
Query languages (NDBI049)
Datalog

Jaroslav Pokorný

MFF UK, Praha

jaroslav.pokorny@matfyz.cuni.cz

Query languages 1

Terminology and constraints

❖ terms: variables or constants

❖ facts are atomic formulas containing only
constants

❖ rules are Horn clauses

L0:- L1,…,Ln

where Li are atomic (positive) formulas

❖ atomic formulas or negations of atomic formulas
are called literals.

❖ positive and negative literals

❖ facts are called basic literals

Query languages 2

Terminology and constraints

❖ structure of rules:

L0 head of a rule

L1,…,Ln body of a rule

Remark: Facts and literals are also Horn clauses.

Query languages 3

DATALOG - syntax and semantics (1)

1. Datalog program is a collection of facts and rules.

2. Three kinds of predicate symbols:
– Ri R

– Si ... virtual relations

– built-in predicates      =

 Ri and Si are called ordinary.

 Remark:  will not conceived as a negation (we will
compare only bound variables)

3. Semantics of logic programs can be built by at least in
three different ways:
– proof theoretic,

– model theoretic,

– with fixpoints.

Query languages 4

DATALOG - syntax and semantics (2)

❖ proof theoretic approach
Method: interpretation of rules as axioms usable to a proof, i.e. we
make substitutions in body of rules and derive new facts from
heads of rules. In the case of Datalog, it is possible to obtain just
all derivable facts.

❖ model theoretic approach
Method: to predicate symbols we associate relations (a logical

model) which satisfy the rules.

Ex.: Consider a logical program LP
IDB: P(x) :- Q(x)

Q(x) :- R(x),
i.e. Q and P denote virtual relations.

Query languages 5

DATALOG - syntax and semantics (3)

❖ Let: R(1) Q(1) P(1)
Q(2) P(2) M1

P(3)
Relations P*, Q*, R* make a model M1 of the logical program

LP.
❖ Let: R(1) (and other facts have value FALSE). Then

relations P*, Q*, R* are not a model of the LP.
❖ Let: R(1) Q(1) P(1) M2

then relations P*, Q*, R* make a model M2 of the LP.

Let EDB: R(1), i.e. relational DB is given as
R* =(1).

then M1 and M2 are with the given DB consistent.

Query languages 6

DATALOG - syntax and semantics (4)

❖ M2 is even a minimal model, i.e. when we
change anything there, we destroy consistency.

❖ M1 does not make a minimal model.

Remark: with both semantics we obtain the same result.

Disadvantages of both approaches: non-effective
algorithms in the case, when EDB is given by
database relations.

Query languages 7

DATALOG - dependency graph (1)

❖ with fixpoints
Method: evaluating algorithm+relational DB machine

Df.: dependency graph of a logical program LP

nodes: predicates from R and IDB

edges: (U,V) is an edge, if there is a rule

in :- … U ...

Ex.: extension of the original example

M(x):- F(x,y)

S‘(y,w) :- F(x,y), F(x,w), y  w

B(x,y) :- S‘(x,y), M(x)

C(x,y) :- F(x1,x), F(x2,y), S‘(x1,x2)

C(x,y) :- F(x1,x), F(x2,y), C(x1,x2)

F

M

S

B

Query languages 8

DATALOG - dependency graph (2)

R(x,y) :- S‘(x,y)

R(x,y) :- R(x,z), F(z,y)

R(x,y) :- R(z,y), F(z,x)

where C(x,y) … x is a cousin of y, i.e. their fathers are
brothers

R(x,y) … x and y are relatives

recursive datalogical program

F

M

S‘
B

C

R
Query languages 9

DATALOG - dependency graph (3)

R, C … recursive predicates

Df.: A logical program is recursive if there is a
cycle in its dependency graph.

Query languages 10

DATALOG - safe rules

Df.: safe rule

A variable x occurring in a rule is limited, if it occurs
in the body of literal L of the same rule, where:
– L is given by an ordinary predicate, or

– L is of form x = a or a = x, or

– L is of form x=y or y=x and y is limited.

A rule is safe, if all its variables are limited.

Ex.: safety of rules

IS_GREATER_THAN(x,y) :- x  y

FRIENDS(x,y) :- M(x)

S‘(y,w) :- F(x,y), F(x,w), y  w

Query languages 11

Is safe

Non-recursive DATALOG

❖ Its dependency graph is acyclic.

❖ There is a topological ordering of nodes such,
that Ri → Rj implies i < j.

Remark: ordering is not given unambiguously

Ex.: ordering F - M - S - B

Query languages 12

Non-recursive DATALOG

Principle of the algorithm (for one virtual relation):

(1) U(x1,…,xk) :- V1(xi1,…,xik),…, Vs(xj1,…,xjs)

(2) for U it is performed

(3) Steps (1), (2) are performed for all rules with U in
their heads and for partial results.

Remark: Due to the acyclicity and topological ordering,
the steps (1), (2) can be always applied for a rule.

transform to joins and selection

apply a projection on the result

apply a union

Query languages 13

Non-recursive DATALOG

Convention: variable x → attribute X

Rule rewriting:

❖ C(x,y) :- F(x1,x), F(x2,y), S’(x1,x2)

1. step:

AUX(X1,X,X2,Y) = F(X1,X) * F(X2,Y) * S’(X1,X2)

2. step:

C(X,Y) = AUX[X,Y]

❖ for S’

S’(Y,W) = (F(X,Y) * F(X,W)) (Y W)[Y,W]

Query languages 14

Non-recursive DATALOG

Other possibilities:

❖ V(x,y) :- P(a,x), R(x,x,z), U(y,z)

1. and 2. step:

V(.,.) = (P(1=a)[2] * R(1=2)[1,3] * U)[.,.]

Problem: In the rule head, constants, the same variables, and
different orders of variables can occur.

A request on a rectification, i.e., a transformation of rules in such
way, that heads with the same predicate symbol have a tuple
of the same variables.

Query languages 15

Non-recursive DATALOG

Ex.: P(a,x,y) :- R(x,y)

P(x,y,x) :- R(y,x)

We introduce u, v, w and do the substitutions:

P(u,v,w) :- R(x,y), u = a, in = x, w = y

P(u,v,w) :- R(y,x), u = x, in = y, w = x

 P(u,v,w) :- R(v,w), u = a,

P(u,v,w) :- R(v,u), w = u

Lemma:

(1) If the rule is safe, then after rectification too.

(2) The original and rectified rule are equivalent, i.e.,
after its evaluation we obtain the same relation.

Query languages 16

Non-recursive DATALOG

Statement: The evaluated program provides for each
predicate from the IDB a set of statements, which
constitute

 1. the set of just those statements, provable

 from the EDB by applying the rules from the IDB.
2. pro EDB + IDB minimální model.

Proof: by induction on the order of rules.

Query languages

18

Recursive DATALOG

Ex.:

In EDB there is a relation
WORKS_FOR(Name_of_w,Chairman)

SUB_SUP(x,y):-WORKS_FOR(x,y)

SUB_SUP(x,y):-WORKS_FOR(x,z), SUB_SUP(z,y)

The following holds:

WORKS_FOR  SUB_SUP

(WORKS_FOR * SUB_SUP)[1,3]  SUB_SUP

SUB_SUP* is a transitive closure of the relation WORKS_FOR*

Query languages

19

Recursive DATALOG

 SUB_SUP* is a solution of equation

(WORKS_FOR * SUB_SUP)[1,3] 
WORKS_FOR = SUB_SUP

More generally:

For IDB there is a system of equations

Ei(P1,…,Pn) = Pi i=1,…,n

The solution of the system depends on EDB and is its

fixpoint.

Remark: Since all used operations of AR are additive,

the fixpoint exists and even the least one.

Query languages

20

Recursive DATALOG
Algorithm: (Naive) evaluation

Input: EDB = {R1,…,Rk}, IDB = {rules for P1,…,Pn},

Output: least fixpoint P1*,…,Pn*

Method: We use a function eval(E) evaluating a relational
expression E.

for i:=1 to n do Pi := ;

repeat for i:=1 to n do

Qi := Pi; {store old values}

for i:=1 to n do

Pi := eval(Ei(P1,…,Pn))

until Pi = Qi for all i 1,n

Remark: It is so-called Gauss-Seidel method.

Query languages

21

Recursive DATALOG

Statement: Evaluating algorithm stops and returns the least
fixpoint of the system of datalogical equations.

Proof:

(1) follows from the fact that eval is monotonic and Pi* are
generated from a finite number of elements.

(2) follows from that Pi* is solution of the system of equations
and, moreover, it is a part of each solution for each i. It can
be proved by induction on the number of iterations. The start
is from , which is a part of each solution.

Disadvantages:

➢creating duplicate tuples,

➢creating unnecessarily large relations, when we want,
e.g., only a selection of the tuples from Pi* in the result.

Query languages

22

Recursive DATALOG

Method of differences

Idea: in the (k+1). step of the iteration we do not calculate Pi
k+1,

but Di
k+1 = Pi

k+1 - Pi
k, i.e.

Pi
k+1 = Pi

k  Di
k+1 and thus

Pi
k+1 = Ei(Pi

k-1)  Ei(Di
k),

since Ei is additive.

The change of eval for Pi is given by on rule:

pincreval(Ei(P1,…,Pn))

= j=1..n eval(Ei(…,Pj-1,Pj,Pj+1,…))

Query languages

23

Recursive DATALOG

The change of eval for Pi given by s rules:

increval(Pk;P1,…,Pn))

= j=1..s pincreval(Ej(P1,…,Pn))

Ex.:

increval(S’) = 

increval(C) =

(F(X1,X)*F(X2,Y)* S’(X1,X2))[X,Y] 

(F(X1,X)*F(X2,Y)* C(X1,X2))[X,Y]

increval(R) =

S’(X,Y)  (R(X,Y)*F(Z,Y))[X,Y] 
(R(Z,Y)*F(Z,X))[X,Y]

Query languages

24

Recursive DATALOG

Algorithm: (Seminaive) evaluation

Input: EDB = {R1,…,Rk}, IDB = {rules for P1,…,Pn},

Output: least fixpoint P1*,…,Pn*

Method: 1 use the function eval and on differences increval
for i:=1 to n do

Pi := eval (Ei (,…,));

repeat for i:=1 to n do Qi := Pi; {store old diferences}

for i:=1 to n do begin

Pi := increval(Ei;(Q1,…,Qn, P1,…, Pn))

Pi := Pi - Pi {delete duplicates}

end ;

for i:=1 to n do Pi := Pi  Pi

until  Pi =  for all i 1,n

Query languages

25

Recursive DATALOG

Statement: The evaluating algorithm stops and

❖ returns the LFP of the system of datalogical equations,

❖ LFP corresponds just to those facts, which are provable
from EDB by rules from IDB.

Ex.: R(x,y) :- P(x,y)

R(x,y) :- R(x,z), R(z,y)

LFP R* is a solution of equation

R(X,Y) = P(X,Y)  (R(X,Z)*R(Z,Y))[X,Y] (*)

➢ if P* = {(1,2), (2,3)}, then

R* = {(1,2), (2,3), (1,3)} is the LFP, whose elements
correspond to all derivable facts,

R* is also a minimal model.

Query languages

26

Recursive DATALOG

➢ If (1,1)  R*, then R(1,1) :- R(1,1),R(1,1), so also R* =
{(1,1),(1,2), (2,3), (1,3)} is a model and it is a solution
of equation (*).

➢ If (3,1)  R*, then {(1,2), (2,3), (1,3), (3,1)}

is not a model and not a solution of the equation (*).

➢Let P* = ; R* = {(1,2)}.

then R* is a model, but it is not a solution the equation
(*).

Query languages

27

Use of recursive Datalog in web services

Assumption: web sources with querying, which

enables to formulate always a subset of

conjunctive queries.

Ex.: Amazon – we enter an author name and

obtain the list of his/her books. We can not ask

for a list of all available books.

Ex.: Travel service with source relations R:

flights(start, end), trains(start, end),

buses(start, end), shuttle(start, end)

Query languages

28

Use of recursive Datalog in web services

Datalogical program extends possibilities of

conjunctive queries by generating views with

recursion, e.g. LP

ans(a, b) :- flights(a,c), ind(c,b)

ind(c,b) :- flights(c,b), buses(b, Praha)

ind(c,b) :- flights(c,c’), ind(c’,b)

Remark: However, we can not find out from LP

anyway whether Prague is accessible from

somewhere with air followed by a shuttle service.

Query languages

29

Extension of Datalog by negation

Ex.: NSR(x,y) … x and y are relatives, but x is not a sibling of y

NSR(x,y) :- R(x,y), S’(x,y)

NSR* = R* - S’*

or

NSR(X,Y) = R(X,Y) * S’(X,Y), where S’ is the complement to
a suitable universe.

Approach:

➢We allow a negation in bodies of rules, i.e. negative
literals between L1,…,Ln

➢safe rules must have limited variables, i.e. we forbid
variables, which are in a negative literal and are not
limited by the original definition.

Query languages

30

Extension of Datalog by negation

Problem:

The solution of a logical program does not have to be
LFP, but a number of MFPs.

Ex.: BORING(x) :-  INTERESTING(x), MAN(x)

INTERESTING(x) :-  BORING(x), MAN(x)

B(X) = M(X) - I(X)

I(X) = M(X) - B(X)

Solution: Let M = {John},

M1: {BORING* = {John}, INTERESTING* = }

M2: {INTERESTING* = {John}, BORING* = }

Query languages

31

Stratified DATALOG

❖ It is not true, that one model is less than the second
one,

❖ There is no model less than M1 or M2

 we have two minimal models

Intuition: a constraint of the negation – if it is applied ,
then to a known relation, i.e. such relations have to
be first defined (maybe recursively) without negation.
Then, a new relation can be defined by them without
or with negations.

Df.: Definition of a virtual relation S is a set of all rules,
which have S in head.

Df.: S occurs in a rule positively (negatively), if it is
contained in a positive (negative) literal.

Query languages

32

Stratified DATALOG

Df: Program P is stratifiable, if there is a partition P =
P1 …  Pn (Pi are mutually disjunctive) such that
for each i <1,n> the following holds:

1. If the relational symbol S occurs positively in a rule
from Pi, then the definition of S is contained in ji Pj

2. If the relational symbol S occurs negatively in a rule
from Pi, then the definition of S is contained in j<i Pj

(P1 can be )

Df.: Partition P1,…, Pn is called a stratification P, each Pi

is a stratum.

Remark: stratum … layer

 strata … layers

Query languages

33

Stratified DATALOG

Ex.: Program P(x) :-  Q(x) (1)

R(1) (2)

Q(x) :- Q(x),  R(x) (3)

is stratifiable. Stratification: {(2)}  {(3)}  {(1)}

Program P(x) :-  Q(x)

Q(x) :-  P(x)

is not stratifiable.

Df.: Let (U,V) is an edge in a dependency graph. (U,V)

is positive (negative), if there is a rule V:- … U … and

U occurs there positively (negatively).

Remark: An edge can be positive and negative as well.

Query languages

34

Stratified DATALOG

Statement: Program P is stratifiable if and only if its
dependency graph contains no cycle with a negative edge.

Proof:  each virtual relation P has assigned the index of

stratum, in which it is defined. Thus, (P,Q) is positive 

index(P)  index(Q)

(P,Q) is negative  index(P) < index(Q)

If there was a cycle with a negative edge, there would be a
node X, where index(X) < index(X), which is contradiction.

 We find strongly connected components in the dependency
graph, then perform the graph’s condensation, which is
acyclic, and assign a topological ordering of components.

Query languages

35

Stratified DATALOG

5 -

4

1

2

3

6

-

other edges are +

Each component defines one stratum, ordering of components
defines their numbering. Since negative edges are at most
between components, the rules associated to a component
create a stratum.

Ex.:

Query languages

36

Stratified DATALOG

Assumptions: rules are safe, rectified.

adom … union of constants from EDB and IDB

 Q(x1,…,xn) is transformed to (adom ... adom) - Q*

Algorithm: Evaluation of a stratifiable program

Input: EDB = {R1,…,Rk}, IDB = {rules for P1,…,Pn},

Output: minimal fixpoint P1*,…,Pn*

method: Find a stratification of the program; calculate adom;

for i:=1 to s do {s strata}

begin {for stratum i there are relations calculated from strata j, where j<i}

if Q in stratum i is positive then use Q;

if Q in stratum i is is negative then use adomn - Q;

use algorithm for calculation of LFP

end

Query languages

37

Stratified DATALOG

Statement: Evaluating algorithm stops and returns a

MFP of the system of datalogical equations.

Proof: FP follows by induction on the number of strata.

Remark: LP of the stratified DATALOG can have

more MFPs.

Query languages

38

Stratified DATALOG

EDB: Parts(part, subpart, quantity) IDB

tricycle bike, 3 Large(P) :- Parts(P,S,Q), Q > 2

tricycle frame 1 Small(P) :- Parts(P,S,Q),  Large(P)

frame saddle 1

frame pedal 2

bike rim 1

bike tire 1

tire valve 1

tire inner tube 1

Stratification and resulting MFP: Stratum 0: Parts

Stratum 1: Large Large = {tricycle}

 Stratum 2: Small Small = {frame, bike, tire}

But: relations Small={tricycle, frame, bike, tire}, Large={} provide other MFP of this

program, although it is not the result of a stratified evaluation.

Query languages

39

Stratified DATALOG

Remark: Stratifiable program has generally more stratifications.

They are equivalent, i.e., their evaluation leads to the same

MFP (Apt, 1986).

Statement: Non-recursive Datalog programs express just those

queries, which are expressible by a monotonic subset of AR.

Remark: positive relational algebra ARP {, , [], }.

Query languages

40

Stratified DATALOG

stratified DATALOG 

DATALOG

ARP

AR

Query languages

41

Relational algebra and DATALOG

Statement: Non-recursive DATALOG programs express just

those queries, which are expressible in AR.

Proof:  by induction on the number of operators in E

1.  of operators: E  R R is from EDB

E  constant relation

then for each tuple add p(a1,…,an) into EDB, nothing into IDB.

2. E  E1  E2

By induction hypothesis, there are programs for E1 and E2

(associated predicates are e1 and e2)

e(x1,…,xn) :- e1(x1,…,xn)

e(x1,…,xn) :- e2(x1,…,xn)

Query languages

42

Relational algebra and DATALOG

3. E  E1 - E2

e(x1,…,xn) :- e1(x1,…,xn),  e2(x1,…,xn)

4. E  E1[i1,…,ik]

e(xi1,…,xik) :- e1(x1,…,xn),

5. E  E1  E2

e(x1,…,xn+m) :- e1(x1,…,xn), e2(xn+1,…,xn+m)

5. E  E1()

e(x1,…,xn) :- e1(x1,…,xn), xij= xik or xij= a

 from non-recursiveness: topological ordering + adomn – Q* for
negation. For each P defined in IDB it is possible to construct
an expression in AR . By substitutions (according to ordering)
we obtain relational expressions depending only on relations
from EDB.

Query languages

43

Relational algebra and DATALOG

Ex.: Construction of LP from a relational expression

CAN_BUY(X,Y) 

IS_LIKED(X,Y) - (DEBTOR(X)  IS_LIKED(X,Y)[Y])

EDB: IS_LIKED(X,Y) … person X likes the thing Y

DEBTOR(X) … person X is a deptor

denote DEBTOR(X)  IS_LIKED(X,Y)[Y] as
D_A_COUPLE(X,Y).

Then a datalogical program for CAN_BUY is:

IS_ADMIRED(y) :- IS_LIKED(x,y)

D_A_COUPLE(x,y):-DEBTOR(x), IS_ADMIRED(y)

CAN_BUY(x,y) :- IS_LIKED(x,y),  D_A_COUPLE(x,y)

Query languages

44

Relational algebra and DATALOG

Ex.: Construction of a relational expression from LP

EDB: R*, S*, adom  R[X]  R[Y]  S

P(x) :- R(x,y), S(y)

Q(z) :- S(z), P(z)

P(X)  (R(X,Y) * {adom - S}(Y))[X]

Q(Z)  S(Z) * {adom - P}(from)  (S  {adom - P})(Z)

Since S  adom, salary Q(Z)  S(Z) - P(Z). After substitution of
P

Q(Z)  S(Z) - (R(Z,Y) * {adom - S}(Y))[Z]

Remark: adom can be replaced by R[Y]

R

P

Q

S

Query languages

45

Closed World Assumption (1)

Remark: logical program leads to one resulted relation.

More generally: more (independent) relations  more
relational expressions

Ex.: S´(y,w) := F(x,y), F(x,w), y  w

If F is such, that it can not be inferred S´(Moore, Bond), then
can be declared S´(Moore, Bond)

Remark: It is not proof!

Df.: Consider Horn clauses (without ). Closed World
Assumption (CWA) says: whenever the fact R(a1,...,ak) is
not derivable from EDB and rules, then R(a1,...,ak).

Remark: CWA is a metarule for deriving negative information.

Notation: CWA

Query languages

46

Closed World Assumption (2)

Assumptions for use of CWA:

(1) different constants do not denote the same object

Ex.: F(Flemming, Bond), F(Flemming, 007)  S’(Bond, 007)

If Bond and 007 are names of the same agent, we obtain
nonsense

(2) Domain is closed (constants from EDB+IDB)

Ex.: Otherwise, it could be not deduced S´(Bond,007);

(they could have his father “out of“ database).

Statement: (about CWA consistency): Let E is a set of facts from
EDB, I is a set of facts derivable by the datalogical program
IDBEDB, J is a set of facts the form  R(a1,...,ak) , where R
is a predicate symbol from IDBEDB and R(a1,...,ak) is not in I
 E. Then IEJ is logically consistent.

Query languages

47

Closed World Assumption (3)

Proof: Let K = I  E  J is not consistent.   rule p(...):-
q1(...),...,qk(...) and a substitution such that facts on the right
side of the rule are in K and derived fact is not in K. Since
facts from right side are positive literals, they are from IE
and not from J. But then the literal from the rule head has to
be from I (is derivable by LFP), that is a contradiction.

Remark: DATALOG can not be built on CWA.

Ex.: Consider the program

LP: BORING(Emil) :- INTERESTING(Emil)

i.e. INTERESTING(Emil)  BORING(Emil) that is 

INTERESTING(Emil)  BORING(Emil) and therefore neither
INTERESTING(Emil) nor BORING(Emil) can be derivable
from LP.

Query languages

48

Closed World Assumption (4)

LP CWA  INTERESTING(Emil)

LP CWA  BORING(Emil)

But no model of LP can contain

 INTERESTING(Emil),BORING(Emil)

 DATALOG is not consistent with CWA.

Remark: LP has two minimal models:

BORING(Emil) and INTERESTING (Emil)

Stratification solves the example naturally:

EDBLP = 

first, INTERESTING is calculated, that is , then BORING=
Emil,

i.e., the minimal model BORING(Emil) is chosen.

Query languages

49

Closed World Assumption (5)

Consider the program

P’: INTERESTING(Emil) :-  BORING(Emil)

i.e.  BORING(Emil)  INTERESTING(Emil) that is
 INTERESTING(Emil)  BORING(Emil)

Stratification will chose the model
INTERESTING(Emil)

Query languages

50

Deductive databases (1)

Informally: EDB  IDB  IC

Discusion of clauses: clause is universally quantified
disjunction of literals

L1  L2  Lk K1 K2 Kp ()

L1 L2  Lk  K1 K2 Kp

Remark: in Datalog p=1

(i) k=0, p=1:

facts, e.g., emp(George), earns(Tom,8000)

unrestricted clauses, e.g. likes(Good,x)

(ii) k=1, p=0:

negative facts, e.g.  earns(Eduard,8000)

IC, e.g.,  likes(John,x)

Query languages

51

Deductive databases (2)

(iii) k1, p=0:

IC, e.g. x ( man(x)   woman(x))

(iv) k1, p=1: this is a Horn clause, i.e.,

IC or a deductive rule

(v) k=0, p1:

disjunctive information, e.g. man(x)  woman(x),

earns(Eda,8000)  earns(Eda,9000)

(vi) k0, p1:

IC or definition of undeterminate data, e.g.,

parent(x,y)  father(x,y)  mother(x,y)

(vii) k=0, p=0:

empty clause (should not be a part of DB)

Query languages

52

Deductive databases (3)

df.: Definite deductive database is a set clauses, which are
neither of type (v) nor (vi). Database containing (v) or (vi)
is indefinite.

Definite deductive DB can be understood as a couple

1. theory T, which contains special axioms:

➢ facts (associated to tuples from EDB)

➢axioms about elements and facts:
▪ completeness (no other facts hold than those from EDB and those

derivable by rules)

▪ domain closure axiom

▪ unique names axiom

➢set of Horn clauses (deductive rules)

Query languages

53

Deductive databases (4)
CWA can be used for definite deductive DB.

Remark: this eliminates to need to use axioms of
completeness and axiom of unique names  more
simple implementation

Statement: Definite deductive DB is consistent.

❖ answer to a query Q(x1,...,xk) in a deductive DB is a set
of tuples (a1,...,ak) such, that

T Q(a1,...,ak),

❖ deductive database fulfils IC iff  c IC T c.

Remark: if a formal system is correct and complete,
then is the same as .

Query languages

54

Correctness of IS (1)

DB vs. real world (object world)

Requirements:

❖ consistency

it is not possible to prove that w and  w

❖ correctness in the object world

database is in accordance to the object
world

❖ completeness

In the system it is possible to prove, that
either w or  w.

Query languages

55

Correctness of IS (2)

Ex.: problems related to the object world

Sch1: emp(.), salary(.), earns(.,.)

IC:  x (emp(x)  y (salary(y)  earns(x,y))

M1: emp: {George, Charles}, salary: {19500, 16700}

earns: { (George, 19500), (Charles, 16700)},

M2: earns INSERT: (19500, 16700) to earns

Sch2: emp(.), salary(.), earns(.,.)

IC: x y (emp(x)  earns(x,y))

x y(earns(x,y)  (emp(x)  salary(y)))

M2 is not a model

Achieving consistency: a model construction

Query languages

56

IC (1)

IC as closed formulas.

Problems: consistency

nonredundancy

Ex.: functional dependences

❖ in the language of 1. order logic

a,b,c1,c2,d1,d2

((R(a,b,c1,d1)  R(a,b,c2,d2)  c1 = c2))

❖ in the theory of functional dependencies

AB → C

Non-redundancy is investigated by the solution of
membership problem.

Query languages

57

IC (2)

❖ general dependences

y1,...,ykx1,...,xm((A1 ... Ap)  (B1 ... Bq))

where

k, p, q  1, m0,

Ai … positive literals with variables from {y1,...,yk}

Bi … equalities or positive literals with variables from
{y1,...,yk}  {x1,...,xm}

m = 0 … full dependences

m > 0 … embedded dependences

Query languages

58

IC (3)

Classification of dependencies:

❖ typed (1 variable is not in more columns)

❖ full, embedded

❖ tuple-generating, equality-generating

❖ functional

inclusion (generally embedded, untyped)

template (q=1, B je positive literal)

...

Query languages

59

General dependences - examples

x (emp(x)  y (salary(y)  earns (x,y))

x,y1,y2(earns(x,y1)  earns(x,y2)  y1=y2)

x, z (manages(x,z)  emp(x))

x,y,z (earns(x,y)  manages(x,z)  y > 5000)

x, z (manages(x,z)  y (solves(x,y)))

EMBEDDED, TUPLE-GENERATING

FULL, EQUALITY-GENERATING, FUNCTIONAL

FULL, TUPLE-GENERATING, INCLUSION

FULL (MORE GENARAL)

EMBEDDED, TUPLE-GENERATING, INCLUSION

Query languages

60

Statements about dependencies (1)

Statement: The best procedure solving the membership
problem for typed full dependencies has exponential time
complexity.

Remark: Membership problem for full dependences is the
same for finite and infinite relations.

Ex.:  = {A → B, A  B }

: B  A

It holds:    

e.g., on relation {(i+1,i): i 0}

f

Query languages

61

Statements about dependencies (2)

Statement: Membership problems for general
dependences are not equivalent for finite and infinite
relation. Both problems are not solvable.

Statement: Membership problem for FD and ID is not
solvable.

Statement: Let  contain only FD and unary ID. Then
the membership problem for finite and also for infinite
relations is solvable in polynomial time.

Query languages

62

Statements about dependencies (3)

Conclusion: If the exponential time is still tolerable for
today’s and future computers, then full dependences are
the broadest class of dependencies usable for deductive
databases.

 significant role of Horn clauses in computer science.

Pessimistic view:

❖ Generally, completeness can not be achieved.

❖ Generally, consistency can not be achieved.

❖ Algorithmic complexity can be a real issue. It sometimes
can not be improved and often not solved – an
associated proof procedure does not exist.

Query languages

63

Statements about dependencies (4)

❖ constraints may make consistence, but associated
models do not match real world facts.

Optimistic view:

❖ Pessimistic results are general. What are the sets of
real dependencies?

Query languages

64

Query languages - problems

❖ 1982: Chandra and Harel stated a problem:

Is there a query language (logic), enabling to express
exactly all queries computable in polynomial time
(PTIME)?

Answer: unknown till now.

❖ 1982: Immerman and Vardi proved, that the
extension of the 1. order logic by the operator LFP
enables it on the class of all ordered finite structures.

❖ Another approximation: FP+C (counting operator). It
enables catch up PTIME, e.g., on all trees, planar
graphs and others.
➢ Remark: counting enables to find the number of items

satisfying a formula.

	Snímek 1: Query languages (NDBI049) Datalog
	Snímek 2: Terminology and constraints
	Snímek 3: Terminology and constraints
	Snímek 4: DATALOG - syntax and semantics (1)
	Snímek 5: DATALOG - syntax and semantics (2)
	Snímek 6: DATALOG - syntax and semantics (3)
	Snímek 7: DATALOG - syntax and semantics (4)
	Snímek 8: DATALOG - dependency graph (1)
	Snímek 9: DATALOG - dependency graph (2)
	Snímek 10: DATALOG - dependency graph (3)
	Snímek 11: DATALOG - safe rules
	Snímek 12: Non-recursive DATALOG
	Snímek 13: Non-recursive DATALOG
	Snímek 14: Non-recursive DATALOG
	Snímek 15: Non-recursive DATALOG
	Snímek 16: Non-recursive DATALOG
	Snímek 17: Non-recursive DATALOG
	Snímek 18: Recursive DATALOG
	Snímek 19: Recursive DATALOG
	Snímek 20: Recursive DATALOG
	Snímek 21: Recursive DATALOG
	Snímek 22: Recursive DATALOG
	Snímek 23: Recursive DATALOG
	Snímek 24: Recursive DATALOG
	Snímek 25: Recursive DATALOG
	Snímek 26: Recursive DATALOG
	Snímek 27: Use of recursive Datalog in web services
	Snímek 28: Use of recursive Datalog in web services
	Snímek 29: Extension of Datalog by negation
	Snímek 30: Extension of Datalog by negation
	Snímek 31: Stratified DATALOG
	Snímek 32: Stratified DATALOG
	Snímek 33: Stratified DATALOG
	Snímek 34: Stratified DATALOG
	Snímek 35: Stratified DATALOG
	Snímek 36: Stratified DATALOG
	Snímek 37: Stratified DATALOG
	Snímek 38: Stratified DATALOG
	Snímek 39: Stratified DATALOG
	Snímek 40: Stratified DATALOG
	Snímek 41: Relational algebra and DATALOG
	Snímek 42: Relational algebra and DATALOG
	Snímek 43: Relational algebra and DATALOG
	Snímek 44: Relational algebra and DATALOG
	Snímek 45: Closed World Assumption (1)
	Snímek 46: Closed World Assumption (2)
	Snímek 47: Closed World Assumption (3)
	Snímek 48: Closed World Assumption (4)
	Snímek 49: Closed World Assumption (5)
	Snímek 50: Deductive databases (1)
	Snímek 51: Deductive databases (2)
	Snímek 52: Deductive databases (3)
	Snímek 53: Deductive databases (4)
	Snímek 54: Correctness of IS (1)
	Snímek 55: Correctness of IS (2)
	Snímek 56: IC (1)
	Snímek 57: IC (2)
	Snímek 58: IC (3)
	Snímek 59: General dependences - examples
	Snímek 60: Statements about dependencies (1)
	Snímek 61: Statements about dependencies (2)
	Snímek 62: Statements about dependencies (3)
	Snímek 63: Statements about dependencies (4)
	Snímek 64: Query languages - problems

