NSWI090: Computer Networks

http://www.ksi.mff.cuni.cz/~svoboda/courses/242-NSWI090/

Lecture 2

Taxonomy

Martin Svoboda martin.svoboda@matfyz.cuni.cz

26. 2. 2025

Charles University, Faculty of Mathematics and Physics

Lecture Outline

Telecommunication networks

- Core networks
- Access networks

Data networks

Computer networks

- Geographic scales
 - PAN, LAN, MAN, WAN, ...
- Internet architecture

Objectives

Categorization of networks

- What types of networks exist?
 - Their characteristics, mutual differences, ...
- It will help us to understand what these networks are

Observations

- Not entirely exact
 - Boundaries may not be sharp
 - Contains subjective components
- May be overlapping
- Evolving in time
 - New technologies appear
 - Behavior of users changes

Broadcast Networks

Broadcast networks

- Solely broadcast transmissions (1:N)
 - The same content is distributed to all reachable recipients
 - No routing and forwarding is needed at all

Examples

- Television or radio broadcasting
 - Traditional analog or recent digital

Technologies

- DVB (Digital Video Broadcasting)
 - DVB-T2 (Terrestrial), DVB-C2 (Cable), DVB-S2 (Satellite), ...
- DAB (Digital Audio Broadcasting)
- ...

Switched Networks

Switched networks

- Primarily unicast transmissions (1:1)
 - Targeted routing and forwarding needed

Meaningful possibilities

- Circuit switching
 - Necessarily connection-oriented and guaranteed
 - Both block / stream and reliable / unreliable transmissions
- Packet switching
 - Necessarily block transmissions
 - Connection-oriented: virtual circuits
 - Both reliable / unreliable and Best Effort / QoS
 - Connectionless: datagram service
 - Both reliable / unreliable and Best Effort / relative QoS

Basic Categories

Telecommunication networks

- Provide dedicated one-purpose services only
 - Broadcast: television and radio broadcasting
 - Switched: fixed or mobile telephony
- Smart network, dumb devices

Data networks

- Allow transmissions of digital data of any form
- Dumb network, smart devices

Computer networks

- Interconnect computers and other devices into networks
- Dumb network, smart devices

Telecommunication Networks

Typical infrastructure

- Core network (backbone network, transport network)
 - Interconnects core components of the entire infrastructure
 - Relatively small number
 - Usually greater distances
 - Usually using optical fibers
- Access network
 - Allows the connection of end users to the core network
 - Point of Presence (POP)
 - Forms the interface between the core and access networks
 - Customer Premises (CP)
 - Place of occurrence of potential subscribers

Fixed Telephone Network

Fixed telephone network in the Czech Republic

- Historical development of owners
 - SPT Praha (Správa pošt a telekomunikací)
 - 1993: SPT Telecom
 - 2000: Český Telecom
 - 2006: Telefónica O₂ Czech Republic
 - 2014: O₂ Czech Republic
 - 2015: CETIN (Česká telekomunikační infrastruktura)
- Greatest development in 1990s
- Current situation
 - Core: 38 000 km optical cables
 - Access: 20 000 000 km pairs of metallic cables

Fixed Telephone Network

Core network

- Hierarchy of telephone exchanges
 - 2 international
 - 8 transit
 - 140 local
 - Thousands advanced Remote Subscriber Units (RSU)
- Context: territorial administrative units
 - 14 regions
 - 77 districts
 - 6 258 municipalities
 - 15 094 municipality parts
 - 82 262 streets

Fixed Telephone Network

Access network

- POP: local exchanges / RSUs with main switchboards
- Local loops between POPs and individual CPs
 - Metallic cables (twisted pairs)
 - Formed by individual sections
 - Bundles of cables
 - Can be branched in network switchboards
 - Maximal length: up to 5 km
- CP: houses, flats, offices, ...
 - 8 million local loops
 - Active ones: 3.8 million (2001), 700 thousand (2019)
 - 634 thousand pending applicants in 1994
 - Waiting times several years before 1989

Mobile Telephone Network (2G)

Core network: Network Switching Subsystem (NSS)

- Mobile Switching Center (MSC)
- Gateway MSC: gateways to different networks

Access network: Base Station Subsystem (BSS)

- GERAN (GSM EDGE Radio Access Network)
 - Base Station Controller (BSC)
 - Base Transceiver Station (BTS)
 - Facilitates communication between end users and a network
 - Typically several transceivers
 - One BTS forms one cell, can have multiple sectors
 - Each with a different frequency
- Example (T-Mobile)
 - 13 MSC, 150 BSC, 4 500 BTS, 13 100 sectors

Access Networks

Features of (fixed) access networks

- Allover and dense
 - Cover the whole territory
 - Must lead to all <u>potential</u> customers
- Pass through public spaces
 - Sidewalks, streets, or roads must be dug up
 - Requires planning, synchronization, and formal permits
 - It is expensive and complicated
 - Earthworks represent 85% of all costs
- Build forward
 - State-of-the art technology is used
 - With the greatest transmission potential
 - Intentionally designed as oversized
 - Higher number of cables, usage of protectors, ...

Last / First Mile

Last mile (last kilometer)

- Refers to the final leg of (telecommunication) networks
 - I.e., access network, units of kilometers
- Describes the perspective of the provider
- Alternatively: first mile (as seen by end users)

Possible spanning solutions

- Building of an entirely new network
 - Wireless, wired (nowadays optical)
 - Costly, unclear regulatory aspects, ...
 - Local loop unbundling in past
- Exploitation of an already existing infrastructure
 - ⇒ overlay access networks

Overlay Access Networks

Overlay access networks

- New network is built on top of another one
 - Modification or extension of the original technology
 - Usage of different frequencies, encapsulation of data, ...
- Original functionality is preserved

Existing options

- Fixed telephone networks
 - Usage of twisted pairs in local loops
- Electrical power networks
 - Usage of electrical power wirings
- Cable television networks
 - Usage of coaxial cables for television broadcast delivery

xDSL Technologies

Traditional **fixed telephone network**

- Plain Old Telephone Service (POTS)
 - Metallic local loops based on twisted pairs
 - Usage of voice band only
 - 300 Hz 3.4 kHz

Overlaying strategy and issues

- Usage of non-voice frequencies
 - Above 3.4 kHz
 - Based on the general principle of frequency multiplex
- Digitization
- Distance as a major limiting factor

xDSL Technologies

Technical solution

- Principle
 - DSL modem \leftrightarrow splitter \leftrightarrow local loop \leftrightarrow DSLAM
- CP side
 - Modem (modulator-demodulator)
 - Device converting digital data into / from analog signal
 - Splitter
 - Passive device separating / joining different frequency bands
- POP side (local exchange / RSU)
 - The same principle, only integrated in one structural unit
 - DSLAM (DSL Access Multiplexer)
 - Data transmissions are diverted to a separate core network

xDSL Technologies

Family of xDSL technologies (Digital Subscriber Line)

- 1998: ADSL (Asymmetric Digital Subscriber Line)
 - 25 kHz 1.1 MHz
 - Up to several kilometers
 - 8 Mb/s downstream, 1.5 Mb/s upstream
- ..
- 2006: VDSL2 (Very High-Speed Digital Subscriber Line 2)
 - Up to 35 MHz
 - Up to 300 meters
 - 200 Mb/s downstream, 100 Mb/s upstream

PLC Technologies

Underlying electrical power network

- AC (alternating current) electric power transmission
 - 110 V, 120 V, 220 V, 230 V, ...
 - 50 Hz, 60 Hz

Overlaying strategy and issues

- Usage of higher frequencies
- Different standards in different countries
- Radio emissions of unshielded wires (act as antennas)
 - Regulations are therefore in effect
- Very noisy environment with high attenuation
 - Transformers completely prevent signal propagation
 - Turning electrical appliances on or off produces noise

PLC Technologies

Power-Line Communication (PLC)

- Long haul
 - Low frequencies, only a few hundred bits per second
 - Infrastructure monitoring and maintenance only
- Last mile
 - Expensive and not used in practice
 - Broadband over Power Line (BPL)
 - Medium voltage transmissions between transformers
 - Low voltage transmissions between transformer and outlets
- Last meter (withing a building, ...)
 - HomePlug
 - Home networking
 - Up to 500 Mb/s, below 100 MHz
 - Behind the residential electricity meter

DOCSIS Technologies

Traditional cable television network

- Community Antenna Television (CATV)
 - Broadcast network for television program
 - Based on coaxial cables
 - Originally analog and one-way only

EuroDOCSIS (Data Over Cable Service Interface Specification)

- 1997: DOCSIS 1.0
 - 40 Mb/s downstream, 10 Mb/s upstream
- · ..
- 2017: DOCSIS 4.0
 - 10 Gb/s downstream, 6 Gb/s upstream

DOCSIS Technologies

Access network infrastructure

- Hybrid Fiber-Coaxial cable system (HFC)
 - Combination of optical fibers and coaxial cables
 - CMTS (Cable Modem Termination System)
 - Located at distribution hubs (headends)
 - Forms a POP
 - Represents an analogy to DSLAMs
 - Optical node
 - Optical fibers towards CMTS
 - Coaxial cables towards customer premises
 - Cable Modem (CM)

Wireless Access Networks

Wireless access networks

- Do not require (extensive) earthworks
- Require suitable frequencies
 - Very scarce resource
 - Licensed / unlicensed spectrum

Mobility options

- Mobile
 - Communication possible even while moving
- Nomadic
 - Communication impossible while moving
- Fixed
 - Without any mobility support

Wireless Access Networks

Operation principles

- P2P: Point-to-Point
 - Wireless Local Loop (WLL)
- P2MP: Point-to-MultiPoint
 - Mobile networks
 - GSM, CDMA, 3G/UMTS, LTE, ...
 - Fixed Wireless Access (FWA)
 - WiMAX, ...
 - Wi-Fi networks

Optical Access Networks

Optical networks in general

- Active
 - Active powered network elements are used for branching
 - Act as amplifiers
 - Maintenance and monitoring needed
 - Higher rates, longer distances
 - Expensive
- Passive
 - Only passive elements are used
 - Can be buried underground
 - Lower rates, shorter distances
 - Sufficient enough for access networks

FTTx Technologies

Optical access networks

Usually built as Passive Optical Networks (PON)

Family of Fiber to the x technologies (FTTx)

- How close to the end user is the optical network terminated?
 - The closer, the better...
 - Higher rate, but also more complex and expensive
 - Last meter is often solved using a different technology
- FTTH: Fiber to the Home
- FTTB: Fiber to the Building
- FTTC: Fiber to the Curb
- FTTN: Fiber to the Node (used by DOCSIS in HFC)
- ..

Data Networks

Telecommunication networks

- Provide dedicated telecommunication services
 - E.g., voice calls, television broadcast, ...
- Smart network paradigm

Data networks

- Allow transmissions of data in digital form
 - I.e., data of various applications, services, ...
- Dumb network paradigm
- Principles
 - Both circuit switching and packet switching
 - Usually Best Effort but QoS as well
- Private, public, and virtual private alternatives

Private Data Networks

Private data network

- User = owner (operator can be outsourced, though)
- Advantages
 - Owner decides everything
 - Technologies, protocols, addresses, policies, security, users, ...
- Disadvantages
 - Expensive
 - Only bigger subjects can afford such a solution

Example

- Data network of Ministry of the Interior
 - Operated by Czech Post
 - Used primarily within the integrated rescue system
 - Police, medical rescue, fire rescue, regional authorities, ...

Public Data Networks

Public data network

- Intended to be used by customers on a commercial basis
 - Owners
 - Do not use the network
 - Usually telecommunication operators
 - Customers
 - Basically anyone willing to pay
- Charging principles
 - Volume of data, number of established connections, ...
- Documentation needed
 - How to connect, how to address, how to send data, ...

Public Data Networks

Public data network (cont'd)

- Advantages for users
 - More convenient for smaller subjects
 - Flexibility
 - Used as a service, no investments
- Disadvantages for users
 - Shared by all users
 - Aspects of security, ...
 - Owner decides everything
- Advantages for owners
 - Higher financial revenues
 - Data network has added value compared to ordinary circuits

Virtual Private Data Networks

Virtual private data network

- Principle
 - Shared infrastructure
 - Either private or public data network
 - Illusion of a private network
 - Individual networks are logically separated from each other
 - Other networks (their users, addresses, data) are not visible
- Intended users are companies and their users
- Advantages
 - Lower costs
 - Considerable autonomy in decision-making
 - Essentials are given by the owner (technology, protocols, ...)
 - Everything else is decided by a customer (permissions, ...)

Computer Networks

Geographic scale of computer networks

- Personal Area Networks (PAN)
 - Personal operating space
 - $\sim 1-10 \text{ m}$
- Local Area Networks (LAN)
 - Household, building, school, office, company, ...
 - \sim 10 m 1 km
- Metropolitan Area Networks (MAN)
 - University campus, city, agglomeration, ...
 - \approx 1 km 100 km
- Wide Area Networks (WAN)
 - Regions, countries, continents, whole planet
 - \sim 100 km and more

Personal Area Networks

Personal Area Networks (PAN)

Interconnect devices within operational space of one person

Devices

- Stationary
 - Computers, laptops, keyboards, mouses, printers, ...
- Mobile
 - Smart phones, tablets, headsets, ebook readers, ...

Technologies

- Wired
 - USB, FireWire, ...
- Wireless
 - Bluetooth, IrDA, NFC, Wi-Fi, ...

Local Area Networks

Local Area Networks (LAN)

- Interconnect closely related computers and other devices
 - Within the scope of one household, building, company, ...
- Two different meanings
 - LAN in the broader sense
 - Any short-range network as described above
 - May contain routers and so technically multiple networks
 - LAN in the narrower sense
 - Individual nodes are only interconnected at L1 and L2 layers
 - I.e., there can be repeaters and switches but no routers

Devices

Personal computers, laptops, servers, printers, ...

Local Area Networks

Technologies

• Ethernet, Wi-Fi, ...

Properties (when compared to WAN)

- Lower latency
- Higher reliability
- Systematic topology
 - Bus, star, tree, ...
- Limited availability of nodes
 - According to the needs of users

Metropolitan Area Networks

Metropolitan Area Networks (MAN)

Interconnect individual LAN networks

Examples

- PASNET (Prague Academic and Scientific Network)
 - High speed metropolitan academic network
 - Members
 - Academy of Sciences
 - Charles University
 - Czech Technical University in Prague
 - Prague University of Economics and Business
- MEPNET (Metropolitan Prague Network)
 - Private network for city administration

• ..

Metropolitan Area Networks

Technologies

Gigabit Ethernet, WiMAX, ATM, FDDI, ...

Properties

- Owned by groups of legal entities, individual cities, ...
 - Owner may or may not be the intended user
- Often pass through public spaces
 - Which is not the case of LAN networks

Wide Area Networks

Wide Area Networks (WAN)

- Interconnect individual MAN or LAN networks
- Transfer data over longer distances
 - Often cross public spaces as well as borders of countries
- Typical owners
 - Big companies
 - Internal usage
 - Providers and telecommunication operators
 - Provide services on a commercial basis

Wide Area Networks

Examples

- CESNET
 - National e-infrastructure for science, research and education
 - Interconnects largest university cities and other areas
 - 27 member universities
 - Connectivity
 - 100 Gb/s to GÉANT (pan-European research and education network)
 - 10 Gb/s to Internet via Telecom Italia (Tier 1 provider)
 - 10 Gb/s to Google
 - 2x100 Gb/s peering to NIX.cz (IXP)
 - ..

• ..

Wide Area Networks

Technologies

- L1 paths
 - Usually optical fibers
- L2 technologies
 - ATM, Frame Relay, X.25, MPLS, Packet over SONET/SDH, ...
- L3 protocols
 - TCP/IP

Properties (when compared to LAN)

- Higher latency
- Lower reliability
- Unsystematic topology
- Permanent availability

Original situation

- Only one backbone network
- ARPANET
 - The very first wide-area packet switching network
 - Financed by military grant agency ARPA
- NSFNET
 - Financed by civil grant agency NSF
 - Objective of promoting research and education networking

Later situation

- Multiple commercial backbone networks
- Compete with each other
- Interconnected by Network Access Points (NAPs)

Contemporary situation

- Hierarchy
 - Tier 1 / Tier 2 / Tier 3 Internet Service Provider (ISP) networks
 - Access networks
- Backbone: system of Tier 1 networks
- Networks are mutually interconnected by IXP points
 - Within or across tiers

Internet Exchange Point (IXP)

- Point where networks interconnect to peer or exchange traffic
- Examples
 - NIX.cz (Neutral Internet eXchange)
 - 195 networks, capacity 10 Tb/s

Types of traffic

- Peering
 - Based on a mutual agreement of two ISPs
 - Allows for direct exchange of traffic between their networks
- Transit
 - End user or ISP pays another (usually larger) ISP to carry all their traffic to the Internet

Tier 1 providers (backbone providers)

- Network that can reach every other network on the Internet without purchasing transit or paying for peering
 - Direct access to basically any other network in the world
 - Vast physical infrastructure
 - Mutual charging does not make any sense
- Examples
 - AT&T, Deutsche Telekom, Verizon, ...
 - Can have even more than 800 000 km of optical paths
 - Altogether 15 ISPs

Tier 2 providers

- Network that peers for free with some networks, but still purchases transit or pays for peering to reach at least some portion of the Internet
 - Usually have their own physical infrastructure
 - But significantly smaller
- Regional or national scope

Tier 3 providers

- Network that solely purchases transit or peering from other networks to participate in the Internet
- Local last mile providers
 - Provide connection to end users

Organizational Scopes

Intranet

- Services and resources intended to be used by internal users
 - Shared printers, data storages, ...
 - Applications (accounting, CRM, ...), document sharing, ...

Extranet

- Services and resources intended to be used by external users
 - Marketing, e-commerce, e-business, ...
 - Updates, support, helpdesk, ...

Internet

Darknet

- Overlay network, anonymized and not publicly accessible
 - File sharing, computer crime, black markets, whistleblowing, ...

Lecture Conclusion

Telecommunication networks

- Core networks
- (Overlay) access networks
 - xDSL, PLC, DOCSIS, wireless, optical

Data networks

Private, public, virtual private

Computer networks

- Geographic scales
 - PAN, LAN, MAN, WAN, ...
- Internet architecture
 - Peering and transit traffic
 - Tier 1, Tier 2, and Tier 3 ISPs