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Terminology and constraints

❖ terms: variables or constants

❖ facts are atomic formulas containing only 
constants

❖ rules are Horn clauses

L0:- L1,…,Ln

where Li are atomic (positive) formulas

❖ atomic formulas or negations of atomic formulas 
are called literals.

❖ positive and negative literals

❖ facts are called basic literals

Query languages                    2



Terminology and constraints

❖ structure of rules:

L0 head of a rule

L1,…,Ln body of a rule

Remark: Facts and literals are also Horn clauses.
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DATALOG - syntax and semantics (1)

1. Datalog program is a collection of facts and rules.

2. Three kinds of predicate symbols:
– Ri R

– Si  ... virtual relations

– built-in predicates      =

 Ri and Si are called ordinary.

 Remark:  will not conceived as a negation (we will 
compare only bound variables)

3. Semantics of logic programs can be built by at least in 
three different ways:
– proof theoretic,

– model theoretic,

– with fixpoints.
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DATALOG - syntax and semantics (2)

❖ proof theoretic approach
Method: interpretation of rules as axioms usable to a proof, i.e. we 
make substitutions in body of rules and derive new facts from 
heads of rules. In the case of Datalog, it is possible to obtain just 
all derivable facts.

❖ model theoretic approach
Method: to predicate symbols we associate relations (a logical 

model) which satisfy the rules.

Ex.: Consider a logical program LP
IDB: P(x) :- Q(x) 

Q(x) :- R(x), 
i.e. Q and P denote virtual relations. 
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DATALOG - syntax and semantics (3)

❖ Let: R(1) Q(1) P(1)
Q(2) P(2) M1

P(3)
Relations P*, Q*, R* make a model M1 of the logical program 

LP.
❖ Let: R(1) (and other facts have value FALSE). Then 

relations P*, Q*, R* are not a model of the LP.
❖ Let: R(1) Q(1) P(1) M2

then relations P*, Q*, R* make a model M2  of the LP.

Let EDB: R(1), i.e. relational DB is given as
R* =(1). 

then M1 and M2 are with the given DB consistent. 
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DATALOG - syntax and semantics (4)

❖   M2 is even a minimal model, i.e. when we 
change anything there, we destroy consistency. 

❖   M1 does not make a minimal model.

Remark: with both semantics we obtain the same result.

Disadvantages of both approaches: non-effective 
algorithms in the case, when EDB is given by 
database relations.
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DATALOG - dependency graph (1)

❖ with fixpoints
Method: evaluating algorithm+relational DB machine

Df.: dependency graph  of a logical program LP

nodes: predicates from R and IDB

edges: (U,V) is an edge, if there is a rule

in :- … U ...

Ex.:  extension of the original example

M(x):- F(x,y)

S‘(y,w) :- F(x,y), F(x,w), y  w 

B(x,y) :- S‘(x,y), M(x) 

C(x,y) :- F(x1,x), F(x2,y), S‘(x1,x2) 

C(x,y) :- F(x1,x), F(x2,y), C(x1,x2)

F

M

S

B

Query languages                    8



DATALOG - dependency graph (2)

R(x,y) :- S‘(x,y)

R(x,y) :- R(x,z), F(z,y)

R(x,y) :- R(z,y), F(z,x)

where C(x,y) … x is a cousin of y, i.e. their fathers are 
brothers

R(x,y) … x and y are relatives

recursive datalogical program

F

M

S‘
B

C

R
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DATALOG - dependency graph (3)

R, C … recursive predicates

Df.: A logical program is recursive if there is a 
cycle in its dependency graph.
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DATALOG - safe rules 

Df.: safe rule

A variable x occurring in a rule is limited, if it occurs 
in the body of literal L of the same rule, where:
– L is given by an ordinary predicate, or

– L is of form x = a or a = x, or

– L is of form x=y or y=x and y is limited.

A rule is safe, if all its variables are limited.

Ex.: safety of rules

IS_GREATER_THAN(x,y) :- x  y

FRIENDS(x,y) :- M(x)

S‘(y,w) :- F(x,y), F(x,w), y  w
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Non-recursive DATALOG

❖ Its dependency graph is acyclic.

❖ There is a topological ordering of nodes such, 
that Ri → Rj implies i < j.

Remark: ordering is not given unambiguously

Ex.: ordering F - M - S - B
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Non-recursive DATALOG

Principle of the algorithm (for one virtual relation):

(1) U(x1,…,xk) :- V1(xi1,…,xik),…, Vs(xj1,…,xjs)

(2) for U it is performed

(3) Steps (1), (2) are performed for all rules with U in 
their heads and for partial results.

Remark: Due to the acyclicity and topological ordering, 
the steps (1), (2) can be always applied for a rule.

transform to joins and selection

apply a projection on the result

apply a union
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Non-recursive DATALOG

Convention: variable x → attribute X

Rule rewriting:

❖ C(x,y) :- F(x1,x), F(x2,y), S’(x1,x2)

1. step:

AUX(X1,X,X2,Y) =  F(X1,X) * F(X2,Y) * S’(X1,X2)

2. step:

C(X,Y) = AUX[X,Y]

❖ for S’

S’(Y,W) = (F(X,Y) * F(X,W)) (Y W)[Y,W]
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Non-recursive DATALOG

Other possibilities:

❖ V(x,y) :- P(a,x), R(x,x,z), U(y,z) 

1. and 2. step:

V(.,.) = (P(1=a)[2] * R(1=2)[1,3] * U)[.,.]

Problem: In the rule head, constants, the same variables, and 
different orders of variables can occur. 

A request on a rectification, i.e., a transformation of rules in such 
way, that heads with the same predicate symbol have a tuple 
of the same variables. 
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Non-recursive DATALOG

Ex.: P(a,x,y) :- R(x,y)

P(x,y,x) :- R(y,x)

We introduce u, v, w and do the substitutions:

P(u,v,w) :- R(x,y), u = a, in = x, w = y

P(u,v,w) :- R(y,x), u = x, in = y, w = x

 P(u,v,w) :- R(v,w), u = a, 

P(u,v,w) :- R(v,u), w = u

Lemma:

(1) If the rule is safe, then after rectification too.

(2) The original and rectified rule are equivalent, i.e.,
after its evaluation we obtain the same relation.
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Non-recursive DATALOG

Statement: The evaluated program provides for each 
predicate from the IDB a set of statements, which 
constitute 

 1. the set of just those statements, provable

 from the EDB by applying the rules from the IDB.  
2. pro EDB + IDB minimální model.

Proof: by induction on the order of rules.
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Recursive DATALOG

Ex.: 

In EDB there is a relation 
WORKS_FOR(Name_of_w,Chairman)

SUB_SUP(x,y):-WORKS_FOR(x,y)

SUB_SUP(x,y):-WORKS_FOR(x,z ), SUB_SUP(z,y)

The following holds:

WORKS_FOR  SUB_SUP

(WORKS_FOR * SUB_SUP)[1,3]  SUB_SUP

SUB_SUP* is a transitive closure of the relation  WORKS_FOR*
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Recursive DATALOG

 SUB_SUP* is a solution of equation

(WORKS_FOR * SUB_SUP)[1,3] 
WORKS_FOR = SUB_SUP

More generally:

For IDB there is a system of equations

Ei(P1,…,Pn) = Pi i=1,…,n

The solution of the system depends on EDB and is its 

fixpoint.

Remark: Since all used operations of AR are additive, 

the fixpoint exists and even the least one.



Query languages                       
 

20

Recursive DATALOG
Algorithm: (Naive) evaluation

Input: EDB = {R1,…,Rk}, IDB = {rules for P1,…,Pn}, 

Output: least fixpoint P1*,…,Pn*

Method: We use a function eval(E) evaluating a relational 
expression E.

for i:=1 to n do Pi := ;

repeat for i:=1 to n do

Qi := Pi;       {store old values}

for i:=1 to n do

Pi  := eval(Ei(P1,…,Pn))

until Pi = Qi for all i  1,n

Remark: It is so-called Gauss-Seidel method.
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Recursive DATALOG

Statement: Evaluating algorithm stops and returns the least 
fixpoint of the system of datalogical equations.

Proof: 

(1) follows from the fact that eval is monotonic and Pi* are 
generated from a finite number of elements.

(2) follows from that Pi* is solution of the system of equations 
and, moreover, it is a part of each solution for each i. It can 
be proved by induction on the number of iterations. The start 
is from , which is a part of each solution. 

Disadvantages:

➢creating duplicate tuples,

➢creating unnecessarily large relations, when we want, 
e.g., only a selection of the tuples from Pi* in the result.
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Recursive DATALOG

Method of differences

Idea: in the (k+1). step of the iteration we do not calculate Pi 
k+1, 

but Di
k+1 = Pi

k+1 - Pi
k, i.e. 

Pi
k+1 = Pi 

k  Di
k+1 and thus

Pi
k+1 = Ei(Pi

k-1)  Ei(Di
k), 

since Ei is additive.

The change of eval for Pi  is given by on rule:

pincreval(Ei(P1,…,Pn))

= j=1..n eval(Ei(…,Pj-1,Pj,Pj+1,…)) 
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Recursive DATALOG

The change of eval for Pi  given by s rules:

increval(Pk;P1,…,Pn))

= j=1..s pincreval(Ej(P1,…,Pn))

Ex.:

increval(S’) = 

increval(C) =

(F(X1,X)*F(X2,Y)* S’(X1,X2))[X,Y] 

(F(X1,X)*F(X2,Y)* C(X1,X2))[X,Y] 

increval(R) = 

S’(X,Y)  (R(X,Y)*F(Z,Y))[X,Y] 
(R(Z,Y)*F(Z,X))[X,Y]
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Recursive DATALOG

Algorithm: (Seminaive) evaluation

Input: EDB = {R1,…,Rk}, IDB = {rules for P1,…,Pn}, 

Output: least fixpoint P1*,…,Pn*

Method: 1 use the function eval and on differences increval
for i:=1 to n do

Pi := eval (Ei (,…,));

repeat for i:=1 to n do Qi := Pi; {store old diferences}

for i:=1 to n do begin

Pi  := increval(Ei;(Q1,…,Qn, P1,…, Pn))

Pi  := Pi - Pi  {delete duplicates}

end ;

for i:=1 to n do Pi := Pi  Pi

until  Pi =  for all i  1,n
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Recursive DATALOG

Statement: The evaluating algorithm stops and 

❖ returns the LFP of the system of datalogical equations,

❖ LFP corresponds just to those facts, which are provable 
from EDB by rules from IDB.

Ex.: R(x,y) :- P(x,y)

R(x,y) :- R(x,z), R(z,y)

LFP R* is a solution of equation

R(X,Y) = P(X,Y )  (R(X,Z)*R(Z,Y))[X,Y] (*)

➢ if  P* = {(1,2), (2,3)}, then

R* = {(1,2), (2,3), (1,3)} is the LFP, whose elements 
correspond to all derivable facts,

R* is also a minimal model.
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Recursive DATALOG

➢ If (1,1)  R*, then R(1,1) :- R(1,1),R(1,1), so also R* = 
{(1,1),(1,2), (2,3), (1,3)} is a model and it is a solution 
of equation (*).

➢ If (3,1)  R*, then {(1,2), (2,3), (1,3), (3,1)} 

is not a model and not a solution of the equation (*).

➢Let P* = ; R* = {(1,2)}. 

then R* is a model, but it is not a solution the equation 
(*).
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Use of recursive Datalog in web services

Assumption: web sources with querying, which 

enables to formulate always a subset of 

conjunctive queries.

Ex.: Amazon – we enter an author name and 

obtain the list of his/her books. We can not ask 

for a list of all available books.

Ex.: Travel service with source relations R:

flights(start, end), trains(start, end), 

buses(start, end), shuttle(start, end)
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Use of recursive Datalog in web services

Datalogical program extends possibilities of 

conjunctive queries by generating views with 

recursion, e.g. LP

ans(a, b) :- flights(a,c), ind(c,b)

ind(c,b) :- flights(c,b), buses(b, Praha)

ind(c,b) :- flights(c,c’), ind(c’,b)

Remark: However, we can not find out from LP 

anyway whether Prague is accessible from 

somewhere with air followed by a shuttle service.
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Extension of Datalog by negation

Ex.: NSR(x,y) … x and y are relatives, but x is not a sibling of y

NSR(x,y) :- R(x,y), S’(x,y)

NSR* = R* - S’*

or

NSR(X,Y) = R(X,Y) * S’(X,Y), where S’ is the complement to 
a suitable universe.

Approach:

➢We allow a negation in bodies of rules, i.e. negative 
literals between L1,…,Ln

➢safe rules must have limited variables, i.e. we forbid 
variables, which are in a negative literal and are not 
limited by the original definition.
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Extension of Datalog by negation

Problem: 

The solution of a logical program  does not have to be 
LFP, but a number of MFPs.

Ex.: BORING(x) :-  INTERESTING(x), MAN(x)

INTERESTING(x) :-  BORING(x), MAN(x)

B(X) = M(X) - I(X)

I(X) = M(X) - B(X)

Solution: Let M = {John},

M1: {BORING* = {John}, INTERESTING* = }

M2: {INTERESTING* = {John}, BORING* = }
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Stratified DATALOG

❖ It is not true, that one model is less than the second 
one,

❖ There is no model less than M1 or M2

 we have two minimal models

Intuition: a constraint of the negation – if it is applied , 
then to a known relation, i.e. such relations have to 
be first defined (maybe recursively) without negation. 
Then, a new relation can be defined by them without 
or with negations.

Df.: Definition of a virtual relation S is a set of all rules, 
which have S in head.

Df.: S occurs in a rule positively (negatively), if it is 
contained in a positive (negative) literal. 
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Stratified DATALOG

Df: Program P is stratifiable, if there is a partition P = 
P1 …  Pn (Pi are mutually disjunctive) such that 
for each i <1,n> the following holds:

1. If the relational symbol S occurs positively in a rule 
from Pi, then the definition of S is contained in ji Pj 

2. If the relational symbol S occurs negatively in a rule 
from Pi, then the definition of S is contained in j<i Pj 

(P1 can be )

Df.: Partition P1,…, Pn is called a stratification P, each Pi

is a stratum.

Remark:  stratum … layer

       strata … layers
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Stratified DATALOG

Ex.: Program P(x) :-  Q(x) (1)

R(1) (2)

Q(x) :- Q(x),  R(x) (3)

is stratifiable. Stratification: {(2)}  {(3)}  {(1)} 

Program P(x) :-  Q(x)

Q(x) :-  P(x)

is not stratifiable.

Df.: Let (U,V) is an edge in a dependency graph. (U,V) 

is positive (negative), if there is a rule V:- … U … and 

U occurs there positively (negatively).

Remark: An edge can be positive and negative as well.
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Stratified DATALOG

Statement: Program P is stratifiable if and only if its 
dependency graph contains no cycle with a negative edge.

Proof:  each virtual relation P has assigned the index of 

stratum, in which it is defined. Thus, (P,Q) is positive 

index(P)  index(Q) 

(P,Q) is negative   index(P) < index(Q) 

If there was a cycle with a negative edge, there would be a 
node X, where index(X) < index(X), which is contradiction.

 We find strongly connected components in the dependency 
graph, then perform the graph’s condensation, which is 
acyclic, and assign a topological ordering of components. 
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Stratified DATALOG

5 -

4

1

2

3

6

-

other edges are +

Each component defines one stratum, ordering of components
defines their numbering. Since negative edges are at most 
between components, the rules associated to a component 
create a stratum.

Ex.:
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Stratified DATALOG

Assumptions: rules are safe, rectified.

adom … union of constants from EDB and IDB

 Q(x1,…,xn) is transformed to (adom ... adom) - Q*

Algorithm: Evaluation of a stratifiable program

Input: EDB = {R1,…,Rk}, IDB = {rules for P1,…,Pn}, 

Output: minimal fixpoint P1*,…,Pn*

method: Find a stratification of the program; calculate adom;

for i:=1 to s do {s strata}

begin {for stratum i there are relations calculated from strata j, where j<i}

if Q in stratum i is positive then use Q;

if Q in stratum i is is negative then use adomn - Q;

use algorithm for calculation of LFP

end



Query languages                       
 

37

Stratified DATALOG

Statement: Evaluating algorithm stops and returns a 

MFP of the system of datalogical equations.

Proof: FP follows by induction on the number of strata.

Remark: LP of the stratified DATALOG can have 

more MFPs.
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Stratified DATALOG

EDB:  Parts(part, subpart, quantity) IDB

tricycle bike, 3 Large(P) :- Parts(P,S,Q), Q > 2

tricycle frame 1 Small(P) :- Parts(P,S,Q),  Large(P)

frame saddle 1

frame pedal 2

bike rim 1 

bike tire 1

tire valve 1

tire inner tube 1

Stratification and resulting MFP: Stratum 0: Parts

Stratum 1: Large Large = {tricycle}

 Stratum 2: Small Small = {frame, bike, tire}

But: relations Small={tricycle, frame, bike, tire}, Large={} provide other MFP of this 

program, although it is not the result of a stratified evaluation.
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Stratified DATALOG

Remark: Stratifiable program has generally more stratifications. 

They are equivalent, i.e., their evaluation leads to the same 

MFP (Apt, 1986).

Statement: Non-recursive Datalog programs express just those 

queries, which are expressible by a monotonic subset of AR.

Remark: positive relational algebra ARP {, , [ ], }.
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Stratified DATALOG

stratified DATALOG 

DATALOG

ARP

AR
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Relational algebra and DATALOG

Statement: Non-recursive DATALOG programs express just 

those queries, which are expressible in AR.

Proof:  by induction on the number of operators in E

1.  of operators: E  R    R is from EDB

E  constant relation 

then for each tuple add p(a1,…,an) into EDB, nothing into IDB.

2. E  E1  E2

By induction hypothesis, there are programs for E1 and E2 

(associated predicates are e1 and e2 )

e(x1,…,xn) :- e1(x1,…,xn) 

e(x1,…,xn) :- e2(x1,…,xn) 
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Relational algebra and DATALOG

3. E  E1 - E2

e(x1,…,xn) :- e1(x1,…,xn),  e2(x1,…,xn) 

4. E  E1[i1,…,ik]

e(xi1,…,xik) :- e1(x1,…,xn), 

5. E  E1  E2

e(x1,…,xn+m) :- e1(x1,…,xn), e2(xn+1,…,xn+m)

5. E  E1()

e(x1,…,xn) :- e1(x1,…,xn), xij= xik or xij= a

 from non-recursiveness: topological ordering + adomn – Q* for 
negation. For each P defined in IDB it is possible to construct 
an expression in AR . By substitutions (according to ordering) 
we obtain relational expressions depending only on relations 
from EDB.
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Relational algebra and DATALOG

Ex.:  Construction of LP from a relational expression

CAN_BUY(X,Y) 

IS_LIKED(X,Y) - (DEBTOR(X)  IS_LIKED(X,Y)[Y])

EDB: IS_LIKED(X,Y) … person X likes the thing Y

DEBTOR(X) … person X is a deptor

denote DEBTOR(X)  IS_LIKED(X,Y)[Y] as 
D_A_COUPLE(X,Y).

Then a datalogical program for CAN_BUY is:

IS_ADMIRED(y) :- IS_LIKED(x,y)

D_A_COUPLE(x,y):-DEBTOR(x), IS_ADMIRED(y) 

CAN_BUY(x,y) :- IS_LIKED(x,y),  D_A_COUPLE(x,y)
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Relational algebra and DATALOG

Ex.:  Construction of a relational expression from LP

EDB: R*, S*, adom  R[X]  R[Y]  S

P(x) :- R(x,y), S(y)

Q(z) :- S(z), P(z)

P(X)  (R(X,Y) * {adom - S}(Y))[X]

Q(Z)  S(Z) * {adom - P}(from)  (S  {adom - P})(Z)

Since S  adom, salary Q(Z)  S(Z)  - P(Z). After substitution of 
P

Q(Z)  S(Z) - (R(Z,Y) * {adom - S}(Y))[Z]

Remark: adom can be replaced by R[Y]

R

P

Q

S 
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Closed World Assumption (1)

Remark: logical program leads to one resulted relation. 

More generally: more (independent) relations  more 
relational expressions

Ex.: S´(y,w) := F(x,y), F(x,w), y  w

If F is such, that it can not be inferred S´(Moore, Bond), then 
can be declared S´(Moore, Bond)

Remark: It is not proof!

Df.: Consider Horn clauses (without ). Closed World 
Assumption (CWA) says: whenever the fact R(a1,...,ak) is 
not derivable from EDB and rules, then R(a1,...,ak).

Remark: CWA is a metarule for deriving negative information.

Notation: CWA
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Closed World Assumption (2)

Assumptions for use of CWA:

(1) different constants do not denote the same object

Ex.: F(Flemming, Bond), F(Flemming, 007)  S’(Bond, 007)

If Bond and 007 are names of the same agent, we obtain 
nonsense

(2) Domain is closed (constants from EDB+IDB)

Ex.: Otherwise, it could be not deduced S´(Bond,007);

(they could have his father “out of“ database).

Statement: (about CWA consistency): Let E is a set of facts from 
EDB, I is a set of facts derivable by the datalogical program 
IDBEDB, J is a set of facts the form  R(a1,...,ak) , where R 
is a predicate symbol from IDBEDB and R(a1,...,ak) is not in I
 E. Then IEJ is logically consistent.
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Closed World Assumption (3)

Proof: Let K = I  E  J is not consistent.   rule p(...):-
q1(...),...,qk(...) and a substitution such that facts on the right 
side of the rule are in K and derived fact is not in K. Since 
facts from right side are positive literals, they are from IE
and not from J. But then the literal from the rule head has to 
be from I (is derivable by LFP), that is a contradiction.

Remark: DATALOG can not be built on CWA.

Ex.: Consider the program

LP: BORING(Emil) :- INTERESTING(Emil)

i.e. INTERESTING(Emil)  BORING(Emil)  that is 

INTERESTING(Emil)  BORING(Emil) and therefore neither 
INTERESTING(Emil) nor BORING(Emil) can be derivable 
from LP. 
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Closed World Assumption (4)

LP      CWA   INTERESTING(Emil) 

LP      CWA   BORING(Emil) 

But no model of LP can contain 

 INTERESTING(Emil),BORING(Emil) 

 DATALOG is not consistent with CWA.

Remark: LP has two minimal models: 

BORING(Emil) and INTERESTING (Emil) 

Stratification solves the example naturally:

EDBLP = 

first, INTERESTING is calculated, that is , then BORING= 
Emil,

i.e., the minimal model BORING(Emil) is chosen.
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Closed World Assumption (5)

Consider the program

P’: INTERESTING(Emil) :-  BORING(Emil)

i.e.  BORING(Emil)  INTERESTING(Emil)  that is 
 INTERESTING(Emil)  BORING(Emil)

Stratification will chose the model 
INTERESTING(Emil)
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Deductive databases (1)

Informally: EDB  IDB  IC 

Discusion of clauses: clause is universally quantified 
disjunction of literals

L1  L2  Lk K1 K2 Kp ()

L1 L2  Lk  K1 K2 Kp

Remark: in Datalog p=1

(i) k=0, p=1: 

facts, e.g., emp(George), earns(Tom,8000)

unrestricted clauses, e.g. likes(Good,x)

(ii) k=1, p=0: 

negative facts, e.g.  earns(Eduard,8000)

IC, e.g.,  likes(John,x)



Query languages                       
 

51

Deductive databases (2)

(iii) k1, p=0: 

IC, e.g. x ( man(x)   woman(x))

(iv) k1, p=1: this is a Horn clause, i.e.,

IC or a deductive rule 

(v) k=0, p1: 

disjunctive information, e.g. man(x)  woman(x),

earns(Eda,8000)  earns(Eda,9000)

(vi) k0, p1:

IC or definition of undeterminate data, e.g.,

parent(x,y)  father(x,y)  mother(x,y) 

(vii) k=0, p=0: 

empty clause (should not be a part of DB)
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Deductive databases (3)

df.: Definite deductive database is a set clauses, which are 
neither of type (v) nor (vi). Database containing (v) or (vi) 
is indefinite.

Definite deductive DB can be understood as a couple

1. theory T, which contains special axioms:

➢ facts (associated to tuples from EDB)

➢axioms about elements and facts:
▪ completeness (no other facts hold than those from EDB and those 

derivable by rules)

▪ domain closure axiom 

▪ unique names axiom

➢set of Horn clauses (deductive rules)
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Deductive databases (4)
CWA can be used for definite deductive DB. 

Remark: this eliminates to need to use axioms of 
completeness and axiom of unique names  more 
simple implementation

Statement: Definite deductive DB is consistent. 

❖ answer to a query Q(x1,...,xk) in a deductive DB is a set 
of tuples (a1,...,ak) such, that   

T          Q(a1,...,ak), 

❖ deductive database fulfils IC iff  c IC T        c.

Remark: if  a formal system is correct and complete, 
then        is the same  as        .
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Correctness of IS (1)

DB vs. real world (object world)

Requirements:

❖ consistency

it is not possible to prove that w and  w

❖ correctness in the object world 

database is in accordance to the object 
world

❖ completeness

In the system it is possible to prove, that 
either w or  w.
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Correctness of IS (2)

Ex.: problems related to the object world

Sch1: emp(.), salary(.), earns(.,.)

IC:  x (emp(x)  y (salary(y)  earns(x,y))

M1: emp: {George, Charles}, salary: {19500, 16700}

earns: { (George, 19500), (Charles, 16700)},

M2: earns INSERT: (19500, 16700) to earns

Sch2: emp(.), salary(.), earns(.,.) 

IC: x y (emp(x)  earns(x,y))

x y(earns(x,y)  (emp(x)  salary(y)))

M2 is not a model

Achieving consistency: a model construction
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IC (1) 

IC as closed formulas.

Problems: consistency

nonredundancy

Ex.: functional dependences

❖ in the language of 1. order logic

a,b,c1,c2,d1,d2

((R(a,b,c1,d1)  R(a,b,c2,d2)  c1 = c2 ))

❖ in the theory of functional dependencies

AB → C 

Non-redundancy is investigated by the solution of 
membership problem.
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IC (2)

❖ general dependences

y1,...,ykx1,...,xm((A1 ... Ap)  (B1 ... Bq))

where 

k, p, q  1, m0,

Ai … positive literals with variables from {y1,...,yk}

Bi … equalities or positive literals with variables from 
{y1,...,yk}  {x1,...,xm} 

m = 0 … full dependences

m > 0 … embedded dependences
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IC (3)

Classification of dependencies:

❖ typed (1 variable is not in more columns)

❖ full, embedded

❖ tuple-generating, equality-generating

❖ functional

inclusion (generally embedded, untyped) 

template (q=1, B je positive literal)

...
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General dependences - examples

x (emp(x)  y (salary(y)  earns (x,y))

x,y1,y2(earns(x,y1)  earns(x,y2)  y1=y2)

x, z (manages(x,z)  emp(x))

x,y,z (earns(x,y)  manages(x,z)  y > 5000)

x, z (manages(x,z)  y (solves(x,y) )) 

EMBEDDED, TUPLE-GENERATING

FULL, EQUALITY-GENERATING, FUNCTIONAL

FULL, TUPLE-GENERATING, INCLUSION

FULL (MORE GENARAL)

EMBEDDED, TUPLE-GENERATING, INCLUSION
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Statements about dependencies (1)

Statement: The best procedure solving the membership 
problem for typed full dependencies has exponential time 
complexity.

Remark: Membership problem for full dependences is the 
same for finite and infinite relations.

Ex.:  = {A → B, A  B } 

: B  A 

It holds:    

e.g., on relation {(i+1,i): i 0}

f
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Statements about dependencies (2)

Statement: Membership problems for general 
dependences are not equivalent for finite and infinite 
relation. Both problems are not solvable.

Statement: Membership problem for FD and ID is not 
solvable.

Statement: Let  contain only FD and unary ID. Then 
the membership problem for finite and also for infinite 
relations is solvable in polynomial time.
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Statements about dependencies (3)

Conclusion: If the exponential time is still tolerable for 
today’s and future computers, then full dependences are 
the broadest class of dependencies usable for deductive 
databases.

 significant role of Horn clauses in computer science.

Pessimistic view:

❖ Generally, completeness can not be achieved.

❖ Generally, consistency can not be achieved.

❖ Algorithmic complexity can be a real issue. It sometimes 
can not be improved and often not solved – an 
associated proof procedure does not exist.
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Statements about dependencies (4)

❖ constraints may make consistence, but associated 
models do not match real world facts.

Optimistic view:

❖ Pessimistic results are general. What are the sets of 
real dependencies? 
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Query languages - problems

❖ 1982: Chandra and Harel stated a problem: 

Is there a query language (logic), enabling to express 
exactly all queries computable in polynomial time 
(PTIME)?

Answer: unknown till now.

❖ 1982: Immerman and Vardi proved, that the 
extension of the 1. order logic by the operator LFP 
enables it on the class of all ordered finite structures.

❖ Another approximation: FP+C (counting operator). It 
enables catch up PTIME, e.g., on all trees, planar 
graphs and others.
➢ Remark: counting enables to find the number of items  

satisfying a formula.
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