NSWI090: Computer Networks

http://www.ksi.mff.cuni.cz/~svoboda/courses/242-NSWI090/

Lecture 3

Layers

Martin Svoboda martin.svoboda@matfyz.cuni.cz

5. 3. 2025

Charles University, Faculty of Mathematics and Physics

Lecture Outline

Layered network models

- Basic principles
 - Layers
 - Horizontal / vertical communication
 - Protocols
- Models and architectures
 - OSI model
 - TCP/IP architecture
- Layers and tasks they are supposed to solve

Layered Models

Motivation and objectives

- (Computer) networks are very complex
 - It make sense to decompose the problem into smaller parts
 - Similarly as in case of implementation of large software systems
- We will work with hierarchy of layers
 - I.e., instead of assuming arbitrary modules, our layers are strictly vertically ordered
- Each layer focuses on particular tasks
 - Different layers at different levels of abstraction
 - Sending of individual bits at the lowest physical layer...
 - ... usage of complex services at the highest application layer
 - Lower layer offers services to the higher one
 - Higher layer uses services of the lower one

Layered Models

Basic principles of layers

- Only public interface is defined
- Internal details are intentionally hidden
 - ⇒ layers can be independent on each other
 - As for the implementation, though exceptions exist
 - ullet \Rightarrow **alternative approaches** can be deployed
 - ⇒ flexibility is increased
 - Since each layer can be treated and solved separately
 - And new implementations can appear seamlessly

Questions

- How many layers do we actually need?
- What tasks should they perform?
- What interface should they provide?

Horizontal Communication

Horizontal communication = within a layer / across nodes

- I.e., communication of the corresponding entities at <u>the same</u> <u>layer</u> across <u>different nodes</u> or active network elements
 - E.g.: network interfaces at L2, nodes at L3, processes at L7, ...

Observations

- Can never happen across layers
 - Appropriate counter-party entity is always at the same layer
- Multiple transmissions can occur at the same time
- Involved entities must follow rules defined by protocols

Horizontal Communication

Observations (cont'd)

- Asynchronous character
 - Individual bits / blocks of data are send by the sender
 - We then need to wait for the response
- Usually virtual character only
 - Just L1 physical layer actually transfers something!
 - All higher layers provide only illusion (though very good) of such direct horizontal communication
 - In reality, vertical communication takes place...

Vertical Communication

Vertical communication = within a node / across layers

 I.e., communication of <u>different layers</u> within <u>the same node</u> or active network element

Principle

- Sender perspective
 - Data to be sent is prepared and passed to the lower layer
- Recipient perspective
 - Received data is unpacked and passed to the higher layer

Observations

- Individual layers cannot be skipped
 - Only directly adjacent layers can communicate with each other

Communication Protocols

Communication protocol

- Specification according to which two or more entities communicate with each other
 - Must be given in advance, implementation independent, ...
- At least the following must be defined...
 - Public interface
 - For the purpose of the vertical communication
 - Communication rules
 - For the purpose of the horizontal communication
 - Define permitted / expected actions of the individual entities in situations that can occur
 - Technically using state diagrams or verbal descriptions
 - Data format
 - Internal structure and semantics of the individual components

Communication Protocols

Observations

- Always within a single layer
 - Never span two or more layers at a time
- Multiple protocols often exist within a given layer
 - Can be mutually alternative...
 - I.e., perform the same tasks differently
 - E.g.: TCP and UDP at L4
 - Can be mutually complementary...
 - I.e., perform different tasks
 - E.g.: SMTP and HTTP at L7
- They can even be used concurrently within a given layer
 - We must be able to distinguish between them

Communication Protocols

Protocol Data Unit (PDU)

- Unit of data transmitted among the peer entities
 - Different names (frames, cells, packets, ...)
- Internal structure
 - Header: sender / recipient address, ...
 - Body: useful data (payload) provided by the higher layer
 - Sometimes also footer
- MTU (Maximum Transmission Unit)
 - Maximal permitted payload size
- Questions and tasks
 - Necessary metadata pieces in header / footer
 - Minimal / maximal block sizes
 - Coexistence of multiple protocols side by side

Models and Architectures

Network model

- Conceptual model describing how a network should operate
 - Number of layers
 - Tasks to be solved
 - And assignment of these tasks to the individual layers
 - Services to be provided
 - Connection-oriented / connectionless, reliable / unreliable, ...

Network architecture

- Particular implementable and implemented network model
 - Everything above + the following...
 - Definition of protocols

Models and Architectures

ISO OSI model (Open Systems Interconnection Model)

- Also denoted as Reference Model
- Originated in the world of communications
 - Preference of connection-oriented and reliable transmissions with QoS support
- 7 layers

TCP/IP <u>architecture</u> (Internet Protocol Suite / Stack)

- Originated in the world of computers
 - Preference of connectionless and unreliable transmissions over the Best Effort principle
- 4 layers

...

ISO OSI Model

Lower layers

- L1: Physical Layer
 - Sending of individual bits through a physical medium
- L2: Data Link Layer
 - Delivery of blocks of data within a local network
- L3: Network Layer
 - Routing and forwarding of packets across a system of networks

Adaptation layer

- L4: Transport Layer
 - End-to-end communication of individual entities within nodes

ISO OSI Model

Higher layers

- L5: Session Layer
 - Management of sessions and organization of data exchange
- L6: Presentation Layer
 - Automatic conversions and serialization of structured data
- L7: Application Layer
 - Sending of messages and usage of user-oriented services

TCP/IP Architecture

Network layers

- Network Interface Layer (Link Layer)
 - L1+L2
- Network Layer (Internet Layer)
 - L3
- Transport Layer
 - L4
- Application Layer
 - L7 and selected aspects of L5 and L6

Physical Layer

L1: Physical layer

- Main task: transmission of individual bits through a given physical medium
 - Does not understand the content being transmitted
 - Treats all bits equally, cannot distinguish between them

Transmission media

- Available options (guided / unguided)
 - Metallic: twisted pairs, coaxial cables
 - Optical: optical fibers
 - Wireless
- Real-world paths are not optimal
 - Attenuation, distortion, interference, ...
 - ⇒ transmission potential is always limited

Physical Layer

Signal transmission

- Certain analog quantity is transmitted in all the cases
 - Metallic: electrical signal
 - Optical: light
 - Wireless: radio electromagnetic waves
- Interpretation can be analog / digital

Other aspects to be solved

Coding, modulation, timing, synchronization, bandwidth, ...

L2: Data Link layer

- Main task: sending of blocks of data between network interfaces of particular nodes within a local network
 - Illusion of a direct path between the sender and recipient
 - I.e., all the nodes are mutually visible and reachable
 - Reality can be different, though
 - I.e., even a local network can have a complex internal structure
 - However, sender does not need to be aware of it
 - Everything is / can be and typically will be sent to everyone

Internetworking

- Active network elements
 - Bridges, switches
 - Controllers in bigger networks may also be needed
- Internal mechanisms
 - Store&Forward, Cut-Through

Logical topologies

- Describe the internal logical structure of a network
 - Defines how data flows within a network
 - May differ from the physical topology at L1
- Approaches
 - Bus, star, ring, mesh, hypercube, ...

Addresses and addressing

- Physical address (MAC / HW / hardware address)
 - Allow for the identification of the intended recipient
 - So that the recipient can be found and data delivered
 - So that the recipient can actually recognize its data
 - Must be unique within a given network
- Questions
 - Internal structure
 - Assignment mechanisms
- Example: Ethernet, Wi-Fi, Bluetooth, ...
 - EUI-48 (originally MAC-48) or newer EUI-64
 - E.g.: FC:77:74:19:41:1E

Filtering and forwarding

- Mechanisms allowing to find and reach the intended recipient
 - Otherwise everything would need to be sent in all directions
- Implemented in bridges and switches

Ensuring transparency

- Control signals (metadata) need to be separated from the useful payload
- Techniques
 - Escaping, framing, stuffing

Enabling block transmissions (framing)

- Sender perspective
 - Constructed PDU (e.g., Ethernet frame) is simply passed to L1
 - MTU depends on the particular technology
- Recipient perspective
 - Stream of bits (or other symbols) is received at L1
 - Frames need to be correctly recognized and interpreted
 - Start of a block
 - end / length of a block

Cooperation of L1 and L2

 Extra bits (bytes, ...) may intentionally be added to help with synchronization or other aspects solved at L1

Shared medium access methods

- Shared medium
 - Multiple nodes share the same transmission path
 - Only one participant can transmit at a moment
- Access control methods
 - Determine particular rules
 - Based on a competition, ...

Data link layer decomposition

- Shared media were not originally assumed by ISO OSI
- Solution
 - Lower MAC sublayer (Media Access Control)
 - Higher LLC sublayer (Logical Link Control)

L3: Network layer

- Main task: hop-to-hop routing and forwarding of packets across a system of interconnected networks to the target node of the final intended recipient
 - We are aware of the existence of multiple networks as well as the way they are mutually interconnected
 - Or at least to a certain extent
 - Even the sender itself must think about the first steps of routing
 - Packets are delivered through individual routers, one by one

Internetworking

- Active network elements
 - Routers, ...

Addresses and addressing

- Requirement
 - Each node must have a globally unique address
 - All nodes within a network must share the same prefix
 - Since routing can only work at a level of whole networks
- Questions and tasks
 - Internal structure
 - Allowing to easily resolve membership of a node in a network
 - Assignment of blocks of addresses to networks as a whole
 - Assignment of individual addresses to nodes inside a network
- Example: IPv4 addresses
 - E.g.: 213.46.172.38

Lack of IPv4 addresses

- Techniques
 - Subnetting, supernetting, CIDR, private addresses and NAT, IPv6 addresses

Sending of packets

- Direct delivery
 - IP address of the intended recipient belongs to our network
 - ⇒ packet is sent locally via L2 directly to the target node
- Indirect delivery
 - Otherwise...
 - ⇒ packet is first sent locally via L2 to our router which then takes care of further routing and forwarding of this packet

Local L2 delivery

- Particular node within our network must be reached
 - Final recipient in case of the direct L3 delivery
 - Router otherwise
- Encapsulation
 - IP packet is inserted as a payload into a constructed L2 frame
- This frame is then sent... but to whom?
 - IP → HW address resolution is required

Routing

- Process of selecting an optimal transmission path
 - Path = sequence of routers allowing to reach the final recipient
 - Combinatorial problem of searching for the shortest paths
 - In a (weighted) multi-graph
 - At least a certain knowledge of L3 topology is necessary
 - Expressed using routing tables
- Strategies
 - Dynamic / static
 - Isolated / centralized / distributed
 - ...
- Particular protocols (RIP, OSPF, ...), policies, ...

Forwarding

- Process of sending of packets based on the already resolved routing paths
 - Using forwarding tables
- May / may not be executed by the same device (router) as in case of routing itself

Routing domains

- It is not possible to maintain routing tables in large systems
 - Not just due to their size...
- ⇒ they need to be decomposed into smaller parts
 - E.g.: Autonomous Systems (AS) in Internet

Fragmentation of blocks

- Each L2 technology has its own MTU
 - Size of IP packets can be higher than these MTUs
- ⇒ fragmentation is needed
 - Who shall be responsible
 - How de/fragmentation should technically be performed

L4: Transport layer

- Main task: end-to-end communication of particular entities within the sender / recipient nodes
 - Lower layers (L1 L3) always treat nodes at atomic units
 - I.e., they are unable to distinguish the individual communicating entities inside these nodes
 - L4 and higher layers are only implemented in end nodes
 - I.e., the highest layer implemented in routers is L3
 - And so L4 does not occur in typical network elements at all

Addresses and addressing

- Individual entities must be mutually distinguishable
- Requirements
 - Unique within a given node
 - Static = fixed and known in advance
 - So that we are able to determine the address of the recipient
 - Abstract = independent on a particular platform
 - Implicit = independent on the current situation
- Example
 - Port numbers in TCP/IP
 - 25 (SMTP), 80 (HTTP), ...
- Questions and tasks
 - Rules of usage for both outgoing and incoming directions

De/multiplexing

- Several communications can take place concurrently
 - However, we have only one transmission path at L3
- Multiplexing
 - Merging of several separate transmissions by the sender
- Demultiplexing
 - Reverse decomposition by the recipient

Sockets

- Data structure allowing applications to send / receive data
 - Created on demand
 - Dynamically bound with particular ports

Adaptation layer

- L4 offers various ways of adapting the expectations of higher layers to the possibilities of lower layers
 - Lower layers: L1 L3
 - Focus on transmissions themselves
 - E.g.: IP: blocks, connectionless, unreliable, Best Effort
 - Higher layers: L5 L7
 - Focus on applications needs
 - In particular...
 - Streams over blocks
 - Connection-oriented transmissions over connectionless
 - Reliable transmissions over unreliable
 - Quality of Service over the Best Effort principle

Additional services

- Flow control
 - Preventing slower recipients to be overwhelmed by faster senders
- Congestion control
 - Preventing the whole network to be overwhelmed by the overall traffic generated by senders

L5: Session layer

- Main task: provide mechanisms for opening, closing and managing sessions and organizing dialog (data exchange) between the communicating entities
 - Originally very broad functionality
 - Meaningful concepts and ideas
 - But not needed by everyone
 - Usually completely omitted nowadays
 - Implemented within L7 only when really needed

Session management

- One L5 session over multiple L4 transport connections
 - One session over multiple concurrent connections
 - Achieving higher overall transmission capacity (bonding)
 - One session over more consecutive connections
 - Ensuring session continuity after a transport connection failure
- More L5 sessions over one L4 transport connection
 - More consecutive sessions over one connection
 - Minimizing the number of established transport connections
 - Multiple concurrent sessions over one connection
 - Multiplexing several separate sessions at the same time

Synchronization on entities

- <u>Illusion</u> of synchronous communication over asynchronous L4
 - Similarly as understood by RPC (Remote Procedure Call)
- Simplex / half-duplex / full-duplex communication
- · Deadlock prevention

Transaction support (atomicity and consistency)

- Checkpointing and recovery
 - Restoration points are created on demand / on a regular basis
 - Allows for recovery in case of failures
 - Only data after the last checkpoint needs to be resent
- Two-phase commit protocol

Identification

- Including counter-party localization
 - Similarly as in SIP (Session Initiation Protocol) in VoIP

Security

- Authentication
 - Verification of user identity
- Authorization
 - Mechanism of determining access levels or privileges
- Encryption
 - Ensuring confidentiality of transmitted data

L6: Presentation layer

- Main task: provide mechanisms for automatic serialization of data enabling its transmission and conversions ensuring that its semantics is preserved on different platforms
 - I.e., it is not entirely true that data should always be received completely unchanged
 - Simply because sender / recipient nodes can run on different hardware platforms and operating systems, as well as can assume different localizations
 - Translation between application and network data formats is thus needed
- Reality
 - Usually completely omitted once again
 - Implemented within L7 only when really needed

Conversion of atomic values

- Different text encodings
 - ASCII, ISO 8859-2, Windows-1250, UTF-8, UTF-16, ...
- Different byte order conventions
 - Big Endian
 - The most significant byte is provided as the first one
 - Little Endian
 - The least significant byte is provided as the first one
- Different number formats
 - Various mantissa and exponent sizes for floating point numbers

Serialization of simple structures

- E.g.: arrays, records, sets, ...
- Transformation is (relatively) straightforward

Serialization of complex structures

- E.g.: high-dimensional matrices, objects with pointers, ...
- Issues
 - Higher dimensions
 - Transmission path is always one-dimensional
 - I.e., only flat sequences of bytes can be transmitted
 - Pointers
 - Sender / recipient nodes have their own address spaces

Serialization strategies

- Proprietary
 - Specific approach proposed by a given protocol / application
- Generic
 - Abstract syntax
 - Structure of data is first described using a suitable language
 - E.g.: ASN.1 (X.680 Abstract Syntax Notation One)
 - Transfer syntax
 - Data is then serialized into a particular serialization format
 - E.g.: BER (X.690 Basic Encoding Rules)
- Real-world examples
 - Contemporary solutions used by NoSQL databases
 - Apache Thrift, Protocol Buffers, ...

Application Layer

L7: Application layer

- Main task: provide access to the communication interface and so allow applications to send and receive messages via which they can provide or use services
 - Original idea
 - L7 should contain entire applications
 - That would require their full standardization
 - Reality
 - Contains only communication essentials, not user interface, business logic, or other parts of applications

Application Layer

Addresses and addressing

- Identification of communication partners an objects
 - IRI (Internationalized Resource Identifier)
 - E.g.: URL: https://www.mff.cuni.cz/
- Localization of such partners
 - DNS (Domain Name System)
 - Hierarchical system for domain names
 - Translation of these names to IP addresses

Particular communication protocols

- SMTP (Simple Mail Transfer Protocol)
- HTTP (Hypertext Transfer Protocol)
- ..

Lecture Conclusion

Layered network models

- ISO OSI model
- TCP/IP architecture

Layers

- L7 application layer
- L6 presentation layer
- L5 session layer
- L4 transport layer
- L3 network layer
- L2 data link layer
- L1 physical layer