
NPRG041 – 2024/25 Winter – Labs MS – Small Assignment C02

Options

The goal of this task is to implement a simple application that would allow to process arguments passed
to it from the command line at startup. It involves the detection of both the expected and unexpected
options, correct distinction of their types, detection of the associated and standalone values, and printing
all such recognized options and values to the standard output.

We will distinguish two variants of options based on the possible lengths of their names, namely short
and long options. The short ones have exactly one character in their name and are written with one dash
at the beginning (e.g., -x). Long options are indicated by two dashes and their name contains at least one
character (e.g., --grayscale).

Regardless of the lengths of option names, we will also distinguish additional two types of options. First,
options where we are only interested in their presence, so we will call them flag options. Second, options
that are to be followed by an associated value, always exactly one. We will therefore call them value options.
In addition to these, we can also come across separate values (arguments not starting with -- or -) that are
not linked to any value option. We will call them standalone values.

Attention also needs to be paid to the allowed means of specifying individual option types. The short
ones can be passed one after the other separately (e.g., -x -y), but it is also possible to have several of them
at the same time after just a single opening dash (e.g., -xy). In such a case, however, we are sure that there
will only be short options in a given group. In other words, long options cannot be grouped.

In the case of long value options, the associated value will always be passed separately, i.e., in the
immediately subsequent argument (e.g., --red 255). Such a possibility also exists for the short value
options (e.g., -r 255), but we can still work with the idea of grouping. In this case, however, there can only
be at most one value option in the group, and only as the last one. All the following characters are then
treated as its value (e.g., -xyr255). If there is no such character, then the value will be provided in the next
argument (e.g., -xyr 255).

In general, the associated value can be anything as for its content. It can even look like an option (start
with dashes). In the same way, we do not care if it is a number or something else, everything will be just
ordinary strings for us. We also have to deal with the situation when the last argument implies the necessity
of finding an associated value, but that value would be missing. The program must not crash in such a
situation. As already implied by the previous text, if an argument does not start with dashes and it is not
a value associated with the previous value option, it is a standalone value (e.g., -x 255). Let us also add
that both the associated or standalone values can also be empty strings in extreme cases.

The expected options and their types are fixed beforehand. Since we do not have a better reasonable
means yet, we are expected to really hardwire them directly into our code. But only in one place (or
separately for short and long options, but not repeatedly). Specifically, we expect flag options -x, -y,
--grayscale, -t, and --transparent, and value options -r, --red, -g, --green, -b, --blue, -a, and --
alpha. For the option names themselves, global named constants will be created.

The passed arguments need to be processed in just a single pass, without changing their order. Whenever
we detect an option or value, at that moment we write a text message to the standard output that informs
about the situation. Specifically, we expect the following types of messages:

• Flag option <name> detected
• Value option <name> detected with value <value>
• Value option <name> detected but its value is missing!
• Unknown option <name> found!
• Standalone value detected <value>

The format of these messages must be preserved, name is replaced by the actual option name without
dashes, value is an associated or standalone value. The angle brackets <> are left unchanged, each line is
terminated with std::endl.

Your source code needs to be divided into appropriately designed modules, e.g., Main.cpp file with solely
the main function, and a pair of Options.cpp and Options.h files for all the executive code related to the

actual processing of arguments. The goal of the header file is to allow for the separation of declarations
from the implementation. We automatically assume that all of our header files will be protected against
undesired repeated inclusion using the mechanism of #ifndef, #define, and #endif directives.

So that we do not have to work with the passed arguments in the form of a traditional array with
C-style strings, we will first convert them into a more user-friendly form of a std::vector container of
std::string strings at the very beginning of the main function. This is easily achievable using a trick
std::vector<std::string> arguments(argv + 1, argv + argc).

We will decompose the intended code into appropriately designed functions. Basic inspiration can then
be found in the following overview. Particular functions, their names, and interfaces are not prescribed,
though. It is therefore possible to deviate at will.

• process_arguments: processes all arguments and so contains a main loop over individual arguments
and subsequent branching for long and short options and standalone values

• process_short_option: processes a short option, i.e., performs branching to flag, value, and unknown
options based on the previously discussed predefined list of the expected options

• process_long_option: the same for long options
• process_flag_option: processes a short or long flag option
• process_value_option: the same for value options
• process_unknown_option: processes an unknown option
• process_standalone_value: processes a standalone value

As for the main loop over the individual arguments, it is expected to use iterators using the construction
for (auto it = arguments.begin(); it != arguments.end(); ++it) { ... }. Perhaps the biggest
complication will be the processing of a value option when its value is provided in the next argument. In
such a case, we can basically choose from two possible solutions: either we process such an option backwards
only at the moment of finding its value, or on the contrary, we process it at the moment of finding it by
forward fetching of its value. In the former case, we will have to transfer the necessary information between
the individual iterations, while in the latter one, we will have to manually intervene in the course of the
cycle. This is easy with the iterators, though.

Let us also add that for the purpose of branching the code while detecting the individual expected and
unexpected short options, it is necessary to use the switch construct. Of course, that will not work for the
long ones, and so we will use ordinary conditions there.

The essential thing is that the process_flag_option and process_value_option functions really need
to be proposed so that we can easily use them for both short and long options at the same time, i.e., with just
a single interface. Moreover, we need our function for value options to be capable of finding the associated
value in the same or the following argument by itself, without leaving such a task to the caller.

The reason is that our goal is to achieve the most elegant code on the side of the caller, e.g., in the
style of a single line if (name == "red") { process_value_option(name, …); }. In order to pursue
this intention, it suffices to apply a trick where the last few function parameters can have default values
specified, thanks to which we do not have to determine values of such parameters at all when calling that
function. Let us also note that each function can, of course, only have one expected return value. If that is
insufficient to pass all the necessary information, we can use the so-called output parameters, i.e., ordinary
parameters passed by modifiable references.

All our functions must be implemented so that we will be able to inform about their successful execution,
or, on the contrary, problems encountered. All that by returning values of bool data type. If everything
goes well, true is returned. Otherwise, false is returned. Such a situation arises when we detect at least
one unexpected option or we detect an expected value option, but without its value. Detection of an error
situation does not cause our program to be interrupted, the processing of the remaining arguments further
continues without any change.

We must be able to forward the error information up to the main function, where we use it to infer the
exit code of the entire program, i.e., 0 in the case of success, and, in particular, 1 vice versa.

In order to avoid any doubts regarding the correct understanding of our problem and all the partial
requirements, input arguments -xwrgb --red --c 255 --grayscale -tb will return exit code 1 and the
following output:

Flag option <x> detected
Unknown option <w> found!
Value option <r> detected with value <gb>
Value option <red> detected with value <--c>
Standalone value detected <255>
Flag option <grayscale> detected
Flag option <t> detected
Value option detected but its value is missing!

For the purpose of debugging, let us add that we can easily set the arguments to be passed when the
application is launched within the MS Visual Studio development environment. You just need to alter the
project settings, in particular, via Project → Properties → Debugging → Command Arguments.

Submit all source files you created (*.cpp and *.h). Names of all the aforementioned files or functions
are not directly required, you can change them as you like. The main objective is to learn how to work
with strings, header files, passing parameters by references, and also to get a basic idea of working with the
vector container and its iterators. Do not forget the aspect of quality design, general requirements such as
correctness, or avoidance of inadequate constructs or libraries that we have not yet learned to work with.

When it comes to common mistakes and, on the contrary, good practice, do not forget the following
aspects. The main function must not contain too much code, let alone low-level code. Therefore, just at
first glance, it should give you a good high-level idea of what the program is supposed to do. Always use
protection against repeated inclusions in the header files because you never know who and how will use them
in the future. However, do not use #pragma once, it is not a standard directive. Only include standard
libraries and user header files in the scope where they are really necessary. In other words, do not include
anything that is not needed. In general, it is not necessary (nor appropriate) to put declarations of all our
functions into header files. That is only meaningful for those we want to offer to the others for use. This
means we will not put there our purely internal functions.

Choose appropriate names for all files, variables, functions, and their parameters. Do not forget to use the
const specifier when passing parameters whenever appropriate. If not intended, avoid passing any objects
more complex than instances of primitive types (like int etc.) by value. This also applies to std::string
strings. In other words, use references or pointers appropriately. If you do not need the opposite, prefer
preincrementation over postincrementation. Avoid repeating similar or even the same code fragments. Avoid
excessive nesting of conditional expressions, too.

Technical solution should never conceal the logical nature of the problem. Therefore, e.g., we have to
perform the conversion of our bool error return values to int exit codes explicitly. In other words, we
cannot rely on the fact that booleans are actually implemented as numeric values, moreover, exactly those
we want. This is just a coincidence, it could be entirely different.

