**NIE-PDB: Advanced Database Systems** 

http://www.ksi.mff.cuni.cz/~svoboda/courses/241-NIE-PDB/

Lecture 11+12

# **Query Evaluation**

Martin Svoboda

martin.svoboda@fit.cvut.cz

3. and 10. 12. 2024

**Charles University**, Faculty of Mathematics and Physics **Czech Technical University in Prague**, Faculty of Information Technology

## **Lecture Outline**

### Algorithms

- Access methods
- External sort
- Nested loops join
- Sort-merge join
- Hash join

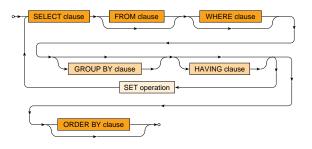
#### Evaluation

- Query evaluation plans
- Optimization techniques

## Introduction

### **SQL** queries

SELECT statements



## Introduction

## Relational algebra

- Basic and inferred operations
  - Selection  $\sigma_{\varphi}$ , projection  $\pi_{a_1,...,a_n}$ , renaming  $\rho_{b_1/a_1,...,b_n/a_n}$
  - Set operations:  $\underline{\text{union}} \cup$ , intersection  $\cap$ ,  $\underline{\text{difference}}$
  - Inner joins:  $\underline{\text{cross join}} \times$ , natural join  $\bowtie$ , theta join  $\bowtie_{\varphi}$
  - Left / right natural / theta semijoin  $\ltimes$ ,  $\rtimes$ ,  $\ltimes_{\varphi}$ ,  $\rtimes_{\varphi}$
  - Left / right natural / theta antijoin ▷, ▷, ▷, ▷,
  - Division ÷
- Extended operations
  - Left / right / full outer natural join ⋈, ⋈, ⋈
  - Left / right / full outer theta join  $\bowtie_{\varphi}$ ,  $\bowtie_{\varphi}$ ,  $\bowtie_{\varphi}$
  - Sorting, grouping and aggregation, distinct, ...

# **Naïve Algorithms**

## Selection: $\sigma_{\varphi}(E)$

Iteration over all tuples and removal of those filtered out

## Projection: $\pi_{a_1,...,a_n}(E)$

- Iteration over all tuples and removal of excluded attributes
  - But also removal of duplicates within the traditional model

#### **Distinct**

Sorting of all tuples and removal of adjacent duplicates

Inner joins: 
$$E_R \times E_S$$
,  $E_R \bowtie E_S$ ,  $E_R \bowtie_{\varphi} E_S$ 

Iteration over all the possible combinations via nested loops

### **Sorting**

Quick sort, heap sort, bubble sort, insertion sort, ...

# **Challenges**

#### **Blocks**

- Tuples stored in data files are not accessible directly
  - Since we have read / write operations for whole blocks only
- That is true for all types of files...
  - And so not just data files for tables
  - But also files for index structures or system catalog

### Latency

- Traditional magnetic hard drives are extremely slow
  - Efficient management of cached pages is hence essential

### Memory

- Size of available system memory is always limited
- ⇒ external algorithms are needed

# **Objectives**

### Query evaluation plan

Based on the database context and available memory...
 ... suitable evaluation algorithms need to be selected...
 ... so that the overall evaluation cost is minimal

#### **Database context**

- Relational schema: tables, columns, data types
- Integrity constraints: primary / unique / foreign keys, ...
- Data organization: heap / sorted / hashed file
- Index structures: B<sup>+</sup> tree, bitmap index, hash index
- Available statistics: min / max values, histograms, ...

# **Objectives**

### **Available system memory**

- Number of pages allocated for the execution of a given query
- There are two possible scenarios...
  - Having a particular memory size...
    - Propose its usage and estimate the evaluation cost
  - Having a particular cost expectation...
    - Determine the required memory and propose its usage

### **Evaluation algorithms**

- Access methods
- Sorting: external sort approaches
- Joining: nested loops, merge join, and hash join approaches
- ..

# **Objectives**

#### Cost estimation

- Expressed in terms of read / write disk operations
  - Since hard drives are extremely slow, as already stated...
    - And so everything else can boldly be ignored
- We are interested in estimates only
  - Since it is unlikely we could provide accurate calculations
  - But still...
    - The more accurate estimates, the better evaluation plans
  - And there can really be huge differences in their efficiency...
    - Even up to several orders of magnitude!
- In other words...
  - Query optimization is <u>crucial</u> for any database system
  - As well as we also need to know what we are doing...

## **Available Statistics**

#### **Environment**

- B: size of a block / page, usually  $\approx 4 \, kB$
- M: number of available system memory pages

### Relation $\mathcal{R}$

- n<sub>R</sub>: number of tuples
- $s_R$ : average / fixed tuple size
- $b_R \approx \lfloor B/s_R \rfloor$ : blocking factor
  - Number of tuples that can be stored within one block
- $p_R \approx \lceil n_R/b_R \rceil$ : number of blocks
- V<sub>R,A</sub>: cardinality of the active domain of attribute A
  - Number of distinct values of A occurring in  $\mathcal R$
- $min_{R,A}$  and  $max_{R,A}$ : minimal and maximal values for A

# **Access Methods**

## **Data Files**

#### Internal structure

- Blocks of data files for tables are divided into slots
  - Each slot is intended for storing exactly one tuple
    - By the way, they can easily be uniquely identified
    - Using a pair of block and slot logical ordinal numbers
- Fixed-size slots
  - Usage status of each slot just needs to be remembered



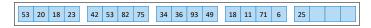
- Variable-size slots
  - When at least one variable-size attribute is involved
  - Slot beginnings and lengths need to be remembered



# **Heap File**

## Heap file

- Tuples are put into individual slots entirely arbitrarily
  - I.e., we do not have any specific knowledge of their position



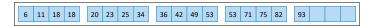
#### **Selection costs**

- Full scan is inevitable in almost all situations
  - $c = p_R$
- Equality test with respect to a unique attribute
  - $c = \lceil p_R/2 \rceil$ 
    - Since we can stop at the moment a given tuple is found
    - However, uniform distribution of data and queries is assumed
    - And values outside of the active domain may also be queried

## **Sorted File**

#### Sorted file

Tuples are ordered with respect to a particular attribute



#### Selection costs

- Binary search (half-interval search) can be used in general
  - However, only when <u>the same</u> attribute is queried, of course
    - I.e., the same attribute as the one used for sorting
    - Otherwise, sequential read as in a heap file would be needed
- Equality test
  - $c = \lceil \log_2 p_R \rceil$  for a **unique** attribute
  - $c = \lceil \log_2 p_R \rceil + \lceil p_R / V_{R.A} \rceil$  for a **non-unique** attribute
- Various range queries

## Hashed File

#### Hashed file

- Tuples are put into disjoint buckets (logical groups of blocks)
  - Based on a selected hash function over a particular attribute

- E.g., 
$$h(A) = A \mod 3$$



- Hash function
  - Its domain are values of a given attribute A
  - Its **range** provides H distinct values
    - There is exactly one bucket for each one of them
    - All tuples in a bucket always share the same hash value

## **Hashed File**

#### File statistics

- $H_R$ : number of buckets
- $C_R \approx \lceil p_R/H_R \rceil$ : expected bucket size
  - Measured as a number of blocks in a bucket

#### **Selection costs**

- Equality test when the hashing attribute is queried
  - Only the corresponding bucket needs to be accessed
  - $c = C_R$  for a **non-unique** attribute
  - $c = \lceil C_R/2 \rceil$  for a **unique** attribute
    - Similar assumptions as in the case of heap files
- Any other condition
  - $c = p_R$ 
    - I.e., full scan is needed

### B<sup>+</sup> tree index structure = self-balanced search tree

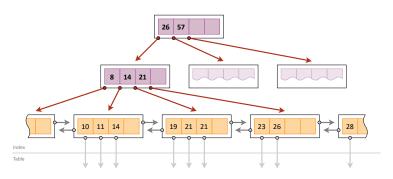
- Logarithmic height is guaranteed (the same across all leaves)
- Moreover, very high fan-out is assumed
  - I.e., our trees will tend to be significantly wider than taller
    - $-\Rightarrow$  search times will not only be logarithmic, but also really low

### **Logical structure**

- Internal node (including a non-leaf root node)
  - Contains an ordered sequence of dividing values and pointers to child nodes representing the sub-intervals they determine
- Leaf node
  - Contains individual values and pointers to tuples in data file
  - Leaves are also interconnected by pointers in both directions

## **B**<sup>+</sup> tree index structure (cont'd)

• Sample index for relation  ${\mathcal R}$  and its attribute A



### **Physical structure**

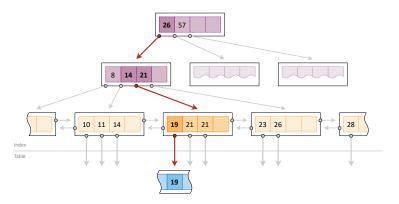
- Each node is physically represented by one index file block
  - And so they are treated the same way as data file blocks
    - I.e., loaded into the system memory one by one, etc.

#### Index statistics

- $m_{R.A}$ : maximal **number of children** (order of tree)
  - Usually up to small hundreds in practice
  - Actual number is guaranteed to be at least  $\lceil m_{R,A}/2 \rceil$ 
    - Except for the root node
- $I_{R.A}$ : index height
  - Usually just pprox 2-3 for typical real-world tables
- $p_{RA}$ : number of **leaf nodes**

### Search algorithm

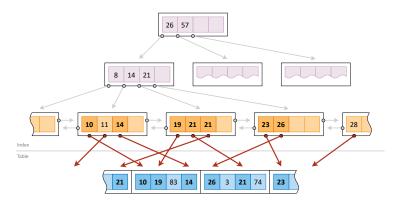
- Index is traversed from its root toward the corresponding leaf
  - Data tuple then needs to be fetched from the data file



## Non-Clustered B<sup>+</sup> Tree Index

#### Non-clustered index

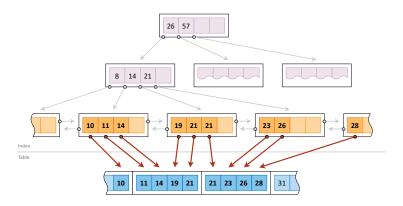
- Order of items within the leaves and data file is not the same
  - I.e., data file is organized as a heap file of hashed file



## **Clustered B<sup>+</sup> Tree Index**

#### **Clustered index**

- On the contrary, order of items is (at least almost) the same
  - I.e., data file is a sorted file (with respect to the same attribute)



## **Selection costs**

### Non-clustered B<sup>+</sup> tree index

Equality test for a unique / non-unique attribute

• 
$$c = I_{R.A} + 1$$
  
•  $c = I_{R.A} + \lceil p_{R.A} / V_{R.A} \rceil + \min(p_R, \lceil n_R / V_{R.A} \rceil)$ 

- Various range queries
- ...

### Clustered B<sup>+</sup> tree index

- Equality test for a unique / non-unique attribute
  - $c = I_{R.A} + 1$
  - $c = I_{R.A} + \lceil p_R / V_{R.A} \rceil$
- Various range queries
- ...

### Sample scenario #1

- Movie ( <u>id</u>, title, year, ... )
  - Basic statistics
    - $-n_M = 100\,000$  tuples,  $b_M = 10$ ,  $p_M = 10\,000$  blocks
    - $-V_{M.id}=n_M=100~000$  values (since they are unique)
  - Heap file
  - Sorted file (using ids)
  - Hashed file
    - $-h(M.id) = M.id \mod 50$
    - $-H_M=50$  buckets,  $C_M=200$  blocks
  - B<sup>+</sup> tree index (using ids)
    - $-m_{M.id}=100$  followers
    - $-I_{M.id}=3$ ,  $p_{M.id}=1\,500$  blocks

### **Equality test**: movie with a particular identifier

- Heap file
  - $c = \lceil p_M/2 \rceil = 5000$
- Sorted file

• 
$$c = \lceil \log_2 p_M \rceil = 14$$

- Hashed file
  - $c = \lceil C_M/2 \rceil = 100$
- Non-clustered index (B<sup>+</sup> tree & heap file)
  - $c = I_{M,year} + 1 = 4$
- Clustered index (B<sup>+</sup> tree & sorted file)
  - $c = I_{M.year} + 1 = 4$

### Sample scenario #2

- Movie (<u>id</u>, title, year, ...)
  - Basic statistics

$$-n_M = 100\,000$$
 tuples,  $b_M = 10$ ,  $p_M = 10\,000$  blocks

$$-V_{M.year}=50$$
 values

$$-min_{M.year} = 1943$$
,  $max_{M.year} = 2022$  (i.e.,  $80$  values)

- Heap file
- Sorted file (using years)
- Hashed file
  - $-h(M.year) = M.year \mod 20$
  - $H_M = 20$  buckets,  $C_M = 500$  blocks
- B<sup>+</sup> tree index (using years)
  - $m_{M,year} = 100$  followers
  - $-I_{M.year} = 3$ ,  $p_{M.year} = 1500$  blocks

### Equality test: movies filmed in a particular year

- Heap file
  - $c = p_M = 10000$
- Sorted file

• 
$$c = \lceil \log_2 p_M \rceil + \lceil p_M / V_{M.year} \rceil = 214$$

- Hashed file
  - $c = C_M = 500$
- Non-clustered index (B<sup>+</sup> tree & heap file)

• 
$$c = I_{M.year} + \lceil p_{M.year} / V_{M.year} \rceil + \min(p_M, \lceil n_M / V_{M.year} \rceil)$$
  
= 2 033

- Clustered index (B<sup>+</sup> tree & sorted file)
  - $c = I_{M.year} + \lceil p_M / V_{M.year} \rceil = 203$

# **External Sort**

## **External Sort**

### N-way external merge sort

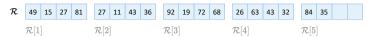
- Sort phase (pass 1)
  - Groups of input blocks are loaded into the system memory
  - Tuples in these blocks are then sorted
    - Any in-memory in-place sorting algorithm can be used
    - E.g.: quick sort, heap sort, bubble sort, insertion sort, ...
  - Created initial runs are written into a temporary file
- Merge phase (passes 2 and higher)
  - Groups of runs are loaded into the memory and merged
  - Newly created (longer) runs are written back on a hard drive
  - Merging is finished when exactly one run is obtained
    - And so the entire input table is sorted

## **Sort Phase**

#### Pass 1

- Input data file
  - Relational table  $\mathcal{R}$

- E.g., 
$$n_R=18$$
 tuples,  $b_R=4$  tuples/block,  $p_R=5$  blocks

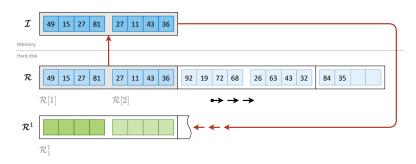


- System memory layout
  - Input buffer  ${\mathcal I}$ 
    - $\;\; \text{E.g., size} \; M = 2 \; \text{pages}$

## **Sort Phase**

#### Pass 1

- Groups of M blocks are presorted and so initial runs created
  - Input blocks from  $\mathcal R$  are first loaded to  $\mathcal I$ 
    - Individual tuples in *I* are then sorted
    - Created runs are stored to a temporary file  $\mathcal{R}^1$



## **Sort Phase**

#### Pass 1

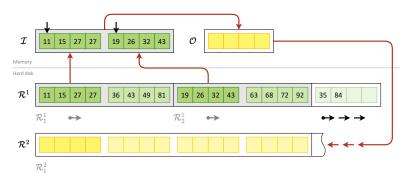
• **Resulting runs** in  $\mathcal{R}^1$  within our sample scenario



# **Merge Phase**

#### Pass 2

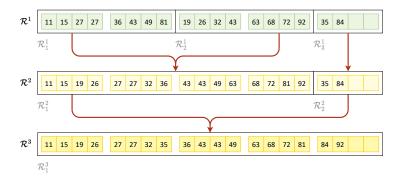
- Groups of M runs are iteratively merged together
  - Blocks from these input runs are gradually loaded into  $\mathcal{I}$ 
    - Minimal items are then iteratively selected and moved to  ${\cal O}$
    - Merged (longer) runs are written to a new temporary file  $\mathcal{R}^2$



# **Merge Phase**

#### Passes 2 and 3

- Merging continues until just a single run is acquired
  - And so the entire input table is sorted



# **Algorithm**

## Sort phase (pass 1)

```
1 p \leftarrow 1

2 foreach group of blocks B_1, \ldots, B_M (if any) from \mathcal{R} do

3 read these blocks to \mathcal{I}

4 sort all items in \mathcal{I}

5 write all blocks from \mathcal{I} as a new run to \mathcal{R}^p
```

# Algorithm

## Merge phase (passes 2 and higher)

```
while \mathcal{R}^p has more then just one run do
         p \leftarrow p + 1
         foreach group of runs R_1, \ldots, R_M (if any) from \mathcal{R}^{p-1} do
              start constructing a new run in \mathcal{R}^p
              read the first block from each run R_x to \mathcal{I}[x]
10
              while \mathcal{I} contains at least one item do
11
                   select the minimal item and move it to \mathcal{O}
12
                   if the corresponding \mathcal{I}[x] is empty then
13
                        read the next block from R_x (if any) to \mathcal{I}[x]
14
                   if \mathcal{O} is full then write \mathcal{O} to \mathcal{R}^p and empty \mathcal{O}
15
              if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{R}^p and empty \mathcal{O}
16
```

### Summary

#### **Memory layout**

- Sort phase (**pass 1**): M
  - Input buffer  $\mathcal{I}$ : M pages



- Merge phase (passes 2 and higher): M+1
  - Input buffer  $\mathcal{I}$ :  $M \ge 2$  pages
  - Output buffer O: 1 page



## Summary

#### Time complexity

- Single pass (regardless of the phase)
  - $c_{\texttt{read}} = c_{\texttt{write}} = p_R$
- Number of passes
  - $t = \lceil \log_M(p_R) \rceil$
- Overall cost
  - $c_{\text{ES}} = t \cdot (c_{\text{read}} + c_{\text{write}}) = \lceil \log_M(p_R) \rceil \cdot 2p_R$

#### Limitation of the overall number of passes

- In general...
  - $M = \lceil \sqrt[t]{p_R} \rceil$
- Specifically for t=2 (i.e., exactly 2 passes)
  - $M = \lceil \sqrt{p_R} \rceil$

# Nested Loops Join

### **Nested Loops**

#### **Binary nested loops**

- Universal approach for all types of inner joins
  - Natural join, cross join, theta join
    - I.e., arbitrary joining condition can be involved
  - Support possible duplicates
  - Requires no index structures
- Not the best option in all situations, though
  - Suitable for tables with significantly different sizes

#### Basic idea

- Outer loop: iteration over the blocks of the first table
- Inner loop: iteration over the blocks of the second table

### **Nested Loops**

#### Sample input data

• Tables  $\mathcal R$  and  $\mathcal S$  to be joined using a value equality test

#### Basic setup

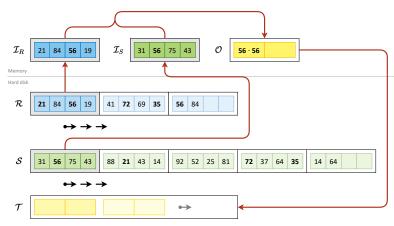
- Memory layout: 1+1+1
  - Input buffer  $\mathcal{I}_R$ : 1 page
  - Input buffer  $\mathcal{I}_S$ : 1 page
  - Output buffer  $\mathcal{O}$ : 1 page



### **Nested Loops**

#### **Basic setup** (1 + 1 + 1)

Another pair of loops is used for joining tuples in the memory



### **Algorithm**

```
Basic setup (1 + 1 + 1)
```

```
foreach block R from \mathcal{R} do
         read R into \mathcal{I}_R
         foreach block S from S do
 3
               read S into \mathcal{I}_S
 4
               foreach item r in \mathcal{I}_R do
 5
                    foreach item s in \mathcal{I}_S do
 6
                          if r and s satisfy the join condition then
                               join r and s and put the result to \mathcal{O}
                               if \mathcal{O} is full then write \mathcal{O} to \mathcal{T}, empty \mathcal{O}
 9
10 if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
```

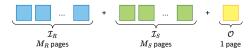
### **Observations**

#### Time complexity

- Basic setup (1 + 1 + 1)
  - $c_{NL} = p_R + p_R \cdot p_S$
- ⇒ smaller table should always be taken as the <u>outer</u> one

#### **General setup**

- Multiple pages are used for both the input buffers
- Memory layout:  $M_R + M_S + 1$ 
  - Input buffer  $\mathcal{I}_R$ :  $M_R$  pages
  - Input buffer  $\mathcal{I}_S$ :  $M_S$  pages
  - Output buffer O: 1 page



### **Algorithm**

### General setup ( $M_R + M_S + 1$ )

```
foreach group of blocks R_1, \ldots, R_{M_R} (if any) from \mathcal{R} do
         read these blocks into \mathcal{I}_R
 2
         foreach group of blocks S_1, \ldots, S_{M_S} (if any) from S do
 3
              read these blocks into \mathcal{I}_{S}
 4
              foreach item r in \mathcal{I}_R do
                    foreach item s in \mathcal{I}_S do
 6
                         if r and s satisfy the join condition then
                              join r and s and put the result to \mathcal{O}
                              if \mathcal{O} is full then write \mathcal{O} to \mathcal{T}, empty \mathcal{O}
10 if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
```

NIE-PDB: Advanced Database Systems | Lecture 11+12: Query Evaluation | 3. and 10. 12. 2024

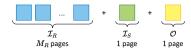
### **Observations**

#### Time complexity

- General setup ( $M_R + M_S + 1$ )
  - $c_{\mathrm{NL}} = p_R + \lceil p_R/M_R \rceil \cdot p_S$
- $\Rightarrow$  there is no reason of having  $M_S \ge 2$

#### Standard setup

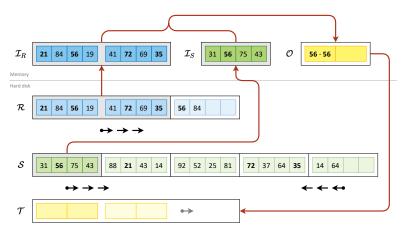
- Memory layout:  $M_R + 1 + 1$ 
  - Input buffer  $\mathcal{I}_R$ :  $M_R$  pages
  - Input buffer I<sub>S</sub>: 1 page
  - Output buffer O: 1 page



### **Standard Approach**

Standard setup ( $M_R + 1 + 1$ ) with zig-zag optimization

Multiple pages are used just for the outer table



### **Observations**

#### Zig-zag optimization

- Reading of the inner table S
  - Odd iterations normally
  - Even iterations in reverse order

#### Time complexity

- Standard setup ( $M_R + 1 + 1$ )
  - $c_{\mathrm{NL}} = p_R + \lceil p_R/M_R \rceil \cdot p_S$  (without zig-zag)
  - $c_{\mathrm{NL}} = p_R + \lceil p_R/M_R \rceil \cdot (p_S 1) + 1$  (with zig-zag)

#### Special cases

- Smaller table fits entirely within the memory, i.e.,  $p_R \leq M_R$ 
  - $c_{NL} = p_R + p_S$
- Non-brute-force replacement for inner loops
  - When a suitable index exists on the inner table, ...

## Sort-Merge Join

### **Sort-Merge Join**

#### **Sort-merge join** algorithm (or just **merge join**)

- Inner joins based on value equality tests only
  - Basic version without duplicates
    - Could be extended to support them, though
- Suitable for tables with relatively similar sizes
  - Especially when they are already sorted
  - Or when the final result is expected to be sorted

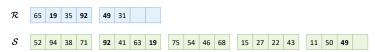
#### **Phases**

- Sort phase
  - Both tables are externally sorted, one by one (if not yet)
- Join phase
  - Items are joined while simulating the merge of the two tables

## **Basic Approach**

#### Sample input data

• Input tables  ${\mathcal R}$  and  ${\mathcal S}$ 



#### Sort phase

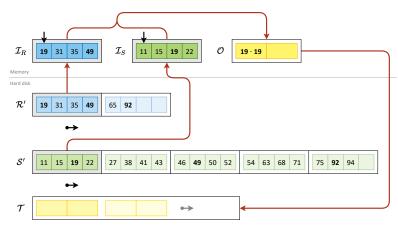
Resulting sorted tables



### **Basic Approach**

#### Join phase

Blocks from the sorted tables are processed one by one



### **Algorithm**

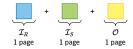
#### Join phase

```
1 read block \mathcal{R}'[1] to \mathcal{I}_R and block \mathcal{S}'[1] to \mathcal{I}_S
    while both \mathcal{I}_R and \mathcal{I}_S contain at least one item do
          let r be the minimal item in \mathcal{I}_R and s minimal item in \mathcal{I}_S
 3
          if r and s can be joined then
 4
               join r and s and put the result to \mathcal{O}
               if \mathcal{O} is full then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
 6
               remove both r from \mathcal{I}_R and s from \mathcal{I}_S
          else remove the lower one of r from \mathcal{I}_R or s from \mathcal{I}_S
 8
          if \mathcal{I}_R is empty then read the next block from \mathcal{R}' (if any)
 9
          if \mathcal{I}_S is empty then read the next block from \mathcal{S}' (if any)
10
if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
```

### **Observations**

#### Join phase

- Memory layout: 1+1+1
  - Input buffer  $\mathcal{I}_R$ : 1 page
  - Input buffer  $\mathcal{I}_S$ : 1 page
  - Output buffer O: 1 page



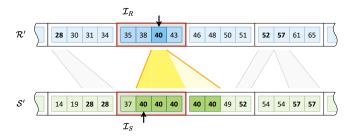
#### Time complexity

- Sort phase
- Join phase
  - $c_{\rm MJ} = p_R + p_S$

### **Extended Version**

#### **Duplicate items**

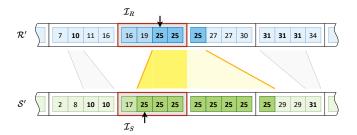
- Possible duplicates in one table only
  - Let it be S (without loss of generality)
  - Algorithm modification is straightforward...
    - Having successfully joined r and s, we just remove s from  $\mathcal{I}_S$  and not r from  $\mathcal{I}_R$  (line 7)



### **Extended Version**

#### **Duplicate items**

- Possible duplicates in both tables
  - All matching pairs of r and s just need to be joined...
  - Unfortunately, size of input buffers might not be sufficient
    - Since we may span block boundaries, even repeatedly



**Hash Join** 

### **Hash Join**

#### Hash join approaches

- Basic principle
  - Items of the first table are hashed into the system memory
  - Items of the second table are then attempted to be joined
- Limitations
  - Inner joins based on value equality tests only
    - Including possible duplicates
  - Not suitable for small active domains
- Particular approaches
  - Classic hash join, Simple hash join, Partition hash join,
     Grace hash join, and Hybrid hash join

### **Classic Hashing**

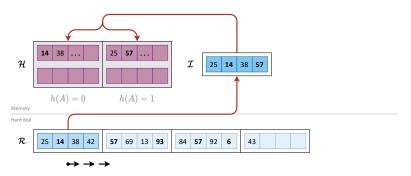
#### Classic hash join

- Build phase
  - Smaller table (let it be  $\mathcal{R}$ ) is hashed into the system memory
    - I.e., it is sequentially loaded into the memory, block by block
    - All its tuples are then emplaced into the hash container
- Hash function h is assumed for this purpose
  - Its domain are values of the joining attribute A
  - Its range provides H distinct values
- Hash container internally contains H buckets
  - Its **overall size** will inevitably be somewhat larger than  $p_R$ 
    - Let us say  $M = \lceil F \cdot p_R \rceil$  pages for some small factor F
- Probe phase
  - Items from the larger table  $\mathcal S$  are attempted to be joined

### **Build Phase**

#### **Build phase**

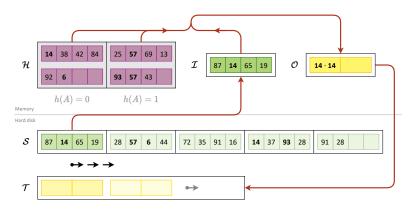
- Tuples from the smaller table are hashed into the memory
  - E.g., hash function  $h(A) = A \mod 2$  is assumed



### **Probe Phase**

#### **Probe phase**

Tuples from the larger table are attempted to be joined



### **Algorithm**

#### **Build phase**

```
foreach block R from \mathcal{R} do

read R into \mathcal{I}

foreach item r in \mathcal{I} do

calculate hash value h \leftarrow h(r.A)

add r into bucket h in \mathcal{H}
```

### **Algorithm**

#### **Probe phase**

```
foreach block S from S do
        read S into \mathcal{T}.
        foreach item s in \mathcal{I} do
3
             calculate hash value h \leftarrow h(s.A)
             foreach item r in bucket h in \mathcal{H} do
                   if r and s can be joined then
6
                        join r and s and put the result to \mathcal{O}
                        if \mathcal{O} is full then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
9 if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
```

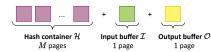
### **Observations**

#### **Memory layout**

- Build phase: M+1
  - Hash container  $\mathcal{H} \colon M = \lceil F \cdot p_R \rceil$  pages
  - Input buffer  $\mathcal{I}$ : 1 page



- Probe phase: M + 1 + 1
  - Hash container  $\mathcal{H}$ : M pages (preserved from the build phase)
  - Input buffer  $\mathcal{I}$ : 1 page
  - Output buffer O: 1 page



### **Observations**

#### Time complexity

- Build and probe phases
  - $c_{\text{build}} = p_R$
  - $c_{\text{probe}} = p_S$
- Overall cost
  - $c_{\text{CH}} = c_{\text{build}} + c_{\text{probe}} = p_R + p_S$

#### **Summary**

- Interesting approach as for its efficiency
  - However, usable only when the smaller table can entirely be hashed into the system memory...

### **Partition Hashing**

#### Partition hash join

- Basic principle
  - Both tables are first partitioned
    - Using partition function p
  - Pairs of the corresponding partitions are then joined together
    - Using the classic hash join approach
    - Or actually even nested loops if desired

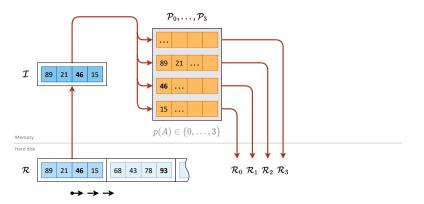
#### **Overall procedure**

```
1 split \mathcal{R} and create partitions \mathcal{R}_0,\ldots,\mathcal{R}_P
2 split \mathcal{S} and create partitions \mathcal{S}_0,\ldots,\mathcal{S}_P
3 foreach partition p\in\{0,\ldots,P-1\} do
4 _____ join partitions \mathcal{R}_p and \mathcal{S}_p
```

### **Partition Phase**

#### **Partition phase** (for table $\mathcal{R}$ )

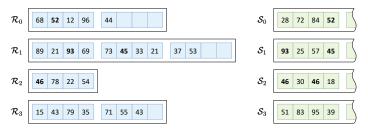
Tuples of a given table are split to disjoint partitions



### Join Phase

#### Partition phase

Resulting partitions for our sample scenario



#### Join phase

- Pairs of the <u>corresponding</u> partitions are then joined together
  - $\mathcal{R}_0$  and  $\mathcal{S}_0$ ,  $\mathcal{R}_1$  and  $\mathcal{S}_1$ , ...

### **Algorithm**

#### **Partition phase**

ullet Table  ${\mathcal R}$  is assumed, partitioning of  ${\mathcal S}$  is analogous

```
foreach block R from \mathcal{R} do

read R into \mathcal{I}

foreach item r in \mathcal{I} do

calculate partition value p \leftarrow p(r.A)

add r into partition buffer \mathcal{P}_p

if \mathcal{P}_p is full then write \mathcal{P}_p to \mathcal{R}_p and empty \mathcal{P}_p

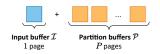
foreach partition p \in \{0, \dots, P-1\} do

if \mathcal{P}_p is not empty then write \mathcal{P}_p to \mathcal{R}_p and empty \mathcal{P}_p
```

### **Observations**

#### **Memory layout**

- Partition phase: 1+P
  - Input buffer  $\mathcal{I}$ : 1 page
  - Partition buffers  $\mathcal{P}$ : P pages



#### Time complexity

- Partitioning phase
  - $c_{\mathtt{split}} \approx 2 \cdot p_R + 2 \cdot p_S$
- Overall cost (with classic hash join involved)
  - $c_{\text{PH}} = c_{\text{split}} + P \cdot c_{\text{CH}} \approx c_{\text{split}} + P \Big[ \frac{p_R}{P} + \frac{p_S}{P} \Big] \approx 3 \cdot (p_R + p_S)$

**Query Evaluation** 

### Sample Query

#### Database schema

- Movie (id, title, year, ...)
- Actor ( movie, actor, character, ... )
  - FK: Actor[movie] ⊆ Movie[id]

#### Sample query

- Actors and characters they played in movies filmed in 2000
  - SQL expression

```
SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)
```

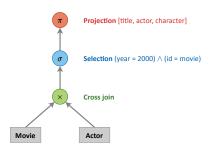
RA expression

```
\pi_{\mathsf{title},\mathsf{actor},\mathsf{character}}\Big(\sigma_{(\mathsf{year}=2000) \land (\mathsf{id}=\mathsf{movie})}\big(\mathsf{Movie} \times \mathsf{Actor}\big)\!\Big)
```

# Sample Query

#### Sample query (cont'd)

- Actors and characters they played in movies filmed in 2000
  - $\pi_{\text{title,actor,character}} \left( \sigma_{(\text{year}=2000) \land (\text{id}=\text{movie})} \left( \text{Movie} \times \text{Actor} \right) \right)$



### **Query Evaluation**

#### Basic idea

• SQL query o RA query o evaluation plan o query result

#### **Evaluation process**

- (1) Scanning [scanner]
  - Lexical analysis is performed over the input SQL expression
    - Lexemes are recognized and then tokens generated
- (2) Parsing [parser]
  - Syntactic analysis is performed
    - Derivation tree is constructed according to the SQL grammar
- (3) Translation
  - Query tree with relational algebra operations is constructed

# **Query Evaluation**

### Evaluation process (cont'd)

- (4) Validation [validator]
  - Semantic validity is checked
    - Compliance of relation schemas with intended operations
- (5) Optimization [optimizer]
  - Alternative evaluation plans are devised and compared
    - In order to find the most efficient plan
    - Based on their evaluation cost estimates
- (6) Code generation [generator]
  - Execution code is generated for the chosen plan
- (7) Execution [processor]
  - Intended query is finally evaluated
    - And the yielded result provided to the user

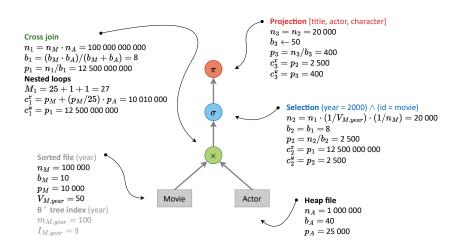
### **Query Evaluation**

#### **Query tree**

- Internal tree structure
  - Leaf nodes = input tables
  - Inner nodes = individual RA operations ( $\sigma$ ,  $\pi$ ,  $\times$ ,  $\bowtie$ , ...)
- Root node represents the entire query
  - Nodes are evaluated from leaves toward the root

### Query evaluation plan

- Query tree
- · For each inner node...
  - Calculated statistics (number of tuples, blocking factor, ...)
  - Selected algorithm (limited by context and available memory)
  - Estimated cost
- Overall cost



### **Evaluation Plan Cost**

#### Overall evaluation cost

- Let us first assume that all intermediate results are always written to temporary files and so each involved operation...
  - Reads its inputs from / writes its output to a hard drive
- Overall cost then equals to the sum of all the partial costs

#### Cost of Plan #1

- M = 25 + 1 + 1 memory pages
- $c = [c_1^r + c_1^w] + [c_2^r + c_2^w] + [c_3^r]$
- $c = [p_M + (p_M/25) \cdot p_A + p_1] + [p_1 + p_2] + [p_2]$
- $c = [10\ 010\ 000 + 12\ 500\ 000\ 000] + [12\ 500\ 000\ 000 + 2\ 500] + [2\ 500]$
- $c = 25\ 010\ 015\ 000$

# Sample Query

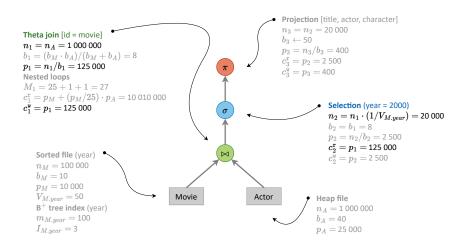
#### Intuitive optimization

- Actors and characters they played in movies filmed in 2000
  - SQL expression

```
SELECT title, actor, character
FROM Movie JOIN Actor ON (id = movie)
WHERE (year = 2000)
```

RA expression

```
\pi_{\text{title,actor,character}} \left( \sigma_{(\text{year}=2000)} \left( \text{Movie} \bowtie_{(\text{id}=\text{movie})} \text{Actor} \right) \right)
```



#### Cost of Plan #2

- Again M = 25 + 1 + 1 memory pages
- $c = [c_1^{r} + c_1^{w}] + [c_2^{r} + c_2^{w}] + [c_3^{r}]$
- $c = [p_M + (p_M/25) \cdot p_A + p_1] + [p_1 + p_2] + [p_2]$
- $c = [10\ 010\ 000 + 125\ 000] + [125\ 000 + 2\ 500] + [2\ 500]$
- $c = 10\ 265\ 000$ 
  - $\ ^{\blacksquare}$  That is approximately  $2\,400$  times better than the first plan

# **Pipelining**

#### **Pipelining** mechanism

- Intermediate results are passed between the operations directly without the usage of temporary files on a disk
  - And so just within the system memory
    - It may even be possible to do it in-place without extra pages
- Unfortunately, such an approach is <u>not always possible</u>...

#### Cost of Plan #2 with pipelining

- Still M = 25 + 1 + 1 memory pages
- $c = [c_1^r + \chi] + [\chi + \chi] + [\chi]$ 
  - Joined tuples are filtered and projected immediately in-place
- $c = 10\,010\,000$

## **Query Optimization**

#### Objective = finding the most optimal query evaluation plan

- It is not possible to consider all plans, though
  - Simply because there are far too many of them
  - And so pruning and heuristics need to be incorporated

#### **Optimization strategies**

- Algebraic
  - Proposal of alternative plans using query tree transformations
- Statistical
  - Estimation of costs and result sizes based on available statistics
- Syntactic
  - Manual modification of query expressions by users themselves
    - In order to involve plans that would otherwise be unreachable
    - Breaches the principle of declarative querying, though

# **Statistical Optimization**

### Objective

- Capability of calculating necessary result characteristics...
  - Of both the final result as well as all intermediate ones
    - I.e., all individual nodes within a given evaluation plan tree
- ... so that the overall cost can be estimated
  - And thus alternative plans mutually compared

#### **Basic statistics**

- Data file for table R
  - $n_R$  number of tuples,  $s_R$  tuple size,  $b_R$  blocking factor
  - $p_R$  number of pages
  - Hashed file:  $H_R$  number of buckets,  $C_R$  bucket size
- Index file for attribute A from table R
  - B<sup>+</sup> tree:  $I_{R,A}$  tree height,  $p_{R,A}$  number of leaf nodes

# **Statistical Optimization**

#### Additional statistics

- Provide deeper insight into the active domain
  - May even be implicitly derivable from index structures
  - Unfortunately, they may also be missing or unavailable
    - Especially as for intermediate results
- $V_{R,A}$  number of distinct values
- $min_{R.A}$  and  $max_{R.A}$  minimal and maximal values
- Histograms
  - Provide even more accurate understanding of the domain
    - And so better estimates
  - Especially useful for non-uniform distributions

### **Size Estimates: Selection**

**Selection**:  $T = \sigma_{\varphi}(E)$ 

### **Tuple size**

- $\bullet$   $s_T = s_E$ 
  - Tuples are just filtered out and so their size remains untouched

### **Blocking factor**

•  $b_T = b_E$ 

#### **Number of tuples**

- Basic idea:  $n_T = \lceil n_E \cdot r_{\varphi} \rceil$
- $r_{\varphi} \in [0,1]$  is an estimated reduction factor
  - Describes how much the original tuples will be reduced
    - Depends on a particular condition  $\varphi$
    - As well as particular available statistics...

# **Size Estimates: Projection**

**Projection**: 
$$T = \pi_{a_1,...,a_n}(E)$$

### **Tuple size**

s<sub>T</sub> is simply calculated using sizes of all preserved attributes

### **Blocking factor**

•  $b_T = \lfloor B/s_T \rfloor$ 

#### **Number of tuples**

- Default SQL projection without the DISTINCT modifier
  - I.e., removal of potential duplicates is not performed
  - $n_T = n_E$
- With duplicates removal enabled
  - $n_T = n_E$  if at least one key of E is preserved
  - ..

### **Size Estimates: Joins**

Inner joins:  $T = E_R \times E_S$  or  $E_R \bowtie E_S$  or  $E_R \bowtie_{\varphi} E_S$ 

### **Tuple size**

- $s_T \approx s_R + s_S$ 
  - Less for natural join since shared attributes are not repeated

#### **Blocking factor**

• 
$$b_T \approx \left\lfloor \frac{B}{s_T} \right\rfloor \approx \left\lfloor \frac{B}{s_R + s_S} \right\rfloor \approx \left\lfloor \frac{B}{B/b_R + B/b_S} \right\rfloor \approx \left\lfloor \frac{b_R \cdot b_S}{b_R + b_S} \right\rfloor$$

- Can be calculated exactly from the actual resulting tuple size
- As well as estimated just using the original blocking factors

#### Number of tuples

- $n_T = \lceil n_R \cdot n_S \cdot r_{\varphi} \rceil$  with  $r_{\varphi} \in [0,1]$  for joining condition  $\varphi$ 
  - Similar approach with reduction factors as in selections

## **Algebraic Optimization**

#### Objective

- Capability of finding alternative query evaluation plans
  - Based on various equivalence rules
    - E.g.: commutativity of selection, associativity of inner joins, ...
- Ultimate challenge
  - Space of all possible plans may be enormous
  - And so significant pruning must be involved

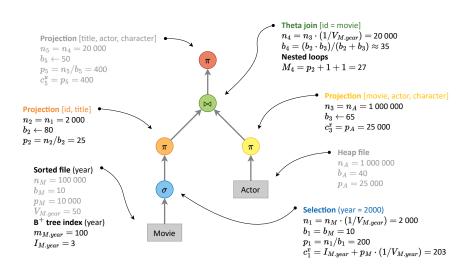
#### Basic strategy for SPJ queries = select-project-join queries

- They allow to be approached at two separate levels...
  - Single-relation plans = best access method for each table
  - Multi-relation plans = best join plan for all the tables
- But still an NP-complete problem

### **Examples**

### Sample transformations

```
• \pi_{\text{title,actor,character}}\left(\frac{\sigma_{\text{(year=2000)} \land (\text{id=movie})}}{\sigma_{\text{(Movie}} \times \text{Actor})}\right) // #1
\bullet \ \ \pi_{\rm title,actor,character}\Big(\sigma_{\rm (year=2000)}\big(\boxed{\sigma_{\rm (id=movie)}}\ ({\rm Movie} \boxed{\times} \ {\rm Actor})\big)\Big)
\pi_{\text{title,actor,character}} \left( \sigma_{\text{(year=2000)}}(\text{Movie}) \bowtie_{\text{(id=movie)}} \text{Actor} \right)
\bullet \quad \pi_{\mathsf{title},\mathsf{actor},\mathsf{character}}\Big(\pi_{\mathsf{id},\mathsf{title}}\big(\sigma_{(\mathsf{year}=2000)}(\mathsf{Movie})\big) \bowtie_{(\mathsf{id}=\mathsf{movie})}
    \pi_{\rm movie, actor, character}({\sf Actor}) // #3
```



#### Cost of Plan #3 with pipelining

- $\mathit{M} = 25 + 1 + 1$  memory pages for buffers  $\mathcal{I}_1$ ,  $\mathcal{I}_2$  and  $\mathcal{O}$ 
  - I.e., still the same amount of system memory pages used

• 
$$c = [c_1^x + \chi] + [\chi + \chi] + [c_3^x + \chi] + [\chi + \chi] + [\chi]$$

- lacksquare  $\mathcal{I}_2$  is used for index traversal and then reading of movies
- All filtered and projected movies are put into  $\mathcal{I}_1$
- Actors are read into  $\mathcal{I}_2$ , their projection is postponed
- Joined tuples are put into  $\mathcal{O}$  and projected

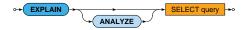
• 
$$c = [I_{M.year} + p_M \cdot (1/V_{M.year})] + [p_A]$$

- $c = [203] + [25\ 000]$
- $c = 25\ 203$ 
  - ullet That is approximately 400 times better than the second plan
    - And so almost 1 million times better than the first plan

### **Explain Statements**

#### **EXPLAIN statement**

- Allows to retrieve the evaluation plan for a given query
  - When ANALYZE modifier is provided...
    - Query is also executed and the actual run times are returned



#### Example

EXPLAIN

```
SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)
```

### **Observations**

#### False assumptions and simplifications

- Variable size of tuples
- Unused slots and inner fragmentation within blocks
- Overflow areas in sorted / hashed files
- Outer fragmentation of files on a hard drive
- Impact of the caching manager
- Extent of available statistics and their lazy maintenance
- Non-uniform distribution of data / queries
- Independence of conditions in reduction factors
- ...

### **Conclusion**

#### Evaluation algorithms

- Access methods
- Sorting
  - External merge sort algorithm
- Joining
  - Binary nested loops join with / without zig-zag
  - Sort-merge join
  - Classic / partition hash join

#### Query evaluation and optimization

- Evaluation plans
  - Cost estimates, pipelining
- Statistical / algebraic optimization