NDBI049: Query Languages

http://www.ksi.mff.cuni.cz/~svoboda/courses/241-NDBI049/

Lecture

Query Evaluation

Martin Svoboda

martin.svoboda@matfyz.cuni.cz

15. 10. 2024

Charles University, Faculty of Mathematics and Physics

Lecture Outline

Algorithms

- Access methods
- External sort
- Nested loops join
- Sort-merge join
- Hash join

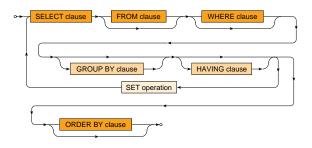
Evaluation

- Query evaluation plans
- Optimization techniques

Introduction

SQL queries

SELECT statements



Introduction

Relational algebra

- Basic and inferred operations
 - Selection σ_{φ} , projection $\pi_{a_1,...,a_n}$, renaming $\rho_{b_1/a_1,...,b_n/a_n}$
 - Set operations: $\underline{\text{union}} \cup$, intersection \cap , $\underline{\text{difference}}$
 - Inner joins: $\underline{\operatorname{cross join}} \times$, natural join \bowtie , theta join \bowtie_{φ}
 - Left / right natural / theta semijoin \ltimes , \rtimes , \ltimes_{φ} , \rtimes_{φ}
 - Left / right natural / theta antijoin \triangleright , \triangleleft , \triangleright_{φ} , \triangleleft_{φ}
 - Division ÷
- Extended operations
 - Left / right / full outer natural join ⋈, ⋈, ⋈
 - Left / right / full outer theta join \bowtie_{φ} , \bowtie_{φ} , \bowtie_{φ}
 - Sorting, grouping and aggregation, distinct, ...

Naïve Algorithms

Selection: $\sigma_{\varphi}(E)$

Iteration over all tuples and removal of those filtered out

Projection: $\pi_{a_1,...,a_n}(E)$

- Iteration over all tuples and removal of excluded attributes
 - But also removal of duplicates within the traditional model

Distinct

Sorting of all tuples and removal of adjacent duplicates

Inner joins:
$$E_R \times E_S$$
, $E_R \bowtie E_S$, $E_R \bowtie_{\varphi} E_S$

Iteration over all the possible combinations via nested loops

Sorting

Quick sort, heap sort, bubble sort, insertion sort, ...

Challenges

Blocks

- Tuples stored in data files are not accessible directly
 - Since we have read / write operations for whole blocks only
- That is true for all types of files...
 - And so not just data files for tables
 - But also files for index structures or system catalog

Latency

- Traditional magnetic hard drives are extremely slow
 - Efficient management of cached pages is hence essential

Memory

- Size of available system memory is always limited
- ⇒ external algorithms are needed

Objectives

Query evaluation plan

Based on the database context and available memory...
 ... suitable evaluation algorithms need to be selected...
 ... so that the overall evaluation cost is minimal

Database context

- Relational schema: tables, columns, data types
- Integrity constraints: primary / unique / foreign keys, ...
- Data organization: heap / sorted / hashed file
- Index structures: B⁺ tree, bitmap index, hash index
- Available statistics: min / max values, histograms, ...

Objectives

Available system memory

- Number of pages allocated for the execution of a given query
- There are two possible scenarios...
 - Having a particular memory size...
 - Propose its usage and estimate the evaluation cost
 - Having a particular cost expectation...
 - Determine the required memory and propose its usage

Evaluation algorithms

- Access methods
- Sorting: external sort approaches
- Joining: nested loops, merge join, and hash join approaches
- ...

Objectives

Cost estimation

- Expressed in terms of read / write disk operations
 - Since hard drives are extremely slow, as already stated...
 - And so everything else can boldly be ignored
- We are interested in estimates only
 - Since it is unlikely we could provide accurate calculations
 - But still...
 - The more accurate estimates, the better evaluation plans
 - And there can really be huge differences in their efficiency...
 - Even up to several orders of magnitude!
- In other words...
 - Query optimization is <u>crucial</u> for any database system
 - As well as we also need to know what we are doing...

Available Statistics

Environment

- B: size of a block / page, usually $\approx 4 \, kB$
- M: number of available system memory pages

Relation \mathcal{R}

- n_R: number of tuples
- s_R : average / fixed tuple size
- $b_R \approx \lfloor B/s_R \rfloor$: blocking factor
 - Number of tuples that can be stored within one block
- $p_R \approx \lceil n_R/b_R \rceil$: number of blocks
- V_{R,A}: cardinality of the active domain of attribute A
 - Number of distinct values of A occurring in R
- $min_{R,A}$ and $max_{R,A}$: minimal and maximal values for A

Access Methods

Data Files

Internal structure

- Blocks of data files for tables are divided into slots
 - Each slot is intended for storing exactly one tuple
 - By the way, they can easily be uniquely identified
 - Using a pair of block and slot logical ordinal numbers
- Fixed-size slots
 - Usage status of each slot just needs to be remembered

- Variable-size slots
 - When at least one variable-size attribute is involved
 - Slot beginnings and lengths need to be remembered

Access Methods

Access method

- Particular approach for finding the intended tuples
 - I.e., reading blocks with such tuples into the system memory
 - Directly from data files for tables
 - But also indirectly using index structures
- Full scan (sequential read) is possible under all circumstances
 - However, we can do better in certain cases based on...
 - Involved selection conditions
 - Particular data file organization
 - Available index structures (if any)
 - I.e., number of blocks to be read can significantly be reduced
 - And so the evaluation cost
 - Since only relevant blocks are considered instead all of them

Access Methods

Data file organization

· Heap file, sorted file, hashed file

Index structures

• B⁺ tree, ...

Selection conditions

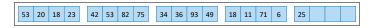
- Equality tests with respect to unique / non-unique attributes
 - A = v, where v is a particular value (not another attribute)
- Range queries for one-sided / two-sided intervals
 - $v_1 \le A$, $A \le v_2$, and $(v_1 \le A) \land (A \le v_2)$
 - Analogously for other comparison operators (\geq , <, >)
 - As well as their mutual combinations in two-sided intervals
 - However, only fixed boundary values are assumed again

•

Heap File

Heap file

- Tuples are put into individual slots entirely arbitrarily
 - I.e., we do not have any specific knowledge of their position



Selection costs

- Full scan is inevitable in almost all situations
 - $c = p_R$
- Equality test with respect to a unique attribute
 - $c = \lceil p_R/2 \rceil$
 - Since we can stop at the moment a given tuple is found
 - However, uniform distribution of data and queries is assumed
 - And values outside of the active domain may also be queried

Sorted file

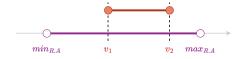
Tuples are ordered with respect to a particular attribute

Selection costs

- Binary search (half-interval search) can be used in general
 - However, only when <u>the same</u> attribute is queried, of course
 - I.e., the same attribute as the one used for sorting
 - Otherwise, sequential read as in a heap file would be needed
- Equality test
 - $c = \lceil \log_2 p_R \rceil$ for a **unique** attribute
 - $c = \lceil \log_2 p_R \rceil + \lceil p_R / V_{R.A} \rceil$ for a **non-unique** attribute

Selection costs (cont'd)

• Range query for two-sided intervals $[v_1, v_2]$ and other



- For "continuous" domains...
 - Number of values between any two of them is not limited
 - At least potentially
 - In practical terms, there can simply be far too many of them
 - E.g.: FLOAT, VARCHAR, ...
 - $c = \lceil \log_2 p_R \rceil + \lceil p_R \cdot (v_2 v_1) / (max_{R.A} min_{R.A}) \rceil$
 - Boundary types (inclusive / exclusive) are unimportant

Selection costs (cont'd)

• Range query for two-sided intervals $[v_1, v_2]$ and other

- For "discrete" domains...
 - Number of values between any two of them is finite
 - E.g.: INTEGER, CHAR, DATE, ...
 - $c = \lceil \log_2 p_R \rceil + \lceil p_R \cdot (v_2 v_1 + \varepsilon) / (max_{R.A} min_{R.A} + 1) \rceil$
 - ε is 1 for closed intervals, -1 for open (unless $v_1=v_2$), and 0 otherwise, i.e., half-open and zero-sized open

Selection costs (cont'd)

• Range query for one-sided intervals $(-\infty, \mathit{v}_2]$ and $(-\infty, \mathit{v}_2)$

- $c = \lceil p_R \cdot (v_2 min_{R.A}) / (max_{R.A} min_{R.A}) \rceil$ • $c = \lceil p_R \cdot (v_2 - min_{R.A} + \varepsilon) / (max_{R.A} - min_{R.A} + 1) \rceil$
- Range query for one-sided intervals $[v_1,\infty)$ and (v_1,∞)
 - Analogously...
 - $c = \lceil p_R \cdot (max_{R.A} v_1) / (max_{R.A} min_{R.A}) \rceil$
 - $c = \lceil p_R \cdot (max_{R.A} v_1 + \varepsilon) / (max_{R.A} min_{R.A} + 1) \rceil$

Hashed File

Hashed file

- Tuples are put into disjoint buckets (logical groups of blocks)
 - Based on a selected hash function over a particular attribute

- E.g.,
$$h(A) = A \mod 3$$

- Hash function
 - Its domain are values of a given attribute A
 - Its **range** provides H distinct values
 - There is exactly one bucket for each one of them
 - All tuples in a bucket always share the same hash value

Hashed File

File statistics

- *H*_R: number of buckets
- $C_R \approx \lceil p_R/H_R \rceil$: expected bucket size
 - Measured as a number of blocks in a bucket

Selection costs

- Equality test when the hashing attribute is queried
 - Only the corresponding bucket needs to be accessed
 - $c = C_R$ for a **non-unique** attribute
 - $c = \lceil C_R/2 \rceil$ for a **unique** attribute
 - Similar assumptions as in the case of heap files
- Any other condition
 - $c = p_R$
 - I.e., full scan is needed

B⁺ tree index structure = self-balanced search tree

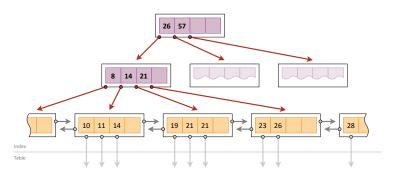
- Logarithmic height is guaranteed (the same across all leaves)
- Moreover, very high fan-out is assumed
 - I.e., our trees will tend to be significantly wider than taller
 - $-\Rightarrow$ search times will not only be logarithmic, but also really low

Logical structure

- Internal node (including a non-leaf root node)
 - Contains an ordered sequence of dividing values and pointers to child nodes representing the sub-intervals they determine
- Leaf node
 - Contains individual values and pointers to tuples in data file
 - Leaves are also interconnected by pointers in both directions

B⁺ tree index structure (cont'd)

• Sample index for relation ${\mathcal R}$ and its attribute A



Physical structure

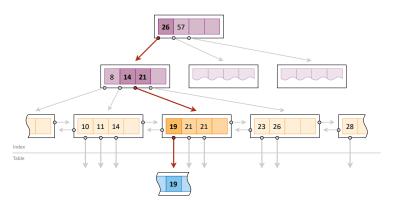
- Each node is physically represented by one index file block
 - And so they are treated the same way as data file blocks
 - I.e., loaded into the system memory one by one, etc.

Index statistics

- $m_{R.A}$: maximal **number of children** (order of tree)
 - Usually up to small hundreds in practice
 - Actual number is guaranteed to be at least $\lceil m_{R,A}/2 \rceil$
 - Except for the root node
- $I_{R.A}$: index height
 - Usually just pprox 2-3 for typical real-world tables
- p_{RA} : number of **leaf nodes**

Search algorithm

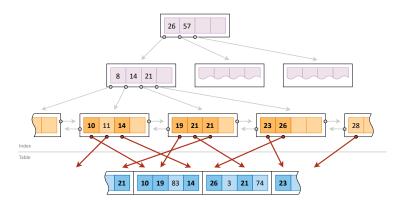
- Index is traversed from its root toward the corresponding leaf
 - Data tuple then needs to be fetched from the data file



Non-Clustered B⁺ Tree Index

Non-clustered index

- Order of items within the leaves and data file is not the same
 - I.e., data file is organized as a heap file of hashed file



Non-Clustered B⁺ Tree Index

Selection costs

- Equality test for a unique / non-unique attribute
 - $c = I_{R.A} + 1$ • $c = I_{R.A} + \lceil p_{R.A} / V_{R.A} \rceil + \min(p_R, \lceil n_R / V_{R.A} \rceil)$
- Range query for two-sided intervals $[v_1, v_2]$ and other

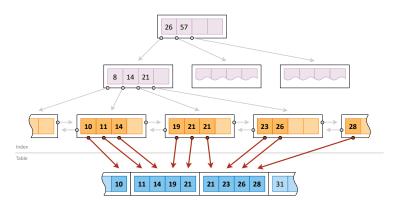
•
$$c = I_{R.A} + \lceil p_{R.A} \cdot (v_2 - v_1) / (max_{R.A} - min_{R.A}) \rceil + \min(p_R, \lceil n_R \cdot (v_2 - v_1) / (max_{R.A} - min_{R.A}) \rceil)$$

- Analogously for discrete domains
- However, for small domains $V_{R.A}$ or large intervals...
 - Full scan of the data file is better
 - I.e., index is not utilized at all
- Conditions not involving the indexed attribute
 - Full scan again, of course

Clustered B⁺ Tree Index

Clustered index

- On the contrary, order of items is (at least almost) the same
 - I.e., data file is a sorted file (with respect to the same attribute)



Clustered B⁺ Tree Index

Selection costs

- Equality tests
 - $c = I_{R.A} + 1$ for a **unique** attribute
 - $c = I_{R.A} + \lceil p_R/V_{R.A} \rceil$ for a **non-unique** attribute
- Range query for two-sided intervals $[v_1, v_2]$ and other
 - $c = I_{R.A} + \lceil p_R \cdot (v_2 v_1) / (max_{R.A} min_{R.A}) \rceil$
 - Analogously for discrete domains
- Range query for one-sided intervals
 - Data file is read directly as an ordinary sorted file
- Conditions not involving the indexed attribute
 - Full scan again, of course

Sample scenario #1

- Movie (<u>id</u>, title, year, ...)
 - Basic statistics
 - $-n_M = 100\,000$ tuples, $b_M = 10$, $p_M = 10\,000$ blocks
 - $-V_{M.id}=n_M=100~000$ values (since they are unique)
 - Heap file
 - Sorted file (using ids)
 - Hashed file
 - $-h(M.id) = M.id \mod 50$
 - $-H_M=50$ buckets, $C_M=200$ blocks
 - B⁺ tree index (using ids)
 - $m_{M,id} = 100$ followers
 - $-I_{M.id} = 3$, $p_{M.id} = 1500$ blocks

Equality test: movie with a particular identifier

- Heap file
 - $c = \lceil p_M/2 \rceil = 5000$
- Sorted file

•
$$c = \lceil \log_2 p_M \rceil = 14$$

- Hashed file
 - $c = \lceil C_M/2 \rceil = 100$
- Non-clustered index (B⁺ tree & heap file)
 - $c = I_{M,year} + 1 = 4$
- Clustered index (B⁺ tree & sorted file)
 - $c = I_{M.year} + 1 = 4$

Sample scenario #2

- Movie (id, title, year, ...)
 - Basic statistics

$$-n_M = 100\,000$$
 tuples, $b_M = 10$, $p_M = 10\,000$ blocks

-
$$V_{M.year} = 50$$
 values

$$-min_{M.year} = 1943$$
, $max_{M.year} = 2022$ (i.e., 80 values)

- Heap file
- Sorted file (using years)
- Hashed file
 - $-h(M.year) = M.year \mod 20$
 - $-H_M=20$ buckets, $C_M=500$ blocks
- B⁺ tree index (using years)
 - $m_{M,year} = 100$ followers
 - $-I_{M.year} = 3$, $p_{M.year} = 1500$ blocks

Equality test: movies filmed in a particular year

- Heap file
 - $c = p_M = 10000$
- Sorted file

•
$$c = \lceil \log_2 p_M \rceil + \lceil p_M / V_{M.year} \rceil = 214$$

- Hashed file
 - $c = C_M = 500$
- Non-clustered index (B⁺ tree & heap file)

•
$$c = I_{M.year} + \lceil p_{M.year} / V_{M.year} \rceil + \min(p_M, \lceil n_M / V_{M.year} \rceil)$$

= 2 033

- Clustered index (B⁺ tree & sorted file)
 - $c = I_{M.year} + \lceil p_M / V_{M.year} \rceil = 203$

Range query: movies filmed during years $[y_1 = 2016, y_2 = 2020]$

- Heap file
 - $c = p_M = 10000$
- Sorted file
 - Let $r \leftarrow (y_2 y_1 + 1)/(max_{M.year} min_{M.year} + 1) = 5/80$
 - $c = \lceil \log_2 p_M \rceil + \lceil p_M \cdot r \rceil = 639$
- Hashed file
 - $c = p_M = 10000$
- Non-clustered index (B⁺ tree & heap file)
 - $c = I_{M.year} + \lceil p_{M.year} \cdot r \rceil + \min(p_M, \lceil n_M \cdot r \rceil) = 6347$
- Clustered index (B⁺ tree & sorted file)
 - $c = I_{M.year} + \lceil p_M \cdot r \rceil = 628$

External Sort

External Sort

N-way external merge sort

- Sort phase (pass 1)
 - Groups of input blocks are loaded into the system memory
 - Tuples in these blocks are then sorted
 - Any in-memory in-place sorting algorithm can be used
 - E.g.: quick sort, heap sort, bubble sort, insertion sort, ...
 - Created initial runs are written into a temporary file
- Merge phase (passes 2 and higher)
 - Groups of runs are loaded into the memory and merged
 - Newly created (longer) runs are written back on a hard drive
 - Merging is finished when exactly one run is obtained
 - And so the entire input table is sorted

Pass 1

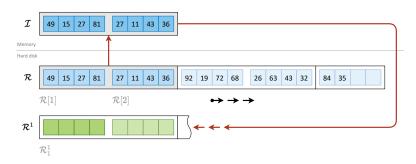
- Input data file
 - Relational table R

- E.g.,
$$n_R=18$$
 tuples, $b_R=4$ tuples/block, $p_R=5$ blocks

- System memory layout
 - Input buffer ${\mathcal I}$
 - $\;\; \text{E.g., size} \; M = 2 \; \text{pages}$

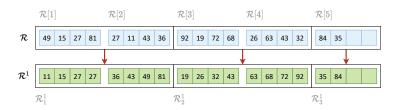
Pass 1

- Groups of M blocks are presorted and so initial runs created
 - Input blocks from $\mathcal R$ are first loaded to $\mathcal I$
 - Individual tuples in \mathcal{I} are then sorted
 - Created runs are stored to a temporary file \mathcal{R}^1



Pass 1

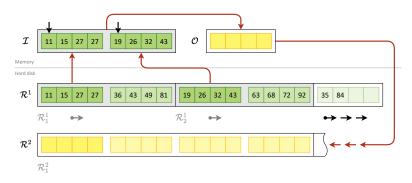
• **Resulting runs** in \mathcal{R}^1 within our sample scenario



Merge Phase

Pass 2

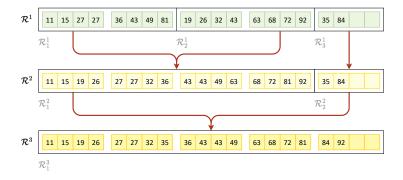
- Groups of M runs are iteratively merged together
 - Blocks from these input runs are gradually loaded into \mathcal{I}
 - Minimal items are then iteratively selected and moved to ${\cal O}$
 - Merged (longer) runs are written to a new temporary file \mathcal{R}^2



Merge Phase

Passes 2 and 3

- Merging continues until just a single run is acquired
 - And so the entire input table is sorted



Algorithm

Sort phase (pass 1)

```
1 p \leftarrow 1

2 foreach group of blocks B_1, \ldots, B_M (if any) from \mathcal{R} do

3 read these blocks to \mathcal{I}

4 sort all items in \mathcal{I}

5 write all blocks from \mathcal{I} as a new run to \mathcal{R}^p
```

Algorithm

Merge phase (passes 2 and higher)

```
while \mathcal{R}^p has more then just one run do
         p \leftarrow p + 1
         foreach group of runs R_1, \ldots, R_M (if any) from \mathcal{R}^{p-1} do
              start constructing a new run in \mathcal{R}^p
              read the first block from each run R_x to \mathcal{I}[x]
10
              while \mathcal{I} contains at least one item do
11
                   select the minimal item and move it to \mathcal{O}
12
                   if the corresponding \mathcal{I}[x] is empty then
13
                        read the next block from R_x (if any) to \mathcal{I}[x]
14
                   if \mathcal{O} is full then write \mathcal{O} to \mathcal{R}^p and empty \mathcal{O}
15
              if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{R}^p and empty \mathcal{O}
16
```

Summary

Memory layout

- Sort phase (**pass 1**): M
 - Input buffer *I*: *M* pages

- Merge phase (passes 2 and higher): M+1
 - Input buffer \mathcal{I} : $M \ge 2$ pages
 - Output buffer O: 1 page

Summary

Time complexity

- Single pass (regardless of the phase)
 - $c_{\texttt{read}} = c_{\texttt{write}} = p_R$
- Number of passes
 - $t = \lceil \log_M(p_R) \rceil$
- Overall cost
 - $c_{\text{ES}} = t \cdot (c_{\text{read}} + c_{\text{write}}) = \lceil \log_M(p_R) \rceil \cdot 2p_R$

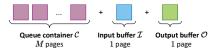
Limitation of the overall number of passes

- In general...
 - $M = \lceil \sqrt[t]{p_R} \rceil$
- Specifically for t = 2 (i.e., exactly 2 passes)
 - $M = \lceil \sqrt{p_R} \rceil$

Improved Approach

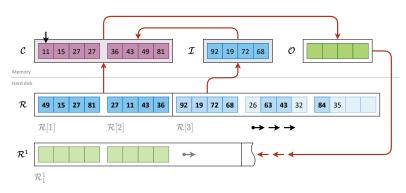
N-way external merge sort with priority queue

- Sort phase is modified
 - Instead of fixed-size initial runs...
 - ... we generate them using a priority queue
 - In particular, min-heap data structure is used
 - The aim is to make the initial runs longer
- Memory layout: M+1+1
 - Queue container $C: M \ge 1$ pages
 - Input buffer *I*: 1 page
 - Output buffer O: 1 page



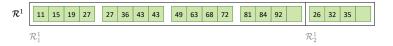
Pass 1

- Once the queue is initialized, runs are generated on the fly
 - Minimal item greater than or equal to the last value is always extracted and replaced with another item from the input file



Pass 1 (cont'd)

Two runs are obtained in our scenario



Impact summary

- Created initial runs will tend to be longer
 - 2M blocks on average (instead of just M)
 - p_R in the best case
 - M in the worst case
- ⇒ number of the runs will tend to be lower

Algorithm

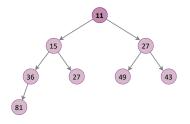
Improved sort phase (pass 1)

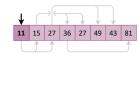
```
1 read blocks \mathcal{R}[1], \ldots, \mathcal{R}[M] (if any) from \mathcal{R} to \mathcal{C}
    read block \mathcal{R}[M+1] (if any) from \mathcal{R} to \mathcal{I}
    while \mathcal{C} contains at least one item do
          start constructing a new run in \mathbb{R}^1, put v \leftarrow -\infty
          while C contains at least one item i > v do
 5
               let i be the minimal one, move i to \mathcal{O}, put v \leftarrow i
 6
               move the next item from \mathcal{I} (if any) to \mathcal{C}
               if \mathcal{I} is empty then
                     read the next block from \mathcal{R} (if any) to \mathcal{I}
               if \mathcal O is full then write \mathcal O to \mathcal R^1 and empty \mathcal O
10
          if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{R}^1 and empty \mathcal{O}
11
```

Priority Queue

Min-heap data structure

- Complete binary tree
 - Key associated with each node must be less than or equal to keys of all its child nodes
 - I.e., the root node contains the minimal item among them all
- Array representation is possible
 - Using a straightforward index arithmetic

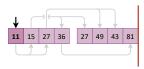




Queue Container

Queue container $\mathcal C$

- Two separate min-heap structures are in fact used
 - Active heap with items greater than or equal to the last value
 - And so values that can still be (actually all really will be) used in the currently constructed run
 - Inactive heap with items not satisfying the condition
- Both are represented as arrays
 - Directly inside the container blocks
- Container initialization (line 1)
 - Active heap is built from the input items, inactive heap is empty



Queue Container

Queue container C (cont'd)

- Whenever an item is added to the container (line 7)
 - It is added to the active / inactive heap based on the condition

- Whenever the active heap is fully depleted (line 5)
 - I.e., the current run terminated, both the heaps are swapped

Nested Loops Join

Nested Loops

Binary nested loops

- Universal approach for all types of inner joins
 - Natural join, cross join, theta join
 - I.e., arbitrary joining condition can be involved
 - Support possible duplicates
 - Requires no index structures
- Not the best option in all situations, though
 - Suitable for tables with significantly different sizes

Basic idea

- Outer loop: iteration over the blocks of the first table
- Inner loop: iteration over the blocks of the second table

Nested Loops

Sample input data

• Tables $\mathcal R$ and $\mathcal S$ to be joined using a value equality test

```
    R
    21
    84
    56
    19
    41
    72
    69
    35
    56
    84

    S
    31
    56
    75
    43
    88
    21
    43
    14
    92
    52
    25
    81
    72
    37
    64
    35
    14
    64
```

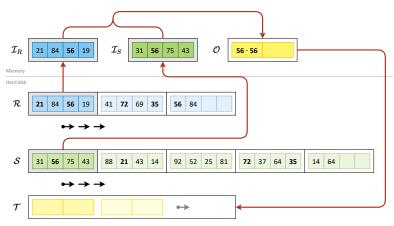
Basic setup

- Memory layout: 1+1+1
 - Input buffer \mathcal{I}_R : 1 page
 - Input buffer \mathcal{I}_S : 1 page
 - Output buffer \mathcal{O} : 1 page

Nested Loops

Basic setup (1 + 1 + 1)

Another pair of loops is used for joining tuples in the memory



Algorithm

```
Basic setup (1 + 1 + 1)
```

```
foreach block R from \mathcal{R} do
         read R into \mathcal{I}_R
         foreach block S from S do
 3
               read S into \mathcal{I}_S
 4
               foreach item r in \mathcal{I}_R do
 5
                    foreach item s in \mathcal{I}_S do
 6
                          if r and s satisfy the join condition then
                               join r and s and put the result to \mathcal{O}
                               if \mathcal{O} is full then write \mathcal{O} to \mathcal{T}, empty \mathcal{O}
 9
10 if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
```

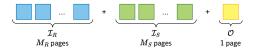
Observations

Time complexity

- Basic setup (1 + 1 + 1)
 - $c_{NL} = p_R + p_R \cdot p_S$
- ⇒ smaller table should always be taken as the <u>outer</u> one

General setup

- Multiple pages are used for both the input buffers
- Memory layout: $M_R + M_S + 1$
 - Input buffer \mathcal{I}_R : M_R pages
 - Input buffer \mathcal{I}_S : M_S pages
 - Output buffer O: 1 page



Algorithm

General setup ($M_R + M_S + 1$)

```
foreach group of blocks R_1, \ldots, R_{M_R} (if any) from \mathcal{R} do
        read these blocks into \mathcal{I}_R
2
        foreach group of blocks S_1, \ldots, S_{M_S} (if any) from S do
3
             read these blocks into \mathcal{I}_{S}
4
             foreach item r in \mathcal{I}_R do
5
                  foreach item s in \mathcal{I}_S do
6
                       if r and s satisfy the join condition then
                            join r and s and put the result to \mathcal{O}
                            if \mathcal{O} is full then write \mathcal{O} to \mathcal{T}, empty \mathcal{O}
```

10 if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}

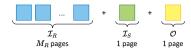
Observations

Time complexity

- General setup ($M_R + M_S + 1$)
 - $c_{\mathrm{NL}} = p_R + \lceil p_R/M_R \rceil \cdot p_S$
- \Rightarrow there is no reason of having $M_S \ge 2$

Standard setup

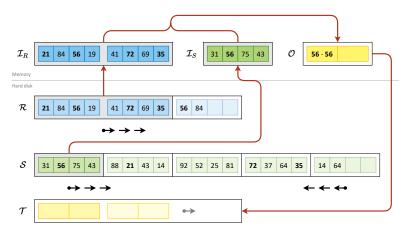
- Memory layout: $M_R + 1 + 1$
 - Input buffer \mathcal{I}_R : M_R pages
 - Input buffer \mathcal{I}_S : 1 page
 - Output buffer O: 1 page



Standard Approach

Standard setup ($M_R + 1 + 1$) with zig-zag optimization

Multiple pages are used just for the outer table



Observations

Zig-zag optimization

- Reading of the inner table S
 - Odd iterations normally
 - Even iterations in reverse order

Time complexity

- Standard setup ($M_R + 1 + 1$)
 - $c_{
 m NL} = p_R + \lceil p_R/M_R \rceil \cdot p_S$ (without zig-zag)
 - $c_{
 m NL}=p_R+\lceil p_R/M_R
 ceil\cdot (p_S-1)+1$ (with zig-zag)

Special Cases

Very small tables

- Smaller table fits entirely within the memory, i.e., $p_R \leq M_R$
 - $c_{NL} = p_R + p_S$

Non-brute-force replacement for inner loops

- B⁺ tree index exists in S on attribute A that is unique in S
 - $c_{NL} = p_R + n_R \cdot (I_{S.A} + 1)$
 - If R is organized as a heap
 - $c_{NL} = p_R + I_{S.A} + p_{S.A} + V_{R.A}$
 - If R is sorted with respect to A
- S is a hashed file over attribute A that is unique in S
 - $c_{NL} = p_R + V_{R.A} \cdot C_S$
 - If R is sorted with respect to A

• ...

Non-Binary Nested Loops

Non-binary nested loops

- Nested loops algorithm for multiple tables at once
 - In particular, let us have tables $\mathcal{R}_1, \dots, \mathcal{R}_n$ for $n \geq 2$, $n \in \mathbb{N}$ Let their sizes be p_1, \dots, p_n
- Solution
 - We just need to embed more loops into each other
- Memory layout: $M_1 + \cdots + M_n + 1$
 - Input buffers \mathcal{I}_i : M_i pages for each table \mathcal{R}_i
 - Output buffer O: 1 page
- Overall cost with zig-zag optimization
 - $c_{NL} = (p_1) + (\lceil p_1/M_1 \rceil \cdot (p_2 M_2) + M_2) + \dots + (\lceil p_1/M_1 \rceil \dots \lceil p_{n-1}/M_{n-1} \rceil \cdot (p_n M_n) + M_n)$

Memory Setup

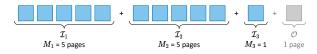
Memory layout: $M_1 + \cdots + M_n + 1$

- · Optimization problem
 - Finding $\underline{\mathsf{integer}}\ M_i$ minimizing the overall cost $c_{\mathtt{NL}}$
- Heuristics
 - Let $M \ge n$ be all the available pages (for input buffers)
 - Let $p_1 \leq \cdots \leq p_n$ (without loss of generality)
 - Allocate one page for the innermost table, i.e., $M_n=1$
 - Allocate the remaining pages uniformly to $\mathcal{R}_1, \dots, \mathcal{R}_{n-1}$
 - I.e., let $m = \lfloor (M-1)/(n-1) \rfloor$
 - Then put $M_i = m$ for each $i \in \{1, \ldots, n-1\}$
 - It may happen that some pages will still be unallocated
 - There will be exactly $u = (M-1) (n-1) \cdot m$ of them
 - Assign these remaining pages (if any) between smaller tables
 - I.e., M_i += 1 for each i ∈ {1, . . . , u}

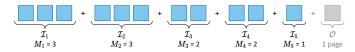
Memory Setup

Memory layout (cont'd)

- Example #1
 - n=3 tables, M=11 pages (for input buffers)
 - Allocation: $\langle 5, 5, 1 \rangle$



- Example #2
 - n=5 tables, M=11 pages
 - Allocation: $\langle 3, 3, 2, 2, 1 \rangle$



Sort-Merge Join

Sort-Merge Join

Sort-merge join algorithm (or just **merge join**)

- Inner joins based on value equality tests only
 - Basic version without duplicates
 - Could be extended to support them, though
- Suitable for tables with relatively similar sizes
 - Especially when they are already sorted
 - Or when the final result is expected to be sorted

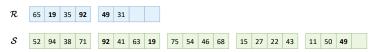
Phases

- Sort phase
 - Both tables are externally sorted, one by one (if not yet)
- Join phase
 - Items are joined while simulating the merge of the two tables

Basic Approach

Sample input data

• Input tables ${\mathcal R}$ and ${\mathcal S}$



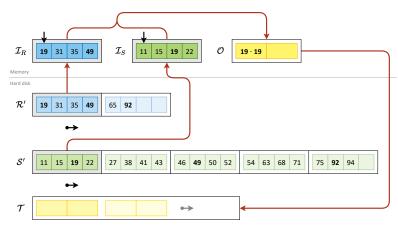
Sort phase

Resulting sorted tables

Basic Approach

Join phase

Blocks from the sorted tables are processed one by one



Algorithm

Join phase

```
1 read block \mathcal{R}'[1] to \mathcal{I}_R and block \mathcal{S}'[1] to \mathcal{I}_S
    while both \mathcal{I}_R and \mathcal{I}_S contain at least one item do
          let r be the minimal item in \mathcal{I}_R and s minimal item in \mathcal{I}_S
 3
          if r and s can be joined then
 4
               join r and s and put the result to \mathcal{O}
 5
               if \mathcal{O} is full then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
 6
               remove both r from \mathcal{I}_R and s from \mathcal{I}_S
          else remove the lower one of r from \mathcal{I}_R or s from \mathcal{I}_S
 8
          if \mathcal{I}_R is empty then read the next block from \mathcal{R}' (if any)
 9
          if \mathcal{I}_S is empty then read the next block from \mathcal{S}' (if any)
10
if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
```

Observations

Join phase

- Memory layout: 1+1+1
 - Input buffer \mathcal{I}_R : 1 page
 - Input buffer \mathcal{I}_S : 1 page
 - Output buffer O: 1 page

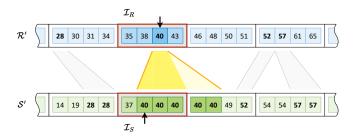
Time complexity

- Sort phase
- Join phase
 - $c_{MJ} = p_R + p_S$

Extended Version

Duplicate items

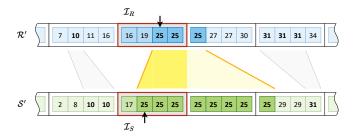
- Possible duplicates in one table only
 - Let it be S (without loss of generality)
 - Algorithm modification is straightforward...
 - Having successfully joined r and s, we just remove s from \mathcal{I}_S and not r from \mathcal{I}_R (line 7)



Extended Version

Duplicate items

- Possible duplicates in both tables
 - All matching pairs of r and s just need to be joined...
 - Unfortunately, size of input buffers might not be sufficient
 - Since we may span block boundaries, even repeatedly



Integrated Approach

2-pass integrated sort-merge join with priority queue

- Sort phase (pass 1)
 - Tables are processed one by one
 - They are not sorted entirely, though
 - Only <u>initial runs</u> are constructed
 - Using just the sort phase (pass 1) of the external sort algorithm
 - Priority queue is involved to make these runs longer
 - And so their overall number lower
- Join phase (pass 2)
 - The same idea as in the basic sort-merge approach
 - We only have more runs within each presorted table

Integrated Approach

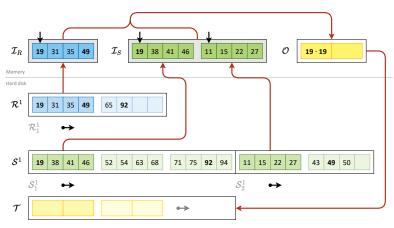
Sort phase (pass 1)

Resulting initial runs within tables \mathcal{R}^1 and \mathcal{S}^1

Integrated Approach

Join phase (pass 2)

• All runs from both the tables \mathcal{R}^1 and \mathcal{S}^1 are merged at once



Join phase (pass 2)

```
1 read \mathcal{R}^1_{\infty}[1] from each run in \mathcal{R}^1 to \mathcal{I}_R[x], the same for \mathcal{S}^1
    while both \mathcal{I}_R and \mathcal{I}_S contain at least one item do
          let r be the minimal item in \mathcal{I}_R and s minimal item in \mathcal{I}_S
 3
          if r and s can be joined then
               join r and s and put the result to \mathcal{O}
 5
               if \mathcal{O} is full then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
 6
                remove both r from \mathcal{I}_R and s from \mathcal{I}_S
          else remove the lower one of r from \mathcal{I}_R or s from \mathcal{I}_S
 8
          if the given \mathcal{I}_R[x] is empty then refill it from \mathcal{R}_x^1
          if the given \mathcal{I}_S[x] is empty then refill it from \mathcal{S}^1_x
10
if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
```

Join phase (pass 2)

- Memory layout: M_R+M_S+1
 - Input buffer \mathcal{I}_R : M_R pages = number of runs in \mathcal{R}^1
 - Input buffer \mathcal{I}_S : M_S pages = number of runs in \mathcal{S}^1
 - Output buffer O: 1 page

Time complexity

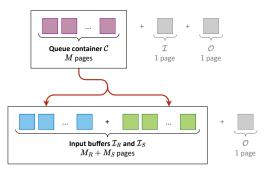
- Sort phase: $c_{\mathtt{sort}} = 2p_R + 2p_S$
- Join phase: $c_{\mathtt{join}} = p_R + p_S$
- Overall cost: $c_{\mathtt{MJ}} = c_{\mathtt{sort}} + c_{\mathtt{join}} = 3(p_R + p_S)$

Optimized setup

- Motivation
 - Balanced memory usage across both phases
- Sort phase (pass 1)
 - Required memory: M+1+1 pages
 - Let $M = \lceil \sqrt{p} \rceil$, where $p = \max(p_R, p_S)$
 - As if we wanted 2 passes for the external sort
 - If M pages are used for the priority queue container...
 - Expected **length of initial runs** should be 2M
 - And so the expected number of all runs $p_S/2M+p_R/2M \leq p/2M+p/2M \approx 2p/2M=p/M \approx p/\sqrt{p} \approx \sqrt{p} \approx M$
- Join phase (pass 2)
 - Required memory: $M_R + M_S + 1$ pages
 - $\blacksquare \Rightarrow M_R + M_S \approx M$

Optimized setup (cont'd)

- In other words...
 - The same number of M pages should be sufficient for both...
 - Queue container C during pass 1, and
 - Input buffers \mathcal{I}_R and \mathcal{I}_S during pass 2



Hash Join

Hash Join

Hash join approaches

- Basic principle
 - Items of the first table are hashed into the system memory
 - Items of the second table are then attempted to be joined
- Limitations
 - Inner joins based on value equality tests only
 - Including possible duplicates
 - Not suitable for small active domains
- Particular approaches
 - Classic hash join, Simple hash join, Partition hash join,
 Grace hash join, and Hybrid hash join

Classic Hashing

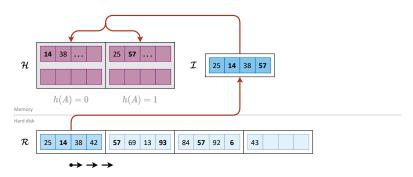
Classic hash join

- Build phase
 - Smaller table (let it be R) is hashed into the system memory
 - I.e., it is sequentially loaded into the memory, block by block
 - All its tuples are then emplaced into the hash container
- Hash function h is assumed for this purpose
 - lacktriangle Its **domain** are values of the joining attribute A
 - Its range provides H distinct values
- Hash container internally contains H buckets
 - Its **overall size** will inevitably be somewhat larger than p_R
 - Let us say $M = \lceil F \cdot p_R \rceil$ pages for some small factor F
- Probe phase
 - Items from the larger table $\mathcal S$ are attempted to be joined

Build Phase

Build phase

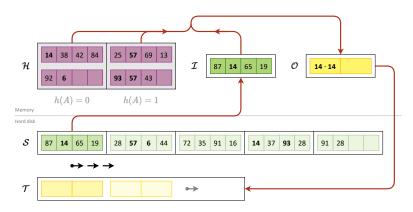
- Tuples from the smaller table are hashed into the memory
 - E.g., hash function $h(A) = A \mod 2$ is assumed



Probe Phase

Probe phase

Tuples from the larger table are attempted to be joined



Build phase

```
foreach block R from \mathcal{R} do
read R into \mathcal{I}
foreach item r in \mathcal{I} do
calculate hash value h \leftarrow h(r.A)
add r into bucket h in \mathcal{H}
```

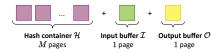
Probe phase

```
foreach block S from S do
        read S into \mathcal{I}
        foreach item s in \mathcal{I} do
3
             calculate hash value h \leftarrow h(s.A)
4
             foreach item r in bucket h in \mathcal{H} do
                   if r and s can be joined then
6
                        join r and s and put the result to \mathcal{O}
                        if \mathcal{O} is full then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
9 if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
```

Memory layout

- Build phase: M+1
 - Hash container $\mathcal{H} \colon M = \lceil F \cdot p_R \rceil$ pages
 - Input buffer \mathcal{I} : 1 page

- Probe phase: M + 1 + 1
 - Hash container \mathcal{H} : M pages (preserved from the build phase)
 - Input buffer \mathcal{I} : 1 page
 - Output buffer O: 1 page



Time complexity

- Build and probe phases
 - $c_{\text{build}} = p_R$
 - $c_{\tt probe} = p_S$
- Overall cost
 - $c_{\text{CH}} = c_{\text{build}} + c_{\text{probe}} = p_R + p_S$

Summary

- Interesting approach as for its efficiency
 - However, usable only when the smaller table can entirely be hashed into the system memory...

Simple Hashing

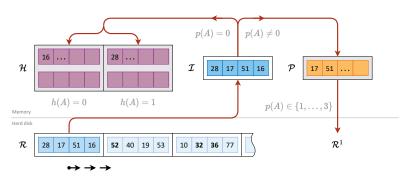
Simple hash join

- Basic idea
 - During each pass, just a subset of all tuples is considered
 - These are processed via analogous build and probe routines
 - The remaining tuples are postponed for the following passes
- Partition function p is assumed for this separation
 - lacktriangle Its $oldsymbol{domain}$ are again values of the joining attribute A
 - Its range provides P distinct values
- Obvious requirement
 - **Both functions** p and h need to be **mutually orthogonal**
 - E.g.: $p(A) = A \mod 4$ and $h(A) = A \mod 2$ will not work
 - Because all items in a partition would either be even or odd

Build Phase

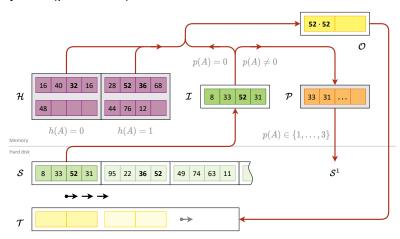
Build phase (partition 0)

- Items from the smaller table are either hashed or postponed
 - E.g., partition function $p(A) = A \mod 4$ and hash function $h(A) = (A/4) \mod 2$ are assumed



Probe Phase

Probe phase (partition 0)



Overall procedure

```
1 put \mathcal{R}^0 \leftarrow \mathcal{R}

2 put \mathcal{S}^0 \leftarrow \mathcal{S}

3 foreach partition p \in \{0, \dots, P-1\} do

4 execute build phase for partition p over \mathcal{R}^p and create postponed \mathcal{R}^{p+1}

5 execute probe phase for partition p over \mathcal{S}^p and create postponed \mathcal{S}^{p+1}

6 empty hash container \mathcal{H}
```

Build phase (for partition *K*)

```
1 foreach block R from \mathcal{R}^K do
         read R into \mathcal{I}
         foreach item r in \mathcal{I} do
 3
               calculate partition value p \leftarrow p(r.A)
 4
               if p = K then
 5
                    calculate hash value h \leftarrow h(r.A)
 6
                    add r into bucket h in \mathcal{H}.
               else
 8
                    add r into partition buffer \mathcal{P}
                    if \mathcal{P} is full then write \mathcal{P} to \mathcal{R}^{K+1} and empty \mathcal{P}
10
if \mathcal{P} is not empty then write \mathcal{P} to \mathcal{R}^{K+1} and empty \mathcal{P}
```

Probe phase (for partition K)

```
1 foreach block S from S^K do
         read S into \mathcal{I}
        foreach item s in \mathcal{I} do
 3
             calculate partition value p \leftarrow p(s.A)
             if p = K then
                  calculate hash value h \leftarrow h(s.A)
                  foreach item r in bucket h in \mathcal{H} do
                       if r and s can be joined then
                            join r and s and put the result to \mathcal{O}
                            if \mathcal{O} is full then write \mathcal{O} to \mathcal{T}, empty \mathcal{O}
10
```

Probe phase (for partition K) (cont'd)

```
11 else

12 add s into partition buffer \mathcal{P}

13 if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}

15 if \mathcal{P} is not empty then write \mathcal{P} to \mathcal{S}^{K+1} and empty \mathcal{P}
```

Memory layout

- Build phase: M + 1 + 1
 - Hash container \mathcal{H} : $M = \lceil F \cdot (p_R/P) \rceil$ pages
 - Input buffer \mathcal{I} : 1 page
 - Partition buffer \mathcal{P} : 1 page



Memory layout

- Probe phase: M + 1 + 1 + 1
 - Hash container \mathcal{H} : M pages (preserved from the build phase)
 - Input buffer \mathcal{I} : 1 page
 - Partition buffer \mathcal{P} : 1 page
 - Output buffer O: 1 page

Time complexity

Build and probe phases

$$\begin{split} \bullet & \ c_{\texttt{build}} \approx \left(p_R + \frac{P-1}{P} p_R \right) + \left(\frac{P-1}{P} p_R + \frac{P-2}{P} p_R \right) + \dots + \left(\frac{1}{P} p_R \right) \\ & = p_R + 2 \frac{1}{P} \Big[(P-1) + (P-2) + \dots + (1) \Big] p_R \\ & = p_R + 2 \frac{1}{P} \Big[\frac{(P-1)+(1)}{2} \cdot (P-1) \Big] p_R = p_R + (P-1) p_R \\ & = P \cdot p_R \end{split}$$

- Analogously $c_{\texttt{probe}} = P \cdot p_S$
- Overall cost
 - $c_{\text{SH}} = c_{\text{build}} + c_{\text{probe}} = P \cdot (p_R + p_S)$

Summary

- We are now able to deal even with larger tables
 - However, overall cost is still not efficient enough...

Partition Hashing

Partition hash join

- Basic principle
 - Both tables are first partitioned
 - Using partition function p again
 - Pairs of the corresponding partitions are then joined together
 - Using the classic hash join approach
 - Or actually even nested loops if desired

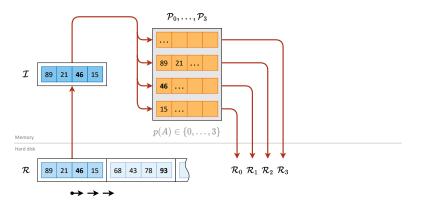
Overall procedure

```
split \mathcal R and create partitions \mathcal R_0,\dots,\mathcal R_{P-1} split \mathcal S and create partitions \mathcal S_0,\dots,\mathcal S_{P-1} foreach partition p\in\{0,\dots,P-1\} do \mathbb C join partitions \mathcal R_p and \mathcal S_p
```

Partition Phase

Partition phase (for table \mathcal{R})

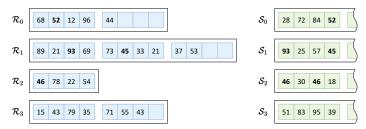
Tuples of a given table are split to disjoint partitions



Join Phase

Partition phase

Resulting partitions for our sample scenario



Join phase

- Pairs of the <u>corresponding</u> partitions are then joined together
 - \mathcal{R}_0 and \mathcal{S}_0 , \mathcal{R}_1 and \mathcal{S}_1 , ...

Partition phase

ullet Table ${\mathcal R}$ is assumed, partitioning of ${\mathcal S}$ is analogous

```
foreach block R from \mathcal{R} do

read R into \mathcal{I}

foreach item r in \mathcal{I} do

calculate partition value p \leftarrow p(r.A)

add r into partition buffer \mathcal{P}_p

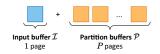
if \mathcal{P}_p is full then write \mathcal{P}_p to \mathcal{R}_p and empty \mathcal{P}_p

foreach partition p \in \{0, \dots, P-1\} do

if \mathcal{P}_p is not empty then write \mathcal{P}_p to \mathcal{R}_p and empty \mathcal{P}_p
```

Memory layout

- Partition phase: 1 + P
 - Input buffer \mathcal{I} : 1 page
 - Partition buffers \mathcal{P} : P pages



Time complexity

- Partitioning phase
 - $c_{\mathtt{split}} \approx 2 \cdot p_R + 2 \cdot p_S$
- Overall cost (with classic hash join involved)
 - $c_{\text{PH}} = c_{\text{split}} + P \cdot c_{\text{CH}} \approx c_{\text{split}} + P \Big[\frac{p_R}{P} + \frac{p_S}{P} \Big] \approx 3 \cdot (p_R + p_S)$

Grace Hashing

Grace hash join

- Just ordinary partition hash join
 - ... with balanced memory requirements across all the phases

Memory setup

- Let $m \approx \sqrt{F \cdot p_R}$
 - I.e., square root of the size of an in-memory container that would roughly be needed for hashing of the smaller table ${\cal R}$
- Partition function p is chosen to ensure that P=m
 - \Rightarrow m partitions will be created (for \mathcal{R} as well as \mathcal{S})
 - $lack \Rightarrow$ expected size of each partition of ${\mathcal R}$ should be...

$$-s=p_R/P=p_R/m=p_R/\sqrt{F\cdot p_R}pprox \sqrt{p_R/F}$$
 pages

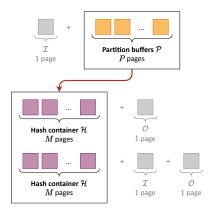
■ ⇒ space needed for hashing each of these partitions...

$$-F \cdot s = F \cdot \sqrt{p_R/F} \approx \sqrt{F \cdot p_R} \approx m$$
 pages

Grace Hashing

Memory setup (cont'd)

• I.e., size P of partition buffers $\mathcal P$ (partition phase) and size M of hash container $\mathcal H$ (build and probe phases) are equal to m



Hybrid Hashing

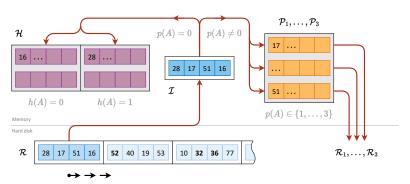
Hybrid hash join

- Basically an improvement of the simple hash join approach
 - Instead of using just one buffer for all items to be postponed...
 - ... we directly split them to separate partitions
 - I.e., as in the partition hash join approach
- In other words...
 - Partitions 0 are joined directly during the first pass
 - Using the altered build and probe phases
 - All the remaining partitions are pairwise joined subsequently
 - Using the classic hash join approach

Build Phase

Build phase

- Items from the smaller table are either hashed or postponed
 - However, when they are to be postponed, they are branched to individual separated partitions



Probe Phase

Probe phase



Overall procedure

- execute **build phase** over \mathcal{R} , hash items from partition 0 and create postponed partitions $\mathcal{R}_1, \dots, \mathcal{R}_{P-1}$
- 2 execute **probe phase** over S, join items from partition 0 and create postponed partitions S_1, \ldots, S_{P-1}
- ${\it 3}$ foreach partition $p\in\{1,\ldots,P-1\}$ do
- join partitions \mathcal{R}_p and \mathcal{S}_p

Build phase

```
1 foreach block R from \mathcal{R} do
         read R into \mathcal{I}
         foreach item r in \mathcal{T} do
 3
              calculate partition value p \leftarrow p(r.A)
 4
              if p = 0 then
 5
                    calculate hash value h \leftarrow h(r.A)
 6
                    add r into bucket h in \mathcal{H}.
              else
 8
                    add r into partition buffer \mathcal{P}_n
                    if \mathcal{P}_p is full then write \mathcal{P}_p to \mathcal{R}_p and empty \mathcal{P}_p
10
```

Build phase (cont'd)

- 11 foreach partition $p \in \{1, \dots, P-1\}$ do
- if \mathcal{P}_p is not empty **then** write \mathcal{P}_p to \mathcal{R}_p and empty \mathcal{P}_p

Probe phase

```
1 foreach block S from S do
        read S into \mathcal{I}
        foreach item s in \mathcal{I} do
 3
             calculate partition value p \leftarrow p(s.A)
 4
             if p = 0 then
 5
                   calculate hash value h \leftarrow h(s.A)
 6
                   foreach item r in bucket h in \mathcal{H} do
                        if r and s can be joined then
                            join r and s and put the result to \mathcal{O}
                            if \mathcal{O} is full then write \mathcal{O} to \mathcal{T}, empty \mathcal{O}
10
```

Probe phase (cont'd)

```
 \begin{array}{c|c} & & & \\ & & \\ 11 & & & \\ 12 & & & \\ 12 & & & \\ 13 & & & \\ & & & \\ 13 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\
```

Observations

Memory layout

- Build phase: M + 1 + (P 1)
 - Hash container \mathcal{H} : $M = \lceil F \cdot (p_R/P) \rceil$ pages
 - Input buffer \mathcal{I} : 1 page
 - Partition buffers \mathcal{P} : P-1 pages

Observations

Memory layout

- Probe phase: M + 1 + (P 1) + 1
 - Hash container \mathcal{H} : M pages (preserved from the build phase)
 - Input buffer \mathcal{I} : 1 page
 - Partition buffers \mathcal{P} : P-1 pages
 - Output buffer O: 1 page

Observations

Time complexity

- Build and probe phases for partition 0
 - $c_{ t build} pprox p_R + p_R \cdot rac{P-1}{P} = p_R \cdot (1 + rac{P-1}{P}) = p_R \cdot (2 rac{1}{P})$
 - Analogously $c_{ t probe} pprox p_S \cdot (2 rac{1}{P})$
- Overall cost (with classic hash join involved)

$$\begin{split} & \quad c_{\text{HH}} = c_{\text{build}} + c_{\text{probe}} + (P-1) \cdot c_{\text{CH}} \\ & \quad \approx p_R \cdot (2 - \frac{1}{P}) + p_S \cdot (2 - \frac{1}{P}) + (P-1) \Big[\frac{p_R}{P} + \frac{p_S}{P} \Big] \\ & \quad \approx (3 - \frac{2}{P}) \cdot (p_R + p_S) \end{split}$$

Sample Query

Database schema

- Movie (id, title, year, ...)
- Actor (movie, actor, character, ...)
 - FK: Actor[movie] ⊆ Movie[id]

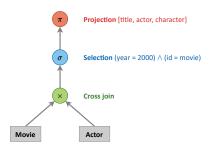
Sample query

- Actors and characters they played in movies filmed in 2000
 - SELECT title, actor, character
 FROM Movie JOIN Actor
 WHERE (year = 2000) AND (id = movie)
 - (Movie × Actor)((year = 2000) ∧ (id = movie)) [title, actor, character]
 - $\pi_{\mathsf{title},\mathsf{actor},\mathsf{character}} \left(\sigma_{(\mathsf{year} = 2000) \land (\mathsf{id} = \mathsf{movie})} \left(\mathsf{Movie} \times \mathsf{Actor} \right) \right)$

Sample Query

Sample query (cont'd)

- Actors and characters they played in movies filmed in 2000
 - $\pi_{\text{title,actor,character}} \left(\sigma_{\text{(year}=2000) \land (\text{id}=\text{movie})} \left(\text{Movie} \times \text{Actor} \right) \right)$



Basic idea

• SQL query o RA query o evaluation plan o query result

Evaluation process

- (1) Scanning [scanner]
 - Lexical analysis is performed over the input SQL expression
 - Lexemes are recognized and then tokens generated
- (2) Parsing [parser]
 - Syntactic analysis is performed
 - Derivation tree is constructed according to the SQL grammar
- (3) Translation
 - Query tree with relational algebra operations is constructed

Evaluation process (cont'd)

- (4) Validation [validator]
 - Semantic validity is checked
 - Compliance of relation schemas with intended operations
- (5) Optimization [optimizer]
 - Alternative evaluation plans are devised and compared
 - In order to find the most efficient plan
 - Based on their evaluation cost estimates
- (6) Code generation [generator]
 - Execution code is generated for the chosen plan
- (7) Execution [processor]
 - Intended query is finally evaluated
 - And the yielded result provided to the user

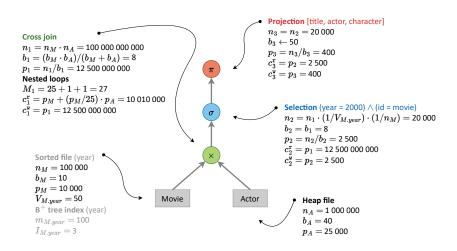
Query tree

- Internal tree structure
 - Leaf nodes = input tables
 - Inner nodes = individual RA operations $(\sigma, \pi, \times, \bowtie, ...)$
- Root node represents the entire query
 - Nodes are evaluated from leaves toward the root

Query evaluation plan

- Query tree
- · For each inner node...
 - Calculated statistics (number of tuples, blocking factor, ...)
 - Selected algorithm (limited by context and available memory)
 - Estimated cost
 - Overall cost

Sample Plan #1



Evaluation Plan Cost

Overall evaluation cost

- Let us first assume that all intermediate results are always written to temporary files and so each involved operation...
 - Reads its inputs from / writes its output to a hard drive
- Overall cost then equals to the sum of all the partial costs

Cost of Plan #1

- M = 25 + 1 + 1 memory pages
- $c = [c_1^r + c_1^w] + [c_2^r + c_2^w] + [c_3^r]$
- $c = [p_M + (p_M/25) \cdot p_A + p_1] + [p_1 + p_2] + [p_2]$
- $c = [10\ 010\ 000 + 12\ 500\ 000\ 000] + [12\ 500\ 000\ 000 + 2\ 500] + [2\ 500]$
- $c = 25\ 010\ 015\ 000$

Sample Query

Intuitive optimization

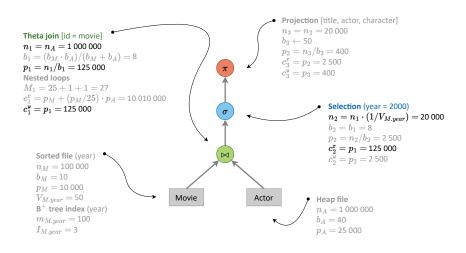
- Actors and characters they played in movies filmed in 2000
 - SQL expression

```
SELECT title, actor, character
FROM Movie JOIN Actor ON (id = movie)
WHERE (year = 2000)
```

RA expression

```
\pi_{\text{title,actor,character}} \left( \sigma_{(\text{year}=2000)} \left( \text{Movie} \bowtie_{(\text{id}=\text{movie})} \text{Actor} \right) \right)
```

Sample Plan #2



Sample Plan #2

Cost of Plan #2

- Again M = 25 + 1 + 1 memory pages
- $c = [c_1^{\mathbf{r}} + c_1^{\mathbf{w}}] + [c_2^{\mathbf{r}} + c_2^{\mathbf{w}}] + [c_3^{\mathbf{r}}]$
- $c = [p_M + (p_M/25) \cdot p_A + p_1] + [p_1 + p_2] + [p_2]$
- $c = [10\ 010\ 000 + 125\ 000] + [125\ 000 + 2\ 500] + [2\ 500]$
- $c = 10\ 265\ 000$
 - $\ ^{\blacksquare}$ That is approximately $2\,400$ times better than the first plan

Pipelining

Pipelining mechanism

- Intermediate results are passed between the operations directly without the usage of temporary files on a disk
 - And so just within the system memory
 - It may even be possible to do it in-place without extra pages
- Unfortunately, such an approach is <u>not always possible</u>...

Cost of Plan #2 with pipelining

- Still M = 25 + 1 + 1 memory pages
- $c = [c_1^r + \chi] + [\chi + \chi] + [\chi]$
 - Joined tuples are filtered and projected immediately in-place
- $c = 10\,010\,000$

Query Optimization

Objective = finding the most optimal query evaluation plan

- It is not possible to consider all plans, though
 - Simply because there are far too many of them
 - And so pruning and heuristics need to be incorporated

Optimization strategies

- Algebraic
 - Proposal of alternative plans using query tree transformations
- Statistical
 - Estimation of costs and result sizes based on available statistics
- Syntactic
 - Manual modification of query expressions by users themselves
 - In order to involve plans that would otherwise be unreachable
 - Breaches the principle of declarative querying, though

Statistical Optimization

Statistical Optimization

Objective

- Capability of calculating necessary result characteristics...
 - Of both the final result as well as all intermediate ones
 - I.e., all individual nodes within a given evaluation plan tree
- ... so that the overall cost can be estimated
 - And thus alternative plans mutually compared

Basic statistics

- Data file for table R
 - n_R number of tuples, s_R tuple size, b_R blocking factor
 - p_R number of pages
 - Hashed file: H_R number of buckets, C_R bucket size
- Index file for attribute A from table R
 - B⁺ tree: $I_{R,A}$ tree height, $p_{R,A}$ number of leaf nodes

Statistical Optimization

Additional statistics

- Provide deeper insight into the active domain
 - May even be implicitly derivable from index structures
 - Unfortunately, they may also be missing or unavailable
 - Especially as for intermediate results
- $V_{R,A}$ number of distinct values
- $min_{R.A}$ and $max_{R.A}$ minimal and maximal values
- Histograms
 - Provide even more accurate understanding of the domain
 - And so better estimates
 - Especially useful for non-uniform distributions

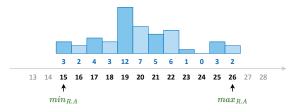
Histograms

Histogram = approximate representation of data distribution

- Active domain is split into sub-intervals called buckets
 - Usually consecutive and non-overlapping
- Frequency of values is determined for each one of them
 - I.e., count of values that fall into that bucket

Sample data

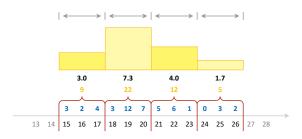
• Integer values from interval $\left[15,26\right]$ and their frequencies



Histograms

Equi-width histogram

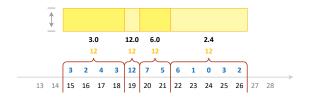
- Buckets have equal widths (count of distinct values)
- Discrete domains: average frequencies are stored
 - So that frequency $f_{E,A}(v)$ can be retrieved for any value v
- Continuous domains: probabilities are stored instead
 - So that probability $t_{E.A}(b)$ can be retrieved for any bucket b



Histograms

Equi-depth histogram

- Buckets are designed so that they have equal depths
 - I.e., absolute frequencies are the same
 - Or at least almost the same
 - Since real-world data will likely not be nice enough
- We also need to explicitly store bucket placement information
 - Since it is not derivable automatically



Selection: $T = \sigma_{\varphi}(E)$

Tuple size

- \bullet $s_T = s_E$
 - Tuples are just filtered out and so their size remains untouched

Blocking factor

• $b_T = b_E$

Number of tuples

- Basic idea: $n_T = \lceil n_E \cdot r_{\varphi} \rceil$
- $r_{\varphi} \in [0,1]$ is an estimated reduction factor
 - Describes how much the original tuples will be reduced
 - Depends on a particular condition φ
 - As well as particular available statistics...

Reduction factors

- Equality test with respect to a unique attribute
 - $r_{\varphi}=1/n_E$ (and so $n_T=1$)
- Equality test with respect to a non-unique attribute
 - $r_{\varphi} = 1/V_{E.A}$
 - $r_{\varphi} = f_{E.A}(v)/n_E$ if histogram for discrete domains is available As a consequence, $n_T = f_{E.A}(v)$
 - $r_{arphi} = t_{E.A}(\mathit{bucket}(v))$ analogously for continuous domains
 - $r_{\varphi}=1/10$ when no information is available at all
- Estimates using constants in general
 - May work well, not bad, as well as totally wrong...
 - But when nothing better is available, it must simply suffice
 - Of course, particular constant is just a matter of discussion

Reduction factors (cont'd)

ullet Range query for two-sided intervals $I=[v_1,v_2]$ and other

```
 r_{\varphi} = (v_2 - v_1 + \varepsilon)/(max_{E.A} - min_{E.A} + 1) 
 r_{\varphi} = (\sum_{v \in I} f_{E.A}(v))/n_E 
 r_{\varphi} = (v_2 - v_1)/(max_{E.A} - min_{E.A}) 
 r_{\varphi} = \sum_{b \in buckets(I)} t_{E.A}(b) 
 r_{\varphi} = 1/4
```

- Range query for one-sided intervals $(-\infty, \mathit{v}_2]$ and $(-\infty, \mathit{v}_2)$
 - Works analogously...
 - $r_{\varphi} = 1/2$
 - Unfortunately, there are certain undesired consequences...
 - $-\;$ E.g., reduction factors of $A\leq 1$ and $A\leq 1000$ are the same
- Range query for one-sided intervals $[v_1,\infty)$ and (v_1,∞)
 - Works analogously again...

Reduction factors (cont'd)

- Conjunction: $\varphi_1 \wedge \varphi_2$
 - $r_{\varphi} = r_{\varphi_1} \cdot r_{\varphi_2}$
 - Independence of both conditions is assumed
- Disjunction: $\varphi_1 \lor \varphi_2$

$$r_{\varphi} = r_{\varphi_1} + r_{\varphi_2} - r_{\varphi_1} \cdot r_{\varphi_2}$$

- Negation: $\neg \varphi_1$
 - $r_{\varphi} = 1 r_{\varphi_1}$
- ...

Improved estimates might also be useful for access methods

- Since it is also about selection
 - However, technical possibilities of data files must be respected

Size Estimates: Projection

Projection:
$$T = \pi_{a_1,...,a_n}(E)$$

Tuple size

ullet s_T is simply calculated using sizes of all preserved attributes

Blocking factor

• $b_T = \lfloor B/s_T \rfloor$

Number of tuples

- Default SQL projection without the DISTINCT modifier
 - I.e., removal of potential duplicates is not performed
 - $n_T = n_E$
- With duplicates removal enabled
 - $n_T = n_E$ if at least one key of E is preserved
 - ..

Size Estimates: Joins

Inner joins: $T=E_R\times E_S$ or $E_R\bowtie E_S$ or $E_R\bowtie_{\varphi} E_S$

Tuple size

- $s_T \approx s_R + s_S$
 - Less for natural join since shared attributes are not repeated

Blocking factor

•
$$b_T \approx \left\lfloor \frac{B}{s_T} \right\rfloor \approx \left\lfloor \frac{B}{s_R + s_S} \right\rfloor \approx \left\lfloor \frac{B}{B/b_R + B/b_S} \right\rfloor \approx \left\lfloor \frac{b_R \cdot b_S}{b_R + b_S} \right\rfloor$$

- Can be calculated exactly from the actual resulting tuple size
- As well as estimated just using the original blocking factors

Number of tuples

- $n_T = \lceil n_R \cdot n_S \cdot r_{\varphi} \rceil$ with $r_{\varphi} \in [0,1]$ for joining condition φ
 - Similar approach with reduction factors as in selections

Size Estimates: Joins

Reduction factors

- Cross join
 - $r_{\varphi} = 1$ (hence $n_T = n_R \cdot n_S$)
- Foreign key lookup
 - Let us assume that φ traverses a foreign key from $\mathcal R$ to $\mathcal S$
 - Then for each tuple $r \in \mathcal{R}$ there must exist exactly one $s \in \mathcal{S}$
 - And so $r_{\varphi}=1/n_S$ (hence $n_T=n_R$)
- Equality test over an attribute A in ${\cal S}$
 - $r_{\varphi} = 1/V_{S.A}$
 - $r_{arphi}=1/n_{S}$ specifically for a **unique attribute** (again $n_{T}=n_{R}$)
- ...

Algebraic Optimization

Equivalence Rules: Selection

Commutativity of selection

- $\bullet \ \ \sigma_{\varphi_2}(\sigma_{\varphi_1}(E)) \equiv \sigma_{\varphi_1}(\sigma_{\varphi_2}(E))$
- Mutual order of selections can be changed
 - Condition with higher selectivity can be applied first
 - I.e., condition which yields a fewer number of tuples

Cascade of selections

- $\sigma_{\varphi_2}(\sigma_{\varphi_1}(E)) \equiv \sigma_{\varphi_1 \wedge \varphi_2}(E)$
- Direction →
 - Selections can be merged together into just one
 - Via a conjunction over the original conditions
- Direction ←
 - Conjunctive selection can be split into separate selections

Equivalence Rules: Projection

Cascade of projections

- $\pi_{A_2}(\pi_{A_1}(E)) \equiv \pi_{A_2}(E)$
- →: only the outermost projection actually matters
 - And so the inner one can entirely be omitted as meaningless

Commutativity of selection and projection

- $\pi_A(\sigma_{\varphi}(E)) \equiv \sigma_{\varphi}(\pi_A(E))$
- Selection and projection can be mutually swapped
 - ←: without any limitation
 - lacktriangledown ightarrow: only when all attributes in arphi are still available
 - When this assumption is not satisfied...
- $\pi_A(\sigma_{\varphi}(E)) \equiv \pi_A(\sigma_{\varphi}(\pi_{A \cup S}(E)))$
 - Attributes S from E are those that are needed for the selection

Commutativity of joins

- Cross join: $E_1 \times E_2 \equiv E_2 \times E_1$
- Natural join: $E_1 \bowtie E_2 \equiv E_2 \bowtie E_1$
- Theta join: $E_1 \bowtie_{\varphi} E_2 \equiv E_2 \bowtie_{\varphi} E_1$
- Operands of inner joins can be mutually swapped
 - Such a thing is not possible for outer joins

Associativity of joins

- Inner joins are also associative (again, not outer)
- $(E_1 \times E_2) \times E_3 \equiv E_1 \times (E_2 \times E_3)$
- $(E_1 \bowtie E_2) \bowtie E_3 \equiv E_1 \bowtie (E_2 \bowtie E_3)$
- $\bullet \ (E_1 \bowtie_{\varphi_{12}} E_2) \bowtie_{\varphi_{13} \wedge \varphi_{23}} E_3 \equiv E_1 \bowtie_{\varphi_{12} \wedge \varphi_{13}} (E_2 \bowtie_{\varphi_{23}} E_3)$
 - Assuming that each $arphi_{ij}$ only involves attributes from E_i and E_j

Integration of selection into joins

- Any inner join can be rewritten using theta join...
- ... and then combined with selection
 - Intended for conditions of joining nature
 - I.e., conditions that involve attributes from both the operands
- $\sigma_{\varphi_S}(E_1 \times E_2) \equiv E_1 \bowtie_{\varphi_S} E_2$
- $\sigma_{\varphi_S}(E_1 \bowtie_{\varphi_J} E_2) \equiv E_1 \bowtie_{\varphi_J \land \varphi_S} E_2$
- $\sigma_{\varphi_S}(E_1 \bowtie E_2) \equiv E_1 \bowtie_{\varphi_N \land \varphi_S} E_2$
 - $arphi_N$ involves pairwise equality tests for all the shared attributes
 - I.e., attributes occurring in both the operands

Distribution of selection over joins

- Let us have an inner join wrapped by a selection...
 - ... and this selection contains a condition of <u>filtering</u> nature
 - I.e., condition with attributes from just one join operand
- It can then be executed before the join over just that operand
 - And so the join evaluation cost can be decreased
- $\sigma_{\varphi_S}(E_1 \times E_2) \equiv \sigma_{\varphi_S}(E_1) \times E_2$
 - Assuming that, in particular, φ_S involves attributes from E_1 only
- $\sigma_{\varphi_S}(E_1 \bowtie E_2) \equiv \sigma_{\varphi_S}(E_1) \bowtie E_2$
- $\sigma_{\varphi_S}(E_1 \bowtie_{\varphi_J} E_2) \equiv \sigma_{\varphi_S}(E_1) \bowtie_{\varphi_J} E_2$

Distribution of projection over joins

- Let us assume that attributes A_1 are from E_1 and A_2 from E_2
- $\pi_{A_1 \cup A_2}(E_1 \times E_2) \equiv \pi_{A_1}(E_1) \times \pi_{A_2}(E_2)$
- $\pi_{A_1 \cup A_2}(E_1 \bowtie E_2) \equiv \pi_{A_1}(E_1) \bowtie \pi_{A_2}(E_2)$
 - ullet \rightarrow : only works when all joining attributes are still available
- $\pi_{A_1 \cup A_2}(E_1 \bowtie E_2) \equiv \pi_{A_1 \cup A_2}(\pi_{A_1 \cup N}(E_1) \bowtie \pi_{A_2 \cup N}(E_2))$
 - lacksquare Attributes N are those that are needed for the natural join
 - Despite looking strange, the impact may be significant
 - Since unnecessary attributes are removed earlier
- $\pi_{A_1 \cup A_2}(E_1 \bowtie_{\varphi} E_2) \equiv \pi_{A_1}(E_1) \bowtie_{\varphi} \pi_{A_2}(E_2)$
 - lacktriangle ightarrow: analogous assumption again
- $\pi_{A_1 \cup A_2}(E_1 \bowtie_{\varphi} E_2) \equiv \pi_{A_1 \cup A_2}(\pi_{A_1 \cup J_1}(E_1) \bowtie_{\varphi} \pi_{A_2 \cup J_2}(E_2))$
 - Attributes J_i from E_i are those needed for the theta join

Equivalence Rules: Set Operations

Commutativity of set operations

- $E_1 \cup E_2 \equiv E_2 \cup E_1$
- $E_1 \cap E_2 \equiv E_2 \cap E_1$
- · Set difference is not commutative

Associativity of set operations

- $(E_1 \cup E_2) \cup E_3 \equiv E_1 \cup (E_2 \cup E_3)$
- $(E_1 \cap E_2) \cap E_3 \equiv E_1 \cap (E_2 \cap E_3)$
- Set difference is also not associative

Equivalence Rules: Set Operations

Distribution of selection over set operations

- $\sigma_{\varphi}(E_1 \cup E_2) \equiv \sigma_{\varphi}(E_1) \cup \sigma_{\varphi}(E_2)$
- $\sigma_{\varphi}(E_1 \cap E_2) \equiv \sigma_{\varphi}(E_1) \cap \sigma_{\varphi}(E_2)$
- $\sigma_{\varphi}(E_1 \setminus E_2) \equiv \sigma_{\varphi}(E_1) \setminus \sigma_{\varphi}(E_2)$

Distribution of projection over set operations

- $\pi_A(E_1 \cup E_2) \equiv \pi_A(E_1) \cup \pi_A(E_2)$
- Such a thing is not possible for intersection and difference

Recommendations

Basic heuristics

- Push filtering selections as close as possible to leaves
 - To throw away not needed tuples as soon as possible
- Push projections toward leaves the same way
 - So that size of intermediate results is decreased
- Integrate joining selections into joins
 - I.e, rewrite other types of joins to theta joins
- Simplify cascades of projections or selections
- Transform sub-queries to joins whenever possible
 - Since optimization only works for simple SELECT blocks
- Exploit commutativity and associativity of operations
 - Especially joins but also set operations

Examples

Sample transformations

```
• \pi_{\text{title,actor,character}}\left(\frac{\sigma_{\text{(year=2000)} \land (\text{id=movie})}}{\sigma_{\text{(Movie}} \times \text{Actor})}\right) // #1
\bullet \ \ \pi_{\rm title,actor,character}\Big( \boxed{\sigma_{\rm (id=movie)}} \ \Big( \boxed{\sigma_{\rm (year=2000)}} \ ({\rm Movie} \times {\rm Actor}) \Big) \Big)
\bullet \ \ \pi_{\rm title,actor,character}\Big(\sigma_{\rm (year=2000)}\big(\boxed{\sigma_{\rm (id=movie)}}\ ({\rm Movie} \boxed{\times} \ {\rm Actor})\big)\Big)
• \pi_{\text{title,actor,character}}\left(\sigma_{\text{(year=2000)}}\left(\text{Movie}\bowtie_{\text{(id=movie)}}\text{Actor}\right)\right) // #2
    \pi_{\text{title,actor,character}} \left( \sigma_{\text{(year=2000)}}(\text{Movie}) \bowtie_{\text{(id=movie)}} \text{Actor} \right)
\bullet \quad \pi_{\mathsf{title},\mathsf{actor},\mathsf{character}}\Big(\pi_{\mathsf{id},\mathsf{title}}\big(\sigma_{(\mathsf{year}=2000)}(\mathsf{Movie})\big) \bowtie_{(\mathsf{id}=\mathsf{movie})}
     \pi_{\rm movie, actor, character}({\sf Actor}) // #3
```

Algebraic Optimization

Objective

- Capability of finding alternative query evaluation plans
 - Based on the so far introduced equivalence rules
 - As well as other not covered rules and heuristics
- Ultimate challenge
 - Space of all possible plans may be enormous
 - And so significant pruning must be involved

Basic strategy for SPJ queries = select-project-join queries

- They allow to be approached at two separate levels...
 - Single-relation plans / multi-relation plans
- But still an NP-complete problem

Alternative Plans

Single-relation plans

- Finding the best access method for each individual table
 - Including optional filtering selections and projections

Multi-relation plans

- Finding the best join plan for a given set of tables
 - Only binary joins are usually assumed
 - And so we just need to take into account all possible orderings
 - Since <u>inner</u> joins are commutative and associative

Observation

- Optimal plan may <u>not</u> consist of optimal sub-plans
 - And so it may happen that the truly best plan will not be found

Basic top-down approach

- Finding the best plan for a set of relations S
 - Using a dynamic programming method

```
1 if the best plan for S is already calculated then
        \mathcal{P} \leftarrow fetch the best plan for S
        return \mathcal{P}
4 else
        if S contains just a single relation \mathcal{R} then
             \mathcal{P} \leftarrow find the best access method for \mathcal{R}
             store \mathcal{P} as the best plan for S
             return \mathcal{P}
```

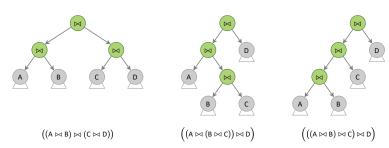
Basic top-down approach (cont'd)

```
else
 9
                foreach S_L \subseteq S such that S_L \neq \emptyset \land S_L \neq S do
10
                      \mathcal{P}_L \leftarrow recursively find the best plan for S_L
11
                     \mathcal{P}_R \leftarrow recursively find the best plan for S \setminus S_L
12
                      \mathcal{P} \leftarrow \text{find the best join plan over } \mathcal{P}_L \text{ and } \mathcal{P}_R
13
                      if \mathcal{P} is so far the best plan for S (if any) then
14
                            store \mathcal{P} as the best plan for S
15
                \mathcal{P} \leftarrow fetch the best plan for S
16
17
```

Left-Deep Linear Trees

Only left-deep linear trees are usually taken into account...

- Linear tree
 - Each non-leaf node must have at least one child with relation
- Left-deep linear tree
 - Moreover, that child must be the right-hand one
 - Since that also increases the chance of attainable pipelining



Restricted top-down approach

- For left-deep linear trees only
 - This means there will be just $O(n \cdot 2^n)$ instead of $O(3^n)$ plans

```
\begin{array}{c|c} \mathbf{if} \text{ the best plan for } S \text{ is already calculated then} \\ \mathbf{2} & \mathcal{P} \leftarrow \text{fetch the best plan for } S \\ \mathbf{3} & \mathbf{return}\,\mathcal{P} \\ \mathbf{4} & \mathbf{else} \\ \mathbf{5} & \mathbf{if}\,S \text{ contains just a single relation } \mathcal{R} \mathbf{\,then} \\ \mathbf{6} & \mathcal{P} \leftarrow \text{find the best access method for } \mathcal{R} \\ \mathbf{7} & \text{store } \mathcal{P} \text{ as the best plan for } S \\ \mathbf{8} & \mathbf{return}\,\mathcal{P} \\ \mathbf{V}\,\mathbf{V}\,\mathbf{V} \end{array}
```

Restricted top-down approach (cont'd)

```
else
 9
                 foreach single relation \mathcal{R} \in S do
10
                       \mathcal{P}_L \leftarrow recursively find the best plan for S \setminus \{\mathcal{R}\}
11
                      \mathcal{P}_R \leftarrow recursively find the best plan for \{\mathcal{R}\}
12
                      \mathcal{P} \leftarrow \text{find the best join plan over } \mathcal{P}_L \text{ and } \mathcal{P}_R
13
                       if \mathcal{P} is so far the best plan for S (if any) then
14
                             store \mathcal{P} as the best plan for S
15
                 \mathcal{P} \leftarrow fetch the best plan for S
16
                 return \mathcal{P}
17
```

Restricted bottom-up approach

- We proceed by induction on the number of relations
 - All single-relation plans are found first
 - Then gradually all multi-relation plans
 - $-\,$ The best plan for n relations is found by considering all possible means of joining any of its n-1 relations with the 1 remaining

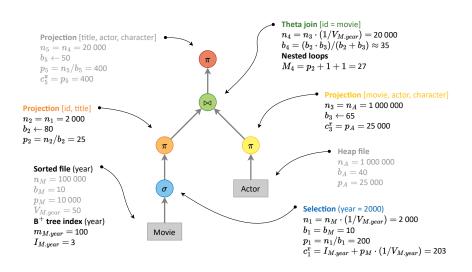
```
1 foreach single relation \mathcal{R} \in S do
2 \mathcal{P} \leftarrow find the best access method for \mathcal{R}
3 store \mathcal{P} as the best plan for \{\mathcal{R}\}
```

Restricted bottom-up approach (cont'd)

```
foreach pass p \in \{2, ..., |S|\} do
          foreach T \subseteq S such that |T| = p do
                foreach single relation \mathcal{R} \in T do
                     \mathcal{P}_L \leftarrow fetch the best plan for T \setminus \{\mathcal{R}\}
                     \mathcal{P}_R \leftarrow fetch the best plan for \{\mathcal{R}\}
                     \mathcal{P} \leftarrow \text{find the best join plan over } \mathcal{P}_L \text{ and } \mathcal{P}_R
                     if \mathcal{P} is so far the best plan for T (if any) then
10
                           store \mathcal{P} as the best plan for T
11
12 \mathcal{P} \leftarrow fetch the best plan for S
13 return \mathcal{P}
```

Query Evaluation

Sample Plan #3



Sample Plan #3

Cost of Plan #3 with pipelining

- $\mathit{M} = 25 + 1 + 1$ memory pages for buffers \mathcal{I}_1 , \mathcal{I}_2 and \mathcal{O}
 - I.e., still the same amount of system memory pages used

•
$$c = [c_1^{\mathbf{r}} + \mathbf{X}] + [\mathbf{X} + \mathbf{X}] + [c_3^{\mathbf{r}} + \mathbf{X}] + [\mathbf{X} + \mathbf{X}] + [\mathbf{X}]$$

- \mathcal{I}_2 is used for index traversal and then reading of movies
- All filtered and projected movies are put into \mathcal{I}_1
- Actors are read into \mathcal{I}_2 , their projection is postponed
- Joined tuples are put into \mathcal{O} and projected

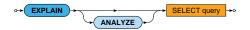
•
$$c = [I_{M.year} + p_M \cdot (1/V_{M.year})] + [p_A]$$

- $c = [203] + [25\ 000]$
- $c = 25\ 203$
 - ullet That is approximately 400 times better than the second plan
 - And so almost 1 million times better than the first plan

Explain Statements

EXPLAIN statement

- Allows to retrieve the evaluation plan for a given query
 - When ANALYZE modifier is provided...
 - Query is also executed and the actual run times are returned



Example

EXPLAIN

```
SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)
```

False assumptions and simplifications

- Size of tuples
 - Real-world tuples usually have variable size
 - Because data types such as VARCHAR are often used
 - That complicates internal block structure and cost estimates
- Unused slots
 - Not all slots within data file blocks may really be used
 - I.e., there can be gaps because of, e.g., deleted tuples
 - And so the actual file size may be greater than assumed
- Inner fragmentation
 - It may not be possible to utilize inner block space entirely
 - I.e., there can be unused space after the last slot
 - Or even around the slots in case of variable-size tuples

False assumptions and simplifications (cont'd)

- Overflow areas in sorted files
 - New tuples are usually not inserted to their correct positions
 - Instead, special dedicated area is used for that purpose
 - So that time-complicated insertion (up to linear) is avoided
 - Only time to time the whole file is reorganized (resorted)
- Overflow areas in hashed files
 - Allocated size of buckets may not be sufficient
- Outer fragmentation
 - Layout of file blocks on a hard drive may not be continuous
 - That may significantly increase time costs
 - Because of repeated seeks and rotational delays

False assumptions and simplifications (cont'd)

- Impact of caching manager
 - Blocks we require may already be loaded into the memory
 - And so the actual cost may be lower
- Extent of available statistics
 - Not all statistics we worked with may be available
 - Or derivable in case of inner nodes
 - And so less accurate estimates can then be made
- Lazy maintenance of statistics
 - Statistics we do have may already be obsolete
 - Simply because some of them are updated only occasionally

False assumptions and simplifications (cont'd)

- Non-uniform distribution
 - Assumption of uniform distribution is often not realistic
 - And it is not just about the data
 - But also queries
- Independence of conditions
 - When reduction factors for conditions are estimated...
 - Their independence is assumed
 - But this may not be realistic again
- Cost estimation in general
 - Our formulae provide only estimates, not precise calculations
 - Moreover, there was a lot of simplification
 - And the statistics we relied on may really be unavailable
 - And so despite the effort, they may not always work well

Conclusion

Evaluation algorithms

- Access methods
- Sorting
 - External merge sort with / without priority queue
- Joining
 - Binary / non-binary nested loops join with / without zig-zag
 - Basic / integrated sort-merge join
 - Classic / simple / partition / grace / hybrid hash join

Query evaluation and optimization

- Evaluation plans
 - Cost estimates, pipelining
- Statistical / algebraic optimization