
NPRG041 – 2024/25 Winter – Labs MS – Big Assignment A01

Regular Expressions

Regular Expressions
Regular expressions are one of the means we can use to describe the so-called regular languages. You will
get acquainted not only with them during the summer semester within the Automata and Grammars course.
In order to be capable of working with them from the practical point of view, fortunately for us, we can do
without any larger theoretical background.

Regular expressions may be encountered in a number of contexts, not only within, e.g., programming
languages or query languages in database systems. We usually work with variants that offer a variety of
user-friendly simplifications or shortcuts, but we can do without them. In other words, we will consider
regular expressions only in the form that is necessary to achieve the expected expressive power.

We define a regular expression v over some alphabet Σ (e.g., symbols of the English alphabet) inductively
as follows. First, we introduce the following simple regular expressions:

• a for each a ∈ Σ corresponding to a language L(a) = {a}, i.e., language that contains only one
single-symbol string a,

• ε (empty string) corresponding to a language L(ε) = {ε}, i.e., language that contains only the empty
string, which we denote as ε (sometimes also λ), and

• ∅ (empty language) corresponding to an empty language L(∅) = {}, i.e., language that does not contain
even a single string.

Given already defined regular expressions r and s (however complicated), using them and the following
operations, we are able to construct the following compound expressions as follows:

• r ·s (concatenation · operation) corresponding to a language L(r ·s) = L(r) ·L(s) = {uv |u ∈ L(r), v ∈
L(r)}, i.e., language that contains all strings formed such that we can split them to two substrings,
the former of which can be generated by the first expression r and the latter by the second s,

• r+ s (alternation + operation) corresponding to a language L(r+ s) = L(r)∪L(s), i.e., language that
contains all strings that can be generated via the first expression r or the second one s, and

• r∗ (iteration ∗ operation) corresponding to a language L(r∗) =
∪

i∈N0,i≥0 L
i, where L0 = {ε} and

Li = L · Li−1 for ∀ i ∈ N, i ≥ 1, i.e., language that contains all strings formed such that we can split
them to an arbitrary number of substrings, each of which can be generated by the expression r.

To ensure the correct evaluation of regular expressions, auxiliary round parentheses need to be used
appropriately. However, this is often not necessary. Moreover, we can also afford to involve further
simplifications. In particular, we will consider the following two:

• If it is not necessary, we will not write the round parentheses, and so, e.g., ((a+ b) + c) corresponds
to a+ b+ c and ((a · b) · c) to a · b · c.

• If we concatenate several symbols of our alphabet, we will not even write the · operator as such, and
so, e.g., abba corresponds to a · b · b · a. We can generalize this idea so that any symbol a ∈ Σ or
closing parenthesis) or iteration operator ∗ can be immediately followed by another arbitrary symbol
a ∈ Σ or opening parenthesis (, which again leads to the implicit concatenation operation in all these
cases. For example, (a+ b)∗aa(a+ b) corresponds to (a+ b)∗ · a · a · (a+ b).

In order to make sure we understand the construction and meaning of the introduced regular expressions,
let us have a look at some examples over the alphabet Σ = {a, b}:

• (a+b)∗abba(a+b)∗ describes a language {w |w = uabbav, u, v ∈ {a, b}∗}, i.e., strings containing abba

• ((a+b)(a+b)(a+b))∗(a+b) describes a language {w |w ∈ {a, b}∗, |w| = 3k+1, k ∈ N0}, i.e., strings
with length divisible by 3 with a remainder of 1

• a(a+ b)∗a+ b(a+ b)∗b+ a+ b describes a language {w |w ∈ {a, b}∗, w starts and ends with the same
symbol}

Neighbors Method
A common problem we need to solve when working with regular expressions is the situation where we have
to decide whether a given string corresponds to a given regular expression, i.e., whether such an expression
can generate it. For example, string aba matches the last mentioned regular expression (strings starting and
ending with the same symbol), while abb does not.

The mentioned problem is solved with the help of the so-called finite automata in practice. However,
we must first be able to construct such an automaton for a given expression. Several methods can actually
be applied, e.g., the method of neighbors proposed by Victor Mikhailovich Glushkov. In order to be able
to use it, we first need to inductively calculate four auxiliary functions for the provided regular expression,
based on which we can then construct such an automaton. However, this is not our goal (you will learn it
during the summer semester), it is only the enumeration of these functions.

First, we need to assign an auxiliary number to each occurrence of an alphabet symbol a ∈ Σ in a given
regular expression (let us denote it as an index), using which we will then be able to distinguish individual
occurrences of the same alphabet symbol from each other. This can be done in various ways, e.g., by
sequentially assigning natural numbers starting with 1. And that is exactly what we will do. For example,
having a regular expression (a+ b)∗ab, we get its indexed version as (a1 + b2)

∗a3b4. Notice, however, that
neither ε nor ∅ are symbols of the alphabet, they are therefore never assigned with these indices.

We are now ready to describe what auxiliary functions we need and how they can be calculated for an
arbitrarily complicated indexed regular expression r′:

• Starting(r′) denotes the set of all indexed symbols of the alphabet by which some string corresponding
to r′ may begin.

• Neighbors(r′) denotes the set of all pairs of indexed symbols that can occur immediately after each
other in some string corresponding to r′.

• Ending(r′) denotes the set of all indexed symbols of the alphabet by which some string corresponding
to r′ may end.

• Epsilon(r′) ∈ {true, false} indicates a flag whether r′ can generate the empty string ε.

Having our sample regular expression r = (a + b)∗ab and its indexed version r′ = (a1 + b2)
∗a3b4, we

specifically get the following values:

• Starting(r′) = {a1, b2, a3}
• Neighbors(r′) = {a1a1, a1b2, a1a3, b2a1, b2b2, b2a3, a3b4}
• Ending(r′) = {b4}
• Epsilon(r′) = false

If we want to be capable of calculating these four functions in general, it is sufficient to follow the
inductive structure of our regular expressions. In other words, for simple expressions, we express everything
trivially, for expressions created by individual operations, we exploit the knowledge of these functions for
individual operands. These are simpler, and, therefore, we really can calculate them before. Let us start
with the simple expressions:

• Indexed symbol ai, a ∈ Σ, i ∈ N
– Starting(ai) = {ai}, Neighbors(ai) = {}, Ending(ai) = {ai}, Epsilon(ai) = false

• Empty string ε

– Starting(ε) = {}, Neighbors(ε) = {}, Ending(ε) = {}, Epsilon(ε) = true

• Empty language ∅
– Starting(∅) = {}, Neighbors(∅) = {}, Ending(∅) = {}, Epsilon(∅) = false

If r and s are arbitrarily complex indexed expressions, we then calculate our auxiliary functions for the
individual operations as follows:

• Concatenation r · s

– Starting(r · s) =

{
Starting(r) if Epsilon(r) = false

Starting(r) ∪ Starting(s) otherwise
– Neighbors(r · s) = Neighbors(r) ∪ Neighbors(s) ∪ {xy |x ∈ Ending(r), y ∈ Starting(s)}

– Ending(r · s) =

{
Ending(s) if Epsilon(s) = false

Ending(s) ∪ Ending(r) otherwise
– Epsilon(r · s) = Epsilon(r) ∧ Epsilon(s)

• Alternation r + s

– Starting(r + s) = Starting(r) ∪ Starting(s)

– Neighbors(r + s) = Neighbors(r) ∪ Neighbors(s)

– Ending(r + s) = Ending(r) ∪ Ending(s)

– Epsilon(r + s) = Epsilon(r) ∨ Epsilon(s)

• Iteration r∗

– Starting(r∗) = Starting(r)

– Neighbors(r∗) = Neighbors(r) ∪ {xy |x ∈ Ending(r), y ∈ Starting(r)}
– Ending(r∗) = Ending(r)

– Epsilon(r∗) = true

Task Assignment
The goal of this task is to implement a simple application that calculates the described auxiliary functions
used in the neighbors method for each regular expression from the set of expressions specified on the input.

Input regular expressions can be provided in two ways: either we find them directly as individual
arguments passed from the command line, or we find them stored in text files whose names are again passed
as arguments. To distinguish between the two situations, we will use two options, -a for the first behavior
(arguments), and -f for the second (files).

We will process the passed arguments one after the other, from left to right. If we find an expected
option, we process all the following arguments (none or more) accordingly (as an expression or a file) until
we find another option or until all arguments have already been processed. If the first argument is not an
option, we assume the default mode -a.

In order to process the arguments and find all input regular expressions, we propose a class named
Reader. Its declaration will be placed in a header file Reader.h. All functionality of this class is expected
to be implemented through static methods. In addition to any other internal methods, only the following
single method will be mandatory:

• static void process_arguments(const std::vector<std::string>& arguments, std::vector
<std::string>& expressions): processes the input program arguments and saves all the found input
regular expressions (from arguments and files) in the form of ordinary strings std::string, preserving
their order, in the already created (not necessarily empty) output container

Input files with regular expressions will have one regular expression per line (and nothing else), empty
lines will be skipped.

Let us now look at sample input arguments: (a+b) aa*+\epsilon+\emptyset* -a ab* -f file1.txt
file2.txt -a (aa)*bb. If the first listed file is completely empty and the second contains two expressions
(aaa)* and a*+b*, all the regular expressions found will be as follows:

(a+b)
aa*+\epsilon+\emptyset*
ab*
(aaa)*
a*+b*
(aa)*bb

All regular expressions considered will be over the alphabet of English letters (lowercase and uppercase).
For operations, we will use symbols . (concatenation), + (alternation), and * (iteration). Empty string
expression will be denoted by \epsilon instead of ε, and, analogously, empty language expression will be
denoted by \emptyset instead of ∅. We can also use auxiliary round parentheses (and). In accordance
with the explained rules, these parentheses can be omitted, as can the concatenation operation. Let us now
assume that all regular expressions are correct, i.e., syntactically well-formed. Later, however, we will also
add the ability to detect and treat certain error situations.

For the actual parsing of the regular expressions, we will use the extended shunting-yard algorithm and
directly create a syntactic tree corresponding to the inductive structure of our regular expression. Note
that the algorithm pseudocode below does not handle implicit (missing) concatenation operators. As for
the operators in general, we expect the following properties:

• Operator * is unary postfix and has the highest precedence
• Operator . is binary infix left-associative and has a middle precedence
• Operator + is binary infix left-associative and has the lowest precedence

1 foreach token t in the input expression do
2 if t is an alphabet symbol then
3 create a new leaf node for t and add it onto the stack of operands
4 else if t is an opening parenthesis (then
5 put (onto the stack of operators
6 else if t is a closing parenthesis) then
7 while there is an operator o on top of the stack of operators do
8 remove o from the stack of operators
9 remove two nodes r and l from the stack of operands

10 create a new inner node for o based on l and r and add it onto the stack of operands
11 remove (from the stack of operators
12 else if t is a unary postfix operator n then
13 remove one node p from the stack of operands
14 create a new inner node for n based on p and add it onto the stack of operands
15 else t is a binary infix operator n
16 while there is an operator o on top of the stack of operators with precedence higher than n,

or the same, but only if n is left-associative at the same time do
17 remove o from the stack of operators
18 remove two nodes r and l from the stack of operands
19 create a new inner node for o based on l and r and add it onto the stack of operands
20 add n onto the stack of operators

21 while the stack of operators is not empty do
22 remove o from the stack of operators
23 remove two nodes r and l from the stack of operands
24 create a new inner node for o based on l and r and add it onto the stack of operands

To encapsulate the representation of a parsed regular expression, we will propose an Expression class.
It is expected that its declaration will be placed in a header file Expression.h. In terms of the public
interface of this class, we will provide the following constructor and method:

• Expression(const std::string& input): creates a new instance of a regular expression by parsing
the provided input string

• Result evaluate() const: based on the internal tree traversal, calculates all the functions from the
neighbors method, and returns their values in the form of a Result class instance

The purpose of this Result class is to encapsulate all values in just one place, using the public data
members std::set<Symbol> starting, std::set<Neighbors> neighbors, std::set<Symbol> ending,
and bool epsilon for individual functions Starting, Neighbors, Ending, and Epsilon in that order.

As expected, the Symbol class represents one indexed symbol, the Neighbors class represents a pair of
neighbors, i.e., a pair of such indexed symbols. Both of these classes must implement public methods void
print(std::ostream& stream = std::cout) const through which we will be able to print them. Symbol
a with index 1 will be printed as a1, pair of neighbors a1 and b2 as (a1, b2).

For the first three data members of the result class, we used the standard set container std::set,
available in the <set> library. In order to do this, it is necessary to implement a comparison mechanism
for the inserted objects, namely the < operator. We can easily achieve this through a global function
bool operator<(const Item& left, const Item& right). The function itself returns true if and only
if the first operand is less than the second. Specifically, we will sort the indexed symbols in ascending
order according to their indices, pairs of neighbors primarily according to the index of the first symbol and
secondarily according to the index of the second.

In order to handle various error situations correctly, we will propose our own hierarchy of exception
classes. Specifically, we will consider four exception types ArgumentException, FileException, Parse
Exception, and MemoryException, all derived from a common base class Exception (it will really be our
custom exception class, we will not inherit from standard exceptions). One constructor Exception(const
char* message) will be provided. Its sole parameter will be a text message describing the occurred error
situation in more detail. This message will be passed as an ordinary C-style string, as we assume these
messages will be predefined and fixed. We define them as global constants, hence the exception class will
not deallocate the messages it receives. Finally, we will also provide one method to retrieve the stored
message via const char* message() const.

Regarding particular situations when to throw these exceptions and their text messages, we assume the
following behavior:

• Exceptions of type ArgumentException
– Invalid option: we find an invalid option (argument starting with - other than any expected

option) during the processing of input arguments (e.g., -x)
• Exceptions of type FileException

– Unable to open input file: we are not able to open the specified input file with expressions
• Exceptions of type ParseException

– Unknown token: we encounter an invalid or unknown token (e.g., a3)
– Missing operands: we fail to construct the current operation node due to missing operands in

the stack of operands (e.g., a+)
– Unmatched closing parenthesis: when processing a closing parenthesis, we are not able to

find the corresponding opening parenthesis in the stack of operators (e.g., a))
– Unmatched opening parenthesis: during the final cleaning of the stack of operators, we come

across an opening parenthesis that has not yet been closed (e.g., (a)
– Unused operands: at the very end of the algorithm, the stack of operands contains more than

just a single node
– Empty expression: or in the same situation, none on the contrary

• Exceptions of type MemoryException
– Unavailable memory: dynamic allocation fails due to lack of memory

Compared to our small assignments on arithmetic expressions, this time it is necessary to use smart
pointers from the <memory> library instead of C-style pointers for individual nodes within the internal
expression trees. Specifically, we will use unique smart pointers std::unique_ptr<Node>.

To create a new node, e.g., a leaf node for a symbol SymbolNode, and obtain a pointer to it, we will call
std::make_unique<SymbolNode>(symbol), where we simply pass parameters required by the particular
node constructor we chose. This function creates such a node instance using dynamic allocation. If that
fails, standard exception std::bad_alloc is thrown.

The purpose of a unique pointer, in particular, is to represent an exclusive ownership, i.e., ensure that
there will only ever be one pointer to a given node at any time. This is not just an intention, though, such
behavior is actually enforced by the language and compiler. For instance, it is not possible to copy such a
pointer. Therefore, when passing it (not only when working with the stack of operands or when creating
internal nodes of operations), it will be necessary to use r-value references and stealing via std::move.

The main advantage of smart pointers is that when the last (in our case the only) pointer to a given
node is destroyed, the node is automatically deallocated. In other words, with smart pointers, we do not
need to worry about allocation and especially not about deallocation. In other words, we entirely eliminate
the risk of memory leaks, though admittedly with a slight trade-off in performance. The implementation of
our parsing algorithm, however, gets significantly simplified. This specifically means handling of situations
in which the algorithm may fail, either due to parsing errors or insufficient memory.

Submit all created source files (*.cpp and *.h) except the main file Main.cpp with the main function.
The predefined one will contain directives #include "Reader.h" and #include "Expression.h".

The goal of the task is to demonstrate the ability to work with constructs we have encountered since the
beginning of the semester. In addition to basic skills, it involves working with program arguments, text files
and streams in general, functions, parameter passing, design of classes, use of constructors and destructors,
inheritance, virtual methods, and dynamic allocation.

The submitted implementation must, of course, be correct, stable, and without compilation warnings.
The overall quality of the code will also be evaluated. It means especially, but not exclusively, the
organization of the code into individual files, classes and functions, use of header files, naming of files,
functions or variables, the overall visual style of the code and indentation, passing arguments by value
or reference, quality of class design and use of inheritance and virtual methods, unnecessary repetition of
the same code, use of named constants, handling of error situations, as well as use of standard libraries,
containers or functions.

