Alternatives

Port Restricted Cone NAT

- Assignment rules are the same once again
- Responses to IP_P:port_P are accepted only from...
 - Contacted IP addresses and only from contacted ports

Symmetric NAT

- Assigned public IP_P:port_P depends...
 - Both on private IP_S:port_S and destination IP_T:port_T addresses
 - I.e., assigned public address (in particular its port) changes every time a different destination is requested
- **Responses** to IP_P:port_P are accepted only from a given single...
 - Contacted IP address and its only contacted port

Motivation

- IPv4 exhaustion problem
 - Temporary mitigating measures worked
 - And actually worked better than it was perhaps anticipated
 - Since the first exhaustion threat appeared around 1990
 - And IPv4 is still the primary approach even after 30 years
 - Nevertheless, permanent solution was needed
 - Formerly intended Class E was not found realistically applicable
 - Since IPv4 would need to be entirely redesigned
 - Together with dozens of other related protocols (OSPF, RIP, ...)
 - And so an entirely new solution was introduced
- IPv6 protocol and addresses
 - Primarily larger address space
 - But also several other major improvements and changes

IPv6 addresses

Differences to IPv4

More address hierarchy levels

- Allows for better aggregation
- And so smaller and localized routing tables

Easier assignment of addresses

- Including autoconfiguration options
- Network interface can have several unicast addresses at a time

Introduction of anycast addresses

- And removal of broadcast addresses
- Significantly larger address space
 - 128 bits (16 bytes) instead of just 32 bits (4 bytes)
 - Theoretically $\approx 3.4 \times 10^{38}$ individual addresses
 - Compared to just $pprox 4.3 imes 10^9$ in case of IPv4

IPv6 addresses

- Notation
 - Eight 2-byte-long words, written as 4-digit hexadecimal numbers, mutually separated by colons
 - E.g.: 805b:2d9d:dc28:0000:0000:fc57:d4c8:1fff
- Abbreviations
 - Suppressed leading zeros
 - Leading zeros in individual words are truncated
 - E.g.: 805b:2d9d:dc28:0:0:fc57:d4c8:1fff
 - Zero-compressed
 - One adjacent group of zero words is entirely omitted
 - E.g.: 805b:2d9d:dc28::fc57:d4c8:1fff
 - Mixed notation for embedded IPv4 addresses
 - E.g.: 0:0:0:0:0:0:0:212.200.31.255 or ::212.200.31.255

Types of addresses

- Unicast addresses
 - Allow for standard communication with individual nodes
- Multicast addresses
 - Allow for communication with all nodes in a given group
 - Always start with ff/8 ($11111111_B...$)
 - Can be used to simulate traditional broadcasts, too
- Anycast addresses
 - Allow for communication with one node from a given group

Types of unicast addresses

- Global Unicast
 - Globally unique public individual addresses
- Local Unicast (Unique Local Addresses) (ULA)
 - Private addresses unique within all subnets of a given site
 - Labeled with such site and subnet identifiers
 - Therefore suppressed chances of accidental leak outs
 - Always start with fc00/7 (1111110_B...)
- Link Local
 - Private addresses unique within a given individual subnet
 - Allow for **autoconfiguration** based on MAC addresses
 - Always start with fe80/10 (1111111010_B...)
- Site Local
 - Private addresses unique within all subnets of a given site
 - Should no longer be used

Global individual addresses

- Three components
 - Site identifier
 - Identifies a particular site = group of related networks
 - Subnet identifier
 - Identifies a particular network within a given site
 - Interface identifier
 - Identifies a particular node within a given subnet
- Routing mechanisms
 - Public topology
 - Routing algorithms in public Internet only work with sites
 - Site topology
 - Internal site topology is concealed to the public Internet

Addressing at L4

Port numbers

- Assigned to access points between L4 and L7 in order to allow end-to-end communication of individual application entities
 - Within a given end node
 - Separately for each transport protocol (TCP, SCTP, DCCP, UDP)
 - Yet in practice usually the same for all these protocols
- Necessary for both incoming and outgoing directions
- Allow for the identification of transport connections
 - Tuple (sender IP₁:port₁, protocol, recipient IP₂:port₂)
 - Target of the outgoing transmission (IP₂:port₂, protocol)
 - Source of the incoming transmission (IP₁:port₁, protocol)
- Requirements
 - Ports must be unique, abstract, implicit and static

Ports

Port numbers

- 16-bit long integer numbers: permitted values 0 65535
- System and registered ports maintained by IANA
 - Internet Assigned Numbers Authority
- Online table of port numbers and service names
 - https://www.iana.org/assignments/service-names-port-numbers/

Types of ports

- System Ports (Well Known Ports) (0 1023)
 - Assigned to one purpose (usually system-oriented services)
 - Should not be used for any other purpose
 - Examples
 - FTP (21), SSH (22), SMTP (25), DNS (53), HTTP (80),
 POP3 (110), NTP (123), IMAP (143), HTTPS (443), ...

Ports

Types of ports (cont'd)

- User Ports (Registered Ports) (1024 49151)
 - Assigned to one purpose again
 - But may freely be used for any other purpose
 - Examples
 - Registered: MySQL (3306), PostgreSQL (5432), Redis (6379), Neo4j (7474), MongoDB (27017), ...
 - Not registered: Riak (unasigned 8087 and 8098), Cassandra (assigned 7000), ...
- Dynamic Ports (Private Ports) (49152 65535)
 - Not assigned, available for unrestricted usage
 - Usually for outgoing transmissions

Addressing at L7

Requirements and expectations

- Various kinds of objects need to be identified at L7
 - Web pages, files, e-mail addresses, publications, ...
- Two aspects actually need to be covered
 - Identification
 - So that objects of one kind can mutually be distinguished
 - At least locally (within a given end node) but also globally
 - Location
 - In terms of a particular node where such objects can be found
 - It make sense to logically decouple both these aspects
- Each application may have its own proprietary naming system
 - Yet it makes sense to pursue unification and coordination
 - As well as to recycle approaches that already exist

URI Framework

Uniform Resource Identifier (URI)

- Generic, federated and extensible naming system
 - Allows to identify basically anything
 - Including real-world objects (people, places, concepts, ...)
- Types of identifiers
 - Uniform Resource Locator (URL)
 - Web resource reference (web address)
 - Specifies particular location as well as retrieval mechanism
 - Uniform Resource Name (URN)
 - Globally unique persistent resource identifier
 - Does not imply any location, not widely used
 - Uniform Resource Characteristics (URC)
 - Description of meta data about URLs or URNs (citations, ...)
 - Never standardized, not even implemented

URI Examples

Sample URLs

http scheme (Hypertext Transfer Protocol)

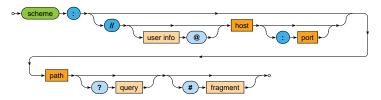
- Addresses of web pages or other resources
- E.g.: http://www.mff.cuni.cz/en/index.php?page=people#5460
- ftp scheme (File Transfer Protocol)
 - Paths to files or directories accessible using the FTP protocol
 - E.g.: ftp://svoboda:password@ulita.ms.mff.cuni.cz/
- file scheme
 - Host-specific paths on local or remote file systems
 - E.g.: file:///home/svoboda/NSWI090/Lecture-03-Layers.pdf
- mailto scheme
 - E-mail addresses including additional parameters
 - E.g.: mailto:svoboda@ksi.mff.cuni.cz?subject=NSWI090

URI Examples

Sample URLs

- tel scheme
 - Telephone numbers
 - E.g.: tel:+420-951-554-250
- sip scheme (Session Initiation Protocol)
 - Participants of multimedia sessions such as voice calls (VoIP, ...)
 - E.g.: sip:martin.svoboda@mff.cuni.cz
- jdbc scheme (Java Database Connectivity)
 - Connections to relational databases from Java applications
 - E.g.: jdbc:postgresql://nosql.ms.mff.cuni.cz:5432/database

URI Examples


Sample URNs

- isbn namespace (International Standard Book Number)
 - Printed or electronic books
 - E.g.: urn:isbn:9780132126958
- issn namespace (International Standard Serial Number)
 - Printed or electronic serial publications (journals, ...)
 - E.g.: urn:issn:0302-9743
- ietf namespace (Internet Engineering Task Force)
 - IETF family of RFC, STD, FYI, and BCP documents
 - E.g.: urn:ietf:rfc:2648
- iso (International Organization for Standardization)
 - Standards and other technical specifications
 - E.g.: urn:iso:std:iso-iec:9075:-1:ed-5:en

URI Structure

Generic syntax

- May further be restricted by particular schemes
- Syntax diagram (for context-free grammars)

- Green boxes: literals
 - Expected to be replaced with a particular value
- Blue boxes: constants (preserved as they are)
- Orange boxes: non-terminals
 - Unfolded to more complicated fragments

URI Schemes

URI components

- Scheme: case-insensitive scheme name (usually lower-case)
- Authority
 - User info: authentication tokens such as name and password
 - Deprecated for security reasons
 - Host: domain name, IP address, or a different registered name
 - Port: transport layer port
- Path: usually hierarchical path with individual segments
- Query: usually parameters in a form of attribute / value pairs
- Fragment
 - Reference to a secondary resource related to the primary one
 - E.g.: anchors in HTML pages, classes in OWL ontologies, ...

URI Framework

Both schemes and namespaces are registered with IANA

- URI schemes
 - https://www.iana.org/assignments/uri-schemes/
 - Current status (April 2021)
 - -~pprox 100 permanent, 230 provisional, and 10 historical schemes
- URN namespaces
 - https://www.iana.org/assignments/urn-namespaces/
 - Current status (April 2021)
 - -~pprox 70 namespaces

Internationalized Resource Identifier (IRI)

- Just an extended version of the traditional URIs
- Allows to use most of Unicode characters
 - And so Chinese, Japanese, Korean or other national characters

Lecture Conclusion

L2: MAC addresses

- EUI-48 and EUI-64 numbering systems, OUI, M and X bits
- L3: IPv4 addresses
 - Network and relative parts
 - Classes A, B, C, D, and E
 - Special and multicast addresses
 - Subnetting and supernetting
 - CIDR blocks and prefixes
 - RIR, NIR, and LIR registries
 - Private addresses and NAT / PAT translation

Lecture Conclusion

L3: IPv6 addresses

- Site, subnetwork, and interface parts
- Types of addresses
- L4: port numbers
 - System / User / Dynamic ports
- L7: URI identifiers
 - URI (IRI) framework: URL locators, URN names