
Query languages (NDBI049)

SQL Language - Cube operator

Query languages

Content

◼ Motivation for CUBE operator

◼ GROUP BY limits

◼ how to do aggregations

◼ CUBE and ROLLUP operators

◼ Conclusions

1

OLAP

◼ OLAP (Online Analytical Processing)

◼ Principle of modelling: dimensions, facts

◼ dimensions
• can be hierarchical

• have attributes

◼ facts
• attributes dependent on dimensions

Ex.: Car market
Dimensions: Model, Year, Colour

Facts: Amounts of sold cars

3
Query languages

Example – star schema

3
Query languages

OLAP and DW design

4

Criteria OLAP OLTP

Queries In part, not predictable,

(answer time: seconds to minutes)

Predictable

(answer time: 0-5 seconds)

Data contents Several years,

Deduced and aggregated data

Current periods,

Possibly, short histories

Data organization The investigation can extend to

cover the whole of the enterprise

Application oriented

Dimensionality Frequently multi-dimensional Two dimensional

Use of data Mostly unstructured, the

investigation is at the core

High degree of structuring

(transaction oriented and enables

location of individual data records)

Information types Formatted or, resp., unformatted

and internal/external information
Formatted and internal information

Redundancy Monitored redundancy (star and

snowflake)

Minor

Access Mainly reading Reading and writing

Query languages

OLAP

◼ n-dimensional data structures

◼ possibilities of representation:

◼ one table for all

◼ table for each dimension + table of facts

◼ data cube

◼ evaluation:
• aggregation functions COUNT, SUM, MAX, ...

• operator GROUP BY

4
Query languages

Problems with GROUP BY

◼ Simple queries: common aggregations like
 SELECT Model, Country, SUM(Amount)

 FROM Sale

 GROUP BY Model, Country;

◼ More complex: Which model is a bestseller in
Slovakia?

◼ Limits of aggregation constructions:
• histograms

• roll-up

• cross-tables

5
Query languages

Roll-up, drill-down

◼ data can be aggregated into different dimensions levels

◼ we want to move through the levels

 up ---- roll-up,

 down ---- drill-down

by: Model, Year, Colour

by: Model, Year

by: ModelModel Year Colour
Chevy 1994 black 50

white 40

90
1995 black 85

white 115

200
290

8
Query languages

Where to put aggregated values?

◼ Disadvantages of the previous representation:

◼ empty values in rows

◼ it is not a relation

◼ too many attributes (domains)

◼ Partial solution:

◼ it is suitable to store aggregated values directly to the table

◼ let us add columns which provide aggregated values for each row

◼ disadvantage: it is out of the relational data model

Model
Year/Colour

Tot al1994
Tot al

1995
Tot al

black whit e black whit e

Chevy 50 40 90 85 115 200 290
Ford 50 10 60 85 75 160 220

Total 100 50 150 170 190 360 510

9
Query languages

Solution: relational representation

◼ special value ALL

◼ ALL means that we want to all values of a

domain in this place.

◼ ALL() defines a set

 Ex.: ALL(Model)={Black, White}

Where to put aggregated values?

Model Year Colour Am ount
Chevy 1994 black 50

Chevy 1994 white 40

Chevy 1994 ALL 90
Chevy 1995 black 85

Chevy 1995 white 115

Chevy 1995 ALL 200
Chevy ALL ALL 290

10
Query languages

How to use SQL?
SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(amount)

 FROM sale

 WHERE Model=‘Chevy’

UNION

SELECT Model, ‘ALL’, ‘ALL’, SUM(amount)

 FROM sale

 WHERE Model=‘Chevy’

 GROUP BY Model

UNION

SELECT Model, Year, ‘ALL’, SUM(amount)

 FROM sale

 WHERE Model=‘Chevy’

 GROUP BY Model, Year

UNION ...

◼ or several SELECT statements without ALL

11
Query languages

Cross table

◼ Let us change relational representation and we obtain a
cross table.

◼ values of dimensions are placed in headings of rows
and columns in a “two-dimensional space”

◼ construction in SQL: GROUP BY + UNION

◼ Problem: what, for example, Ford? The next table.

year

colour

Chevy 1994 1995 ALL

black 50 85 135
whit e 40 115 155

ALL 90 200 290

12

summa

Query languages

Operators CUBE and ROLLUP

◼ solution: operators

ROLLUP and

CUBE

◼ generalization of

GROUP BY, or

cross table

Red

White

Blue

by Colour

by Model & Colour

by Model & Year

by Colour & Year

by Model
by Year

Sum

Data Cube
and sub-spaces of aggregatesSum

Red

White

Blue

Chevy Ford

by Model

by Colour

Cross table

Red

White

Blue

by Colour

Sum

Group By
(all)

Sum

Aggregate

13Query languages

CUBE – the first idea

◼ Ex.: we are constructing a data cube from three attributes
◼ result is similar to real 3D cube C

◼ edges of C represent the domains of attributes, cells content
represent facts

◼ each cell corresponds with one SQL group

◼ we place aggregated value on each margin of C; it is constructed
by application of GROUP BY operation in one dimension

◼ we place the values aggregated by two dimensions on the edges
of C, starting from the beginning of the cube

◼ the super-aggregation (by all dimensions) is placed in the “origin”
of the cube C

◼ Data cube is a multi-dimensional data model, where each
domain contains a special value ALL.

14
Query languages

CUBE – how it works

◼ Operator CUBE works like this:
◼ it is equivalent to the collection of standard GROUP BY

applications for all subsets of specified attributes (groupings),

◼ super-aggregates are added to the result

◼ what is added: if there is N attributes, there are 2N-1
aggregated values

◼ if Ci = dom(Ai), i<1,N>, then the size of the cube is
(Ci + 1).

◼ in CUBE processing, aggregations are processed all-
together in one operation for all cells

◼ Remark: MS SQL Server 2005 - CUBE was 2x faster
than GROUP BY and UNION

15
Query languages

Syntax

GROUP BY:

GROUP BY <all_attributes_to_aggregate>

<all_attributes_to_aggregate> ::=

{(<column_name> | <expression>)

[AS <name>]

,...}

16
Query languages

Reduction of aggregation groups

◼ Sometimes it is useless to build the whole
cube.

◼ Sometimes any combination of the
attributes (dimensions) are unnecessary
(example: application of CUBE to
attributes day, month, year)

◼ GROUPING SETS – grouping by a list

◼ ROLLUP – only hierarchical aggregations

17
Query languages

GROUPING SETS

◼ Ex.: Car market

Dimensions: Model, Year, Colour

Facts: Amounts of sold cars

◼ explicit list of of aggregations

SELECT Model, Colour, Country, SUM(Amount)

FROM Sale

GROUP BY GROUPING SETS ((),(Model),

(Colour, Country))

18
Query languages

Operator ROLLUP

◼ operator ROLLUP is „low-cost“, it produces only the
following aggregates
(v1, v2 , ... , vk , f()),

(v1, v2 , ... , ALL, f()),

 ...

(v1, ALL , ... , ALL, f()),

(ALL, ALL, ... , ALL, f())

◼ Subsets with first attribute value ALL are not included
into aggregation result (except the super-aggregate)
◼ less results than the CUBE operator

◼ not applicable for all queries solved by CUBE

 (Q.: „How many white cars were sold?“ does not work!)

19
Query languages

Operator CUBE

SELECT agg_amount = SUM(amount),

 Model, Country, Colour

FROM Sale

GROUP BY CUBE

(Model, Country, Colour);

Model Country Colour Am ount
Chevy CZ white 45

Chevy CZ yellow 18
Chevy CZ black 78

Chevy SK white 41
Chevy SK yellow 52

Chevy SK black 61

Ford CZ white 28
Ford CZ yellow 47

Ford CZ black 30
Ford SK white 21

Ford SK yellow 46

20
Query languages

Operator CUBE
ColourCountryModelAgg_am

ALLSKFord75

blackSKFord8

yellowSKFord46

whiteSKFord21

ALLCZFord105

blackCZFord30

yellowCZFord47

whiteCZFord28

ALLALLChevy295

ALLSKChevy154

blackSKChevy61

yellowSKChevy52

whiteSKChevy41

ALLCZChevy141

blackCZChevy78

yellowCZChevy18

whiteCZChevy45

ALLALLFord180

blackALLALL177

blackALLFord38

blackALLChevy139

yellowALLALL163

yellowALLFord93

yellowALLChevy70

whiteALLALL135

whiteALLFord49

whiteALLChevy86

ALLSKALL229

blackSKALL69

yellowSKALL98

whiteSKALL62

ALLCZALL246

blackCZALL108

yellowCZALL65

whiteCZALL73

ALLALLALL475

36 rows

Operator ROLLUP

SELECT agg_amount = SUM(amount),

 Model, Country, Colour

FROM Sale

GROUP BY ROLLUP

(Model, Country, Colour);

Model Country Colour Am ount
Chevy CZ white 45

Chevy CZ yellow 18
Chevy CZ black 78

Chevy SK white 41
Chevy SK yellow 52

Chevy SK black 61

Ford CZ white 28
Ford CZ yellow 47

Ford CZ black 30
Ford SK white 21

Ford SK yellow 46

22Query languages

ROLLUP
ColourCountryModelAgg_am

ALLSKFord75

blackSKFord8

yellowSKFord46

whiteSKFord21

ALLCZFord105

blackCZFord30

yellowCZFord47

whiteCZFord28

ALLALLChevy295

ALLSKChevy154

blackSKChevy61

yellowSKChevy52

whiteSKChevy41

ALLCZChevy141

blackCZChevy78

yellowCZChevy18

whiteCZChevy45

ALLALLFord180

blackALLALL177

blackALLFord38

blackALLChevy139

yellowALLALL163

yellowALLFord93

yellowALLChevy70

whiteALLALL135

whiteALLFord49

whiteALLChevy86

ALLSKALL229

blackSKALL69

yellowSKALL98

whiteSKALL62

ALLCZALL246

blackCZALL108

yellowCZALL65

whiteCZALL73

ALLALLALL475

19 rows

Relationships of GROUP BY, CUBE, and

ROLLUP

◼ The following algebraic laws hold:

◼ CUBE(ROLLUP) = CUBE

◼ CUBE(GROUP BY) = CUBE

◼ ROLLUP(GROUP BY) = ROLLUP

◼ Meaningful hierarchical order of the operators:

GROUP BY <attributes_to_aggregate>

ROLLUP <attributes_to_aggregate>

CUBE <attributes_to_aggregate>

24
Query languages

Syntax

From CUBE to ROLLUP:
GROUP BY [<attributes_to_aggregate>]

[ROLLUP <attributes_to_aggregate>]

[CUBE <attributes_to_aggregate>]

◼ after GROUP BY it is allowed to use more

ROLLUP and CUBE

◼ each operator generates lists of attributes

for aggregations (groups); then their

Cartesian product is included in the result
24

Query languages

More aggregations

SELECT Model, Colour, Country, SUM(Amount)

FROM Sale

GROUP BY ROLLUP (Model),
ROLLUP(Colour, Country)

generates groupings:

{Model, ()} X {(Colour, Country), (Colour), ()}

= { (Model, Colour, Country), (Model, Colour),
(Model), (Colour, Country), (Colour), () }

26Query languages

Value ALL

◼ problems with ALL as a special value:
◼ many special cases

◼ if ALL represents the set, then the remaining values of
the domain have to be of simple types

◼ the implementations of ALL is therefore as
follows:
◼ it is used NULL instead of ALL

◼ function ALL() is not implemented

◼ function GROUPING() is implemented to differentiate
between NULL and ALL

27
Query languages

Value ALL

◼ former: value ALL

◼ now: in data space the value NULL

◼ value TRUE in the corresponding field

expresses that the NULL means ALL

◼ former : (ALL, ALL, ALL, 941)

◼ now :

(NULL,NULL,NULL,941,TRUE,TRUE,TRUE)

28
Query languages

GROUPING

◼ NULL value in the place of ALL is called

grouping (grouping NULL)

◼ Function GROUPING differentiates

grouping NULL value from normal (non-

grouping) NULL

◼ returns 1, if it is the grouping NULL (i.e. ALL)

◼ returns 0, if it is the non-grouping NULL or

there is a non-NULL value there.

29
Query languages

GROUPING

◼ We can write:

SELECT Model, Year, Colour, SUM(Amount),

 GROUPING(Model),

 GROUPING(Year),

 GROUPING(Colour)

FROM Sale

GROUP BY CUBE Model, Year, Colour.

30
Query languages

GROUPING()

◼ INSERT INTO Sale

 VALUES (NULL, ‘SK’, NULL, 229);

◼ it is impossible to differentiate this new row from

another one which express aggregations of CUBE

◼ the only possibility is the GROUPING() function

31
Query languages

GROUPING()

....

SKNULLNULL229

SKNULLNULL229

....

NULLwhiteChevy86

SKwhiteChevy41

CZwhiteChevy45

SELECT Agg_amount = SUM(Amount),

 Model, Colour, Country

FROM Sale

GROUP BY Model, Colour, Country

WITH CUBE;

ALL Grouping(Model) = 1

NULL Grouping(Model) = 0

Model CountryColour Am ount
NULL SK NULL 229

Chevy CZ white 45
Chevy CZ yellow 18

Chevy CZ black 78

Chevy SK white 41

Chevy SK yellow 52

Chevy SK black 61

Ford CZ white 28

Ford CZ yellow 47

Ford CZ black 30
Ford SK white 21

Ford SK yellow 46

Ford SK black 8

Query languages

GROUPING()

SELECT Ag_amount = SUM(Amount),

 Model,

 ‘all_models’=grouping(Model),

 Country,

 ‘all_countries’=grouping(Country),

 Colour,

 ‘all_colours’=grouping(Colours)

FROM Sale

GROUP BY CUBE Model, Colour, Country;

Model CountryColour Am ount
NULL SK NULL 229

Chevy CZ white 45
Chevy CZ yellow 18

Chevy CZ black 78

Chevy SK white 41

Chevy SK yellow 52

Chevy SK black 61

Ford CZ white 28

Ford CZ yellow 47

Ford CZ black 30
Ford SK white 21

Ford SK yellow 46

Ford SK black 8

33
Query languages

GROUPING()

45 Chevy 0 CZ 0 white 0

41 Chevy 0 SK 0 white 0

86 Chevy 0 NULL 1 white 0

...

229 NULL 0 NULL 0 NULL 0

...

229 NULL 1 SK 0 NULL 1

34
Query languages

Conclusions

◼ Operator CUBE generalizes and unifies:

◼ aggregates

◼ group by

◼ roll-up and drill-down

◼ cross tables

◼ Creation of a data cube requires a special

implementation.

37Query languages

Conclusions

◼ Operators CUBE and ROLLUP are
standardized in SQL:1999.

◼ Querying strategy: restriction of queried data by
specialized query (WHERE), then application of
CUBE operator

◼ The next extension in practise: mainly Microsoft
– MDX (MultiDimensional EXpressions)

38
Query languages

	Snímek 1: Query languages (NDBI049) SQL Language - Cube operator
	Snímek 2: Content
	Snímek 3: OLAP
	Snímek 4: Example – star schema
	Snímek 5: OLAP and DW design
	Snímek 6: OLAP
	Snímek 7: Problems with GROUP BY
	Snímek 8: Roll-up, drill-down
	Snímek 9: Where to put aggregated values?
	Snímek 10
	Snímek 11: How to use SQL?
	Snímek 12: Cross table
	Snímek 13: Operators CUBE and ROLLUP
	Snímek 14: CUBE – the first idea
	Snímek 15: CUBE – how it works
	Snímek 16: Syntax
	Snímek 17: Reduction of aggregation groups
	Snímek 18: GROUPING SETS
	Snímek 19: Operator ROLLUP
	Snímek 20: Operator CUBE
	Snímek 21: Operator CUBE
	Snímek 22: Operator ROLLUP
	Snímek 23: ROLLUP
	Snímek 24: Relationships of GROUP BY, CUBE, and ROLLUP
	Snímek 25: Syntax
	Snímek 26: More aggregations
	Snímek 27: Value ALL
	Snímek 28: Value ALL
	Snímek 29: GROUPING
	Snímek 30: GROUPING
	Snímek 31: GROUPING()
	Snímek 32: GROUPING()
	Snímek 33: GROUPING()
	Snímek 34: GROUPING()
	Snímek 35: Conclusions
	Snímek 36: Conclusions

