NIE-PDB | Advanced Database Systems | 2024/25 Winter

Assignment 04 — Riak

Assignment

Create a shell script that will work with data in our Riak database via its HTTP interface using
the cURL tool

Insert about 3 key/value objects into at least 3 buckets, each containing objects of different entity
types

— Always include content headers

— One bucket must contain objects with XML values (text/xml)

— One bucket must contain objects with JSON values (application/json)

— As for the third bucket, choose any content type you like

Design your XML and JSON values so that they can be indexed by Yokozuna

— Le., do not use Czech or other national accented characters
— Use each of the following type suffixes at least once
« _s or _ss (string), _i or _is (integer), and _b or _bs (boolean)
Associate your search index with at least the two XML and JSON buckets
Express at least 2 index search queries
— Use each of the following constructs at least once: wildcards, ranges, logical operators

Remove all your objects at the end of your script (i.e., empty all your buckets)

Requirements

Our Riak cluster is accessible via nodes running at https://nosql.kti.in.fit.cvut.cz:10021/ or
10022 or 10023

— You must be connected to our NoSQL server via PuTTY / SSH, though
— These nodes will otherwise not be reachable from outside since the listed ports are blocked
Use bucket type with name pdb241_login for all buckets you would like to create
— Of course, replace login with your actual login name
— E.g.: /types/pdb241_svobom25/buckets/actors/keys/trojan for a particular actor object in

a bucket of actors
— This bucket type already exists, you thus do not need to take care of its creation

However, do not access your buckets directly so that the bucket type can easily be changed
— Le., write $RIAK_TYPE instead of a fixed name when referencing your bucket type in URLs
— $RIAK_TYPE is a variable provided from outside of your script (see below)

— Its value will correspond to your actual login name pdb241_login, and so your bucket type name
— E.g.: /types/$RIAK_TYPE/buckets/actors/keys/trojan

Similarly, it is necessary to use the following variables to provide the necessary parameters

— $RIAK_HOST for Riak instance host name
— $RIAK_USER for your login name and $RIAK_PASSWORD for your password

Your requests will therefore correspond to the following pattern

— curl -i -X GET -u $RIAK_USER:$RIAK_PASSWORD \
https://$RIAK_HOST:10021/types/$RIAK_TYPE/buckets/actors/keys/trojan

When working with your XML and JSON values, it is better to wrap them by single quotes and not
double quotes

— The reason is that double quotes are needed by XML attributes and JSON strings

— E.g.: '{ name_s : "Ivan Trojan", year_i : 1964 }'
o Use a search index with name corresponding to the pattern pdb241_login_index (i.e., your login

name suffixed with _index)

— Do not create this index, it already exists
— Note that you have to associate it with your buckets before you start inserting any objects
— Otherwise your already existing objects will not become indexed

e Note that variables enclosed in single quotes will not be replaced by their values
— You therefore need to place them outside of these single quotes
— E.g.: '{ "props" : { "search_index" : "'$RIAK_USER'_index" } }'
e As expected, do not access your search index directly in your URLs

— Use $RIAK_USER""_index instead
— This approach with a pair of double quotes is necessary in order not to treat our fixed suffix
_index as a part of a variable name
¢ When preparing your search conditions, you must work carefully
— The reason is that certain characters are treated specifically both by shell as well as in URLs
— First, prepare your actual search condition at the logical level
= E.g.: (year_i:[1960 TO *])
Second, encode unsafe characters: space %20, left bracket %5B, and right bracket %5D
- E.g.: (year_i:%5B1960%20T0%20%%5D)
— Finally, escape round parentheses
= E.g.: \(year_i:%5B1960%20T0%20*%5D\)
Note that you also need to escape ampersands in query parameters
» E.g.: ... \&q=\(year_i:%5B1960%20T0%20*%5D\)
e Your search requests will therefore correspond to the following pattern
— curl -i -X GET -u $RIAK_USER:$RIAK_PASSWORD \

https://$RIAK_HOST:10021/search/query/$RIAK_USER_index?wt=json\&omitHeader=true\
\&q=\ (year_i:%5B1960%20T0%20%%5D\)

e Always comment the intended meaning of search queries in natural language

— Comments are written as # comment
e FEach search query must be evaluated to a non-empty set of matching results
o Make sure your shell script is executable at all (i.e., has the X permission assigned)

— If you are using WinSCP, just locate your file, go to the properties context menu and add the X
permission for the owner
— If you are using PuTTY, execute the following command chmod u+x script.sh

o Also make sure your script can be executed repeatedly without failures
e Only use Linux style of line endings

— lL.e., use LF = chr(10) = "\n" instead of CRLF = chr(13).chr(10) = "\r\n" on Windows or
CR = chr(13) = "\r" on Mac

o If something is not working as expected, try to execute Riak ping query

— curl -i -X GET -u $RIAK_USER:$RIAK_PASSWORD https://$RIAK_HOST:10021/ping

Submission

e script.sh: Bash script allowing to execute all the HT'TP requests

Execution

o First of all, define appropriate values for all the three required variables

— export RIAK_HOST="nosql.kti.in.fit.cvut.cz" (our nosql server itself)
— export RIAK_USER="pdb241_login" (your actual login name)

— export RIAK_PASSWORD="MyPassword" (your actual password)
— export RIAK_TYPE=$RIAK_USER (your bucket type)

e Then, execute the following shell command to evaluate the whole Riak script as such
— ./script.sh

e Do not put the aforementioned variable exports into the script.sh file itself

Tools

o RiakKV (3.0.10) — https://www.tiot.jp/en/solutions/riak/
— Already installed on the NoSQL server

References

« Riak KV 3.0.4 Documentation

— https://www.tiot.jp/riak-docs/riak/kv/3.0.4/
+ Riak KV 3.0.4 Search 2.0 (Yokozuna) Documentation

— https://www.tiot.jp/riak-docs/riak/kv/3.0.4/developing/usage/search/
e Apache Solr Query Parser 7.3 Documentation

— https://lucene.apache.org/solr/guide/7__3/the-standard-query-parser.html

https://www.tiot.jp/en/solutions/riak/
https://www.tiot.jp/riak-docs/riak/kv/3.0.4/
https://www.tiot.jp/riak-docs/riak/kv/3.0.4/developing/usage/search/
https://lucene.apache.org/solr/guide/7\protect \TU\textunderscore 3/the-standard-query-parser.html

