
NIE‐PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/241‐NIE‐PDB/

Lecture 7

Key‐Value Stores: RiakKV
Martin Svoboda
martin.svoboda@fit.cvut.cz

5. 11. 2024

Charles University, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Information Technology

http://www.ksi.mff.cuni.cz/~svoboda/courses/241-NIE-PDB/
mailto:martin.svoboda@fit.cvut.cz

Lecture Outline
Key‐value stores
• Introduction

RiakKV
• Data model
• HTTP interface
• CRUD operations
• Data types
• Search 2.0
• Internal details

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 2

Key‐Value Stores
Data model
• The most simple NoSQL database type

Works as a simple hash table (mapping)
• Key‐value pairs

Key (id, identifier, primary key)
Value: binary object, black box for the database system

Query patterns
• Create, update or remove value for a given key
• Get value for a given key

Characteristics
• Simple model⇒ great performance, easily scaled, …
• Simple model⇒ not for complex queries nor complex data

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 3

Key Management
How the keys should actually be designed?
• Real‐world identifiers

E.g. e‐mail addresses, login names, …
• Automatically generated values

Auto‐increment integers
– Not suitable in peer‐to‐peer architectures!

Complex keys
– Multiple components / combinations of

time stamps, cluster node identifiers, …
– Used in practice instead

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 4

Query Patterns
Basic CRUD operations
• Only when a key is provided
• ⇒ knowledge of the keys is essential

It might even be difficult for a particular database system
to provide a list of all the available keys!

Accessing the contents of the value part is not possible in general
• But we could instruct the database how to parse the values
• … so that we can index them based on certain search criteria

Batch / sequential processing
• MapReduce

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 5

Other Functionality
Expiration of key‐value pairs
• Objects are automatically removed from the database
after a certain interval of time

• Useful for user sessions, shopping carts etc.
Links between key‐value pairs
• Values can be mutually interconnected via links
• These links can be traversed when querying

Collections of values
• Not only ordinary values can be stored, but also their
collections (e.g. ordered lists, unordered sets, …)

Particular functionality always depends on the store we use!

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 6

Riak Key‐Value Store

RiakKV
Key‐value store
• https://www.tiot.jp/en/solutions/riak/
• Features

Open source, incremental scalability, automatic sharding,
peer‐to‐peer replication, high availability, fault tolerance, …

• Originally developed by Basho Technologies
• Implemented in Erlang

General‐purpose functional programming language and
runtime system with garbage collection

– Its main strength is concurrency and distribution

• Operating systems: Linux, Mac OS X, … (not Windows)
• Initial release in 2009

Version we cover is 3.0.10 (May 2022)

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 8

https://www.tiot.jp/en/solutions/riak/

Data Model
Dataspace structure

Instance (→ bucket types)→ buckets→ objects

• Bucket type
Optional logical collection of buckets

– When not stated explicitly, the default type is assumed
Primarily allows for shared configuration of buckets

– But also forms a namespace for buckets
– As well as allows to define user permissions

• Bucket
Logical collection of key‐value objects
Allows to override inherited bucket type properties

– E.g., replication factor, read / write quora, …

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 9

Data Model
Dataspace structure (cont’d)
• Object = one key‐value pair

Key: Unicode string unique within a bucket
Value: basically anything (text, binary object, image, …)

• Each object is also associated with additionalmetadata
Especially content type

– I.e., data format of the value part
– Media types (MIME types) are used for this purpose
– E.g.: text/plain, application/json, image/jpeg, …

But also certain internal metadata
– Causal context (vector clock), timestamp of the last

modification, …

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 10

Data Model: Design Questions
Possible data modeling strategies
• Multiple buckets

Each for objects of just a single entity type
– E.g., one bucket for actors, one for movies,

each actor and movie has its own object
Allows for easier key management

• Single bucket
Serves for objects of various entity types

– E.g., one bucket for both actors and movies,
each actor and movie still has its own object

Structured keysmight thus help
– Distinct prefix can be used for each entity type
– E.g., actor_trojan, movie_medvidek

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 11

Riak Usage: Querying
Basic CRUD operations
• Create, Read, Update, and Delete

All based on a key look‐up
Extended functionality
• Links – relationships between objects and their traversal
• Search 2.0 – full‐text queries accessing values of objects
• MapReduce
• …

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 12

Riak Usage: Interfaces
Application interfaces
• HTTP API

Requests are submitted as HTTP requests with appropriately
selected / constructedmethods, URLs, headers, and data

• Protocol Buffers API
• Erlang API

Client libraries for a variety of programming languages
• Official: Java, Ruby, Python, C#, PHP, …
• Community: C, C++, Haskell, Perl, Python, Scala, …

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 13

HTTP API
cURL = tool for sending requests and receiving responses via HTTP
• -u user:password (alternatively also --user)

User credentials to be used for server authentication
• -X command (--request)

Request method to be used (GET, PUT, …)
• -H header (--header)

Extra headers to be included when sending the request
• -d data (--data)

Data to be sent to the server
• -i (--include)

Whether response headers should also be printed

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 14

Basic Operations

CRUD Operations
Basic object operations
• Create: POST or PUTmethods

Inserts a key‐value pair into a given bucket
• Read: GETmethod

Retrieves a key‐value pair from a given bucket
• Update: PUTmethod

Updates a key‐value pair in a given bucket
• Delete: DELETEmethod

Removes a key‐value pair from a given bucket

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 16

CRUD Operations
Generic URL pattern for all basic object operations

// typestypes // typetype

// bucketsbuckets // bucketbucket // keyskeys // keykey

?? parameterparameter == valuevalue

&&

Optional parameters
• Allow to override bucket‐level properties for a given request

r, w: read / write quorum to be attained
…

• Permitted parameters depend on the particular operation

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 17

CRUD Operations: Create and Update
Inserts / updates a key‐value pair in a given bucket
• Key is specified⇒ PUTmethod

Transparently inserts / updates (replaces) a given object
– I.e., when updating, everything really must be specified again

• Key is missing⇒ POSTmethod (insertion only)
Key will be generated automatically and returned via a header

– E.g.: 4zmJhCNhM4h6mUJVw35CkOuNZ28

• Buckets as such are created transparently, bucket types not
Example

curl -i -X PUT \
-H 'Content-Type: text/plain' \
-d 'Ivan Trojan, 1964' \
http://localhost:8098/buckets/actors/keys/trojan

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 18

CRUD Operations: Read
Retrieves a key‐value pair from a given bucket
• Method: GET

Example
curl -i -X GET \

http://localhost:8098/buckets/actors/keys/trojan

...
Content-Type: text/plain
Content-Length: 17
X-Riak-Vclock: a85hYGBgzGDKBVI8XxW02dii9T4wMKgLZjAlMuWxMti+WXKHLwsA
Last-Modified: Sun, 25 Sep 2022 15:14:05 GMT
...

Ivan Trojan, 1964

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 19

CRUD Operations: Delete
Removes a key‐value pair from a given bucket
• Method: DELETE
• When a given object does not exist, it does not matter

Example
curl -i -X DELETE \

http://localhost:8098/buckets/actors/keys/trojan

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 20

Bucket Operations
List of all existing buckets
• I.e., buckets with at least one existing object
• Should not be used in production environments

Because of inefficiency, every cluster node needs to be involved

// typestypes // typetype

// bucketsbuckets ?? bucketsbuckets == truetrue

Example
curl -i -X GET http://localhost:8098/buckets?buckets=true

Content-Type: application/json

{ "buckets" : ["actors", "movies"] }

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 21

Bucket Operations
List of all existing keys in a given bucket
• Should not be used in production environments, once again

// typestypes // typetype

// bucketsbuckets // bucketbucket

// keyskeys ?? keyskeys == truetrue

Example
curl -i -X GET http://localhost:8098/buckets/actors/keys?keys=true

Content-Type: application/json

{ "keys" : ["trojan", "machacek", "schneiderova", "sverak"] }

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 22

Bucket Properties
Setting and retrieval of bucket properties

// typestypes // typetype

// bucketsbuckets // bucketbucket // propsprops

• Retrieval⇒ GETmethod
Lists current values of all bucket properties

• Update⇒ PUTmethod
Updates values of selected bucket properties

– I.e., values of not mentioned properties are preserved intact
• Reset⇒ DELETEmethod

Resets all or just selected bucket properties
– I.e., removes them or replaces them with bucket type defaults

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 23

Bucket Properties: Examples
Update of selected properties

curl -i -X PUT \
-H 'Content-Type: application/json' \
-d '{ "props" : { "n_val" : 3, "w" : "all", "r" : 1 } }' \
http://localhost:8098/buckets/actors/props

Reset of selected properties
curl -i -X DELETE \

-H 'Content-Type: application/json' \
-d '{ "props" : { "search_index" : "" } }' \
http://localhost:8098/buckets/actors/props

Reset of all properties
curl -i -X DELETE \

http://localhost:8098/buckets/actors/props

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 24

Bucket Properties
Important properties
• n_val: replication factor
• r / w: read / write quorum

Particular value, all (all replicas), quorum (n_val/2 + 1)
• search_index

Name of the associated search index, if any
• datatype

Name of the associated data type, if any
E.g.: counter, set, map, …

• allow_mult
Whether to allow sibling objects to be created

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 25

Data Types

Motivation
Replica conflict
• Situation when not all replicas of a given object are identical

I.e., two or even more of them are mutually inconsistent
Riak is an AP system⇒ such conflicts are unavoidable
• And so they need to be resolved somehow…

Either automatically or manually
• Until now we only worked with ordinary objects

With atomic values only
And both resolution strategies possible

• But we also have an alternative in a form of data type objects
Inspired by the concept of CRDTs

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 27

CRDTs
Convergent Replicated Data Types
• Generic concept introducing a couple of data types

Each useful for a different real‐world use case
– G‐Counter (Grow‐only Counter), PN‐Counter (Positive‐Negative

Counter), G‐Set (Grow‐only Set), …
• Particular CRDT definition involves a description of…

Permitted content – can be atomic as well as structured
Permitted operations
Convergence rule

– Specifically tailored mechanism used for conflict resolution

CRDTs implemented in Riak
• Counter, set,map, register, flag, …

Not all of them can be used at the top level, though

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 28

Data Types: Counters
Counter
• Integer counter

Both positive and negative values are permitted
When a new counter is first used, its value is initialized to 0

• Operations
Increment / decrement by a given value

– I.e., it is not possible to set the counter to a particular value
– Just relative changes are permitted

• Convergence rule
All requested increments / decrements are eventually applied

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 29

Data Types: Sets
Set
• Unordered collection of unique binary values

E.g., strings
When a new set is first used, it is initialized as an empty set

• Operations
Addition / removal of one or more elements

• Convergence rule
Addition wins over removal

– At the level of individual elements

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 30

Data Types: Maps
Map
• Unordered collection of embedded name‐value pairs

Names are strings
Values can be anything

– I.e., registers, flags, but also counters, sets and even maps
– Complex data structures can therefore be easily created

Names must be suffixed according to the types of values
– E.g., field_register, field_flag, …

• Operations
Addition / update / removal of a given element

• Convergence rule
Addition / update wins over removal
Values themselves are treated recursively based on their types

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 31

Data Types: Registers & Flags
Register
• Allows to store any binary value (e.g., string)
• Convergence rule

The most chronologically recent value wins
• Registers can only be stored within maps

I.e., not at the top level for entire objects
Flag
• Boolean value

enable (true), and disable (false)
• Convergence rule: enable wins over disable
• Flags can only be stored within maps, too

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 32

Usage of Data Types
Activation
• Via bucket type properties (i.e., not individual buckets)

Property datatype is set to the desired data type
– Possible values: counter, set, map, …

Property allow_multmust be enabled
Usage
• Different URL pattern for requests is assumed

Keyword datatypes is expected instead of keys

// typestypes // typetype

// bucketsbuckets // bucketbucket // datatypesdatatypes // keykey

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 33

Example: Counters
Initialization / update
• Operations increment and decrement can be used

Both actually with positive / negative values

curl -i -X POST \
-H 'Content-Type: application/json' \
-d '{ "increment" : 0 }' \
http://localhost:8098/types/counters/buckets/movies/datatypes/en

Retrieval
curl -i -X GET \

http://localhost:8098/types/counters/buckets/movies/datatypes/cs

Content-Type: application/json

{ "type" : "counter", "value" : 4 }

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 34

Search 2.0

Search 2.0
Riak Search 2.0 (Yokozuna)
• Full‐text search over object values
• Uses Apache Solr

Distributed, scalable, failure tolerant, real‐time search platform
Mechanisms
• Indexation

Triggered whenever Riak object is changed (inserted, …)
Riak object extractor−−−−−→ Solr document schema−−−−→ Solr index

• Querying
Riak search query→ Solr search query→ Solr response

– List of matching Solr documents with scores
– Each providing identification of the associated source object

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 36

Extractors
Extractor = parser for object values
• Produces fields to be indexed
• Chosen automatically based on a content type

E.g.: application/json⇒ JSON extractor
Available extractors
• For common data formats…

Plain text, XML, JSON, noop (unknown content type)
• For Riak data types…

Counter (application/riak_counter)
Set (application/riak_set)
Map (application/riak_map)

User‐defined custom extractors (implemented in Erlang)

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 37

Extractors: Plain Text
Plain text extractor (text/plain)
• Single field with the whole value content is extracted

Example
Dira u Hanusovic, 2014

[
{ <<"text">>, <<"Dira u Hanusovic, 2014">> }

]

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 38

Extractors: XML
XML extractor (text/xml, application/xml)
• One field is extracted for each simple element or attribute

But only when enabled, i.e., its name contains a type suffix
• Available type suffixes

Single‐value
– _s (string), _i (integer), _f (float), _b (boolean), …

Multi‐value
– When multiple values are expected
– E.g., for several sibling elements of the same name
– _ss (strings), _is (integers), _fs (floats), _bs (booleans), …

• Dot notation is used for flattened names of extracted fields
. for embedded elements (e.g., movie.title_s)
@ for attributes (e.g., movie@year_i)

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 39

Extractors: XML
Example

<?xml version="1.1" encoding="UTF-8"?>
<movie year_i="2014" language="cs">

<title_s>Dira u Hanusovic</title_s>
<details>
<length>102</length>
<rating_s>**</rating_s>

</details>
<genre_ss>comedy</genre_ss>
<genre_ss>drama</genre_ss>

<movie>

[
{ <<"movie@year_i">>, <<"2014">> },
{ <<"movie.title_s">>, <<"Dira u Hanusovic">> },
{ <<"movie.details.rating_s">>, <<"**">> },
{ <<"movie.genre_ss">>, [<<"comedy">>, <<"drama">>] }

]

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 40

Extractors: JSON
JSON extractor (application/json)
• Similar principles as the XML extractor applies

Example
{

"title_s" : "Dira u Hanusovic",
"language" : "cs",
"year_i" : 2014,
"details" : { "length" : 102, "rating_s" : "**" },
"genre_ss" : ["comedy", "drama"]

}

[
{ <<"title_s">>, <<"Dira u Hanusovic">> },
{ <<"year_i">>, <<"2014">> },
{ <<"details.rating_s">>, <<"**">> },
{ <<"genre_ss">>, [<<"comedy">>, <<"drama">>] }

]

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 41

Indexing Schema
Solr document
• Extracted fields + auxiliary fields

_yz_rt (bucket type), _yz_rb (bucket), _yz_rk (key), …
– Allow for the identification of the source Riak object

Solr schema
• Describes how values of fields are indexed within Solr

Values are analyzed, tokenized, and filtered
– E.g., stop words removed, stemmers applied, …

Triples (token value, field name, document id) are indexed
• _yz_default = default predefined schema

Suitable for debugging
– Does not support specific national characters, …

Custom schemas can also be created

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 42

Index Initialization
Step 1: index creation
• Default (_yz_default) schema is assumed when not specified

// searchsearch // indexindex // indexindex

Example
curl -i -X PUT \

-H 'Content-Type: application/json' \
-d '{ "schema" : "_yz_default" }' \
http://localhost:8098/search/index/imovies

curl -i -X PUT \
http://localhost:8098/search/index/imovies

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 43

Index Initialization
Step 2: index association
• Index must then be associated with particular buckets

Via search_index bucket property
• Note that the already existing objects will not be indexed

Example
curl -i -X PUT \

-H 'Content-Type: application/json' \
-d '{ "props" : { "search_index" : "imovies" } }' \
http://localhost:8098/buckets/actors/props

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 44

Search Requests
Search queries

// searchsearch // queryquery // indexindex ?? parameterparameter == valuevalue

&&

• Parameters
q: search query conditions to be satisfied
wt: response writer to be used, i.e., data format of the result

– E.g.: json, csv, xml, php, …
sort: ordering criteria

– Document scores or both single‐/multi‐value fields can be used
– By default (when not specified), score desc is assumed
– Multiple criteria are separated by commas
– E.g.: year_i desc,title_s asc

start / rows: pagination of matching documents

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 45

Search Conditions
Term searches
• Value of a given field must be equal to the provided term

In case of a multi‐value field, at least one of its values
• E.g.: title_s:Samotari

Phrase searches
• Group of more terms needs to be wrapped by double quotes
• E.g.: title_s:"Dira u Hanusovic"

Wildcard searches
• Available wildcards

? matches exactly one arbitrary character
*matches zero ore more arbitrary characters

• E.g.: title_s:*Bob?lematching Bobule, 2Bobule, …

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 46

Search Conditions
Range searches
• Range of values between a pair of bounds

[and] denote inclusive bounds, { and } exclusive bounds
* denotes positive / negative infinity

• E.g.: year_i:[2015 TO *}
Logical expressions
• Logical connectives can be used for more complex queries

AND for conjunction, OR disjunction and NOT negation
Auxiliary parentheses () can also be utilised

• E.g.: genre_ss:action OR genre_ss:fantasy

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 47

Search Requests
URL encoding issues
• Step 1: preparing the intended search condition

E.g.: title_s:*Bobule OR (year_i:[2020 TO *} AND
stars_s:**)
Undesired Solr metacharacters are deactivated by escaping

– E.g.: :, *, ?, (,), [,], {, }, …
• Step 2: encoding unsafe and reserved URL characters

Each needs to be replaced with the corresponding code
At least those necessary…

– E.g.: space %20, " %22, \ %5C, : %3A, * %2A, ? %3F, (%28,
) %29, [%5B,] %5D, { %7B, } %7D, …

E.g.: title_s%3A%2ABobule%20OR%20%28year_i%3A%5B20
20%20TO%20%2A%7D%20AND%20stars_s%3A%5C%2A%5C%2A%29

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 48

Search Requests
URL encoding issues (cont’d)
• Step 3: preparing curl request

Undesired shell metacharacters also need to be suppressed
– E.g.: &, ?, …

E.g.: …\&q=… instead of …&q=…
Example

curl -i -X GET \
http://localhost:8098/search/query/imovies\?wt=json\&q=year_i%3A2020

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 49

Internal Details

Architecture
Sharding + peer‐to‐peer replication architecture
• Any node can serve any read or write user request
• Physical nodes run (several) virtual nodes (vnodes)

Nodes can be added and removed from the cluster dynamically
CAP properties
• AP system: availability + partition tolerance

I.e., availability is preferred to consistency
• Strong consistency can also be achieved

When activated within the whole cluster
And appropriate quora are set:

– w > n_val/2 for write quorum
– r > n_val− w for read quorum

However, such an approach is deprecated

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 51

Riak Ring
Replica placement strategy
• Consistent hashing function

Consistent = does not change when cluster changes
Domain: pairs of a bucket name and object key
Range: 160‐bit integer space = Riak Ring

Riak Ring
• The whole ring is split into equally‐sized disjoint partitions

Physical nodes are mutually interleaved
⇒ reshuffling when cluster changes is less demanding

• Each virtual node is responsible for exactly one partition
Example
• Cluster with 4 physical nodes, each running 8 virtual nodes

I.e. 32 partitions altogether

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 52

Riak Ring

Source: http://docs.basho.com/

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 53

Riak Ring
Replica placement strategy
• The first replica…

Its location is directly determined by the hash function
• All the remaining replicas…

Placed to the consecutive partitions in a clockwise direction
What if a virtual node is failing?
• Hinted handoff

Failing nodes are simply skipped,
neighboring nodes temporarily take responsibility
When resolved, replicas are handed off to the proper locations

• Motivation: high availability

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 54

Request Handling
Read and write requests can be submitted to any node
• This nodes is called a coordinating node
• Hash function is calculated, i.e. replica locations determined
• Internal requests are sent to all the corresponding nodes
• Then the coordinating node waits
until sufficient number of responses is received

• Result / failure is returned to the user

But what if the cluster changes?
• The value of the hash function does not change,

only the partitions and their mapping to virtual nodes change
• However, the Ring knowledge a given node has might be obsolete!

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 55

Lecture Conclusion
RiakKV
• Highly available distributed key‐value store
• Sharding with peer‐to‐peer replication architecture
• Riak Ring with consistent hashing for replica placement

Query functionality
• Basic CRUD operations
• Search 2.0 full‐text based on Apache Solr

NIE‐PDB: Advanced Database Systems | Lecture 7: Key‐Value Stores: RiakKV | 5. 11. 2024 57

	Outline
	Introduction
	RiakKV
	Data Model
	Interfaces
	CRUD Operations
	Bucket Operations
	Bucket Properties
	Data Types
	Search 2.0
	Internal Details

	Conclusion

