
NIE-PDB | Advanced Database Systems | 2024/25 Winter

Assignment 04 – Riak

Assignment

• Create a shell script that will work with data in our Riak database via its HTTP interface using
the cURL tool

• Insert about 3 key/value objects into at least 3 buckets, each containing objects of different entity
types

– Always include content headers
– One bucket must contain objects with XML values (text/xml)
– One bucket must contain objects with JSON values (application/json)
– As for the third bucket, choose any content type you like

• Design your XML and JSON values so that they can be indexed by Yokozuna
– I.e., do not use Czech or other national accented characters
– Use each of the following type suffixes at least once

■ _s or _ss (string), _i or _is (integer), and _b or _bs (boolean)
• Associate your search index with at least the two XML and JSON buckets
• Express at least 2 index search queries

– Use each of the following constructs at least once: wildcards, ranges, logical operators
• Remove all your objects at the end of your script (i.e., empty all your buckets)

Requirements

• Our Riak cluster is accessible via nodes running at https://nosql.kti.in.fit.cvut.cz:10021/ or
10022 or 10023

– You must be connected to our NoSQL server via PuTTY / SSH, though
– These nodes will otherwise not be reachable from outside since the listed ports are blocked

• Use bucket type with name pdb241_login for all buckets you would like to create
– Of course, replace login with your actual login name
– E.g.: /types/pdb241_svobom25/buckets/actors/keys/trojan for a particular actor object in

a bucket of actors
– This bucket type already exists, you thus do not need to take care of its creation

• However, do not access your buckets directly so that the bucket type can easily be changed
– I.e., write $RIAK_TYPE instead of a fixed name when referencing your bucket type in URLs
– $RIAK_TYPE is a variable provided from outside of your script (see below)
– Its value will correspond to your actual login name pdb241_login, and so your bucket type name
– E.g.: /types/$RIAK_TYPE/buckets/actors/keys/trojan

• Similarly, it is necessary to use the following variables to provide the necessary parameters
– $RIAK_HOST for Riak instance host name
– $RIAK_USER for your login name and $RIAK_PASSWORD for your password

• Your requests will therefore correspond to the following pattern
– curl -i -X GET -u $RIAK_USER:$RIAK_PASSWORD \

https://$RIAK_HOST:10021/types/$RIAK_TYPE/buckets/actors/keys/trojan
• When working with your XML and JSON values, it is better to wrap them by single quotes and not

double quotes
– The reason is that double quotes are needed by XML attributes and JSON strings

– E.g.: '{ name_s : "Ivan Trojan", year_i : 1964 }'
• Use a search index with name corresponding to the pattern pdb241_login_index (i.e., your login

name suffixed with _index)
– Do not create this index, it already exists
– Note that you have to associate it with your buckets before you start inserting any objects
– Otherwise your already existing objects will not become indexed

• Note that variables enclosed in single quotes will not be replaced by their values
– You therefore need to place them outside of these single quotes
– E.g.: '{ "props" : { "search_index" : "'$RIAK_USER'_index" } }'

• As expected, do not access your search index directly in your URLs
– Use $RIAK_USER""_index instead
– This approach with a pair of double quotes is necessary in order not to treat our fixed suffix

_index as a part of a variable name
• When preparing your search conditions, you must work carefully

– The reason is that certain characters are treated specifically both by shell as well as in URLs
– First, prepare your actual search condition at the logical level

■ E.g.: (year_i:[1960 TO *])
– Second, encode unsafe characters: space %20, left bracket %5B, and right bracket %5D

■ E.g.: (year_i:%5B1960%20TO%20*%5D)
– Finally, escape round parentheses

■ E.g.: \(year_i:%5B1960%20TO%20*%5D\)
– Note that you also need to escape ampersands in query parameters

■ E.g.: ...\&q=\(year_i:%5B1960%20TO%20*%5D\)
• Your search requests will therefore correspond to the following pattern

– curl -i -X GET -u $RIAK_USER:$RIAK_PASSWORD \
https://$RIAK_HOST:10021/search/query/$RIAK_USER_index?wt=json\&omitHeader=true\
\&q=\(year_i:%5B1960%20TO%20*%5D\)

• Always comment the intended meaning of search queries in natural language
– Comments are written as # comment

• Each search query must be evaluated to a non-empty set of matching results
• Make sure your shell script is executable at all (i.e., has the X permission assigned)

– If you are using WinSCP, just locate your file, go to the properties context menu and add the X
permission for the owner

– If you are using PuTTY, execute the following command chmod u+x script.sh
• Also make sure your script can be executed repeatedly without failures
• Only use Linux style of line endings

– I.e., use LF = chr(10) = "\n" instead of CRLF = chr(13).chr(10) = "\r\n" on Windows or
CR = chr(13) = "\r" on Mac

• If something is not working as expected, try to execute Riak ping query
– curl -i -X GET -u $RIAK_USER:$RIAK_PASSWORD https://$RIAK_HOST:10021/ping

Submission

• script.sh: Bash script allowing to execute all the HTTP requests

Execution

• First of all, define appropriate values for all the three required variables
– export RIAK_HOST="nosql.kti.in.fit.cvut.cz" (our nosql server itself)
– export RIAK_USER="pdb241_login" (your actual login name)

– export RIAK_PASSWORD="MyPassword" (your actual password)
– export RIAK_TYPE=$RIAK_USER (your bucket type)

• Then, execute the following shell command to evaluate the whole Riak script as such
– ./script.sh

• Do not put the aforementioned variable exports into the script.sh file itself

Tools

• RiakKV (3.0.10) – https://www.tiot.jp/en/solutions/riak/
– Already installed on the NoSQL server

References

• Riak KV 3.0.4 Documentation
– https://www.tiot.jp/riak-docs/riak/kv/3.0.4/

• Riak KV 3.0.4 Search 2.0 (Yokozuna) Documentation
– https://www.tiot.jp/riak-docs/riak/kv/3.0.4/developing/usage/search/

• Apache Solr Query Parser 7.3 Documentation
– https://lucene.apache.org/solr/guide/7_3/the-standard-query-parser.html

https://www.tiot.jp/en/solutions/riak/
https://www.tiot.jp/riak-docs/riak/kv/3.0.4/
https://www.tiot.jp/riak-docs/riak/kv/3.0.4/developing/usage/search/
https://lucene.apache.org/solr/guide/7\protect \TU\textunderscore 3/the-standard-query-parser.html

