
Query languages (NDBI049)

Recursion in SQL

Jaroslav Pokorný

MFF UK, Praha

jaroslav.pokorny@matfyz.cuni.cz

Query languages

Content

1. Introduction

2. Creating recursive queries

3. Recursive calculation

4. Recursive searching

5. Logical hierarchies

6. Recursion termination

7. Conclusion

2

Query languages

Recursion in SQL

◼ Intuitively: a query is recursive, if it is used in
its own definition.

◼ This connection can be both direct and over
more tables.

◼ Advantages: in certain cases the only
effective way for obtaining the result

◼ Disadvantages: often worse readability a
clarity

3

Query languages

Where to use recursion in SQL

◼ effective for any data with hierarchical structure

◼ relationships in tree structures

◼ search in cyclic and acyclic graphs

◼ examples from practice:

◼ search for connections in timetables

◼ organizational structure of a company

◼ bill of materials

◼ components in a document management system,

etc.

4

Query languages

You can get around without recursion

◼ SQL before the SQL:99 standard did not contain

a possibility to construct recursive queries,

◼ non-procedural solution: with adding certain

„graph information“,

◼ procedural solution: use of cursors, cycles,

◼ others: ORACLE: proprietary solution + PL/SQL,

◼ loss of efficiency and optimization

◼ code is not so „elegant“

5

Query languages

Application of recursion

◼ For graph traversal we obtain:

◼ reachability

Q1. Find all suborders of a given employee.

◼ path enumerating

Q2. Find the whole structure (all sub-products) for a

given product.

◼ path joining

Q3. For a given product list all its components and

including their amount.

6

Query languages

Other advantages and

disadvantages of recursion

◼ Advantages:

◼ all work is specified in one query

◼ It is possible to use a big part of the result

◼ Disadvantages

◼ if only the small part of the result is really used

◼ possibly endless recursion calls

7

Query languages

Content

1. Introduction

2. Creating recursive queries

3. Recursive calculation

4. Recursive searching

5. Logical hierarchies

6. Recursion termination

7. Conclusion

8

Query languages

Common Table Expression

◼ generalization of table expression in SQL:92

◼ declared by keyword WITH

◼ used as a substitute in nested queries

◼ from SELECT, INSERT, UPDATE, DELETE

◼ queries immediate after WITH keyword are

called just once time

WITH [RECURSIVE] CTE [, CTE]…

CTE ::=name_CTE[(name_sl[,name_sl]…)] AS

(CTE_query_definition)

10

Query languages

Composition of aggregations –

without CTE

Q4: Find the forum with the highest number of
contributions

 SELECT COUNT(ID) AS number, forum
FROM Contributions
GROUP BY forum
HAVING COUNT(ID) = (
 SELECT MAX(number)
 FROM (SELECT COUNT(ID) AS number, forum
 FROM Contributions
 GROUP BY forum)

Note: We are looking for MAX(COUNT(...))

Contributions(ID, forum, question)

11

Query languages

Composition of aggregations –

with CTE

WITH

 Amount_of_contrib(number, forum)

 AS (SELECT COUNT(ID), forum)

 FROM Contributions

 GROUP BY forum)

SELECT number, forum

FROM Amount_of_contrib

WHERE number = (SELECT MAX(number)

 FROM Ammount_of_contrib)

12

Query languages

More CTEs in one query

WITH

 Amount_of_contrib(number, forum)

 AS (SELECT COUNT(ID), forum
 FROM Contributions
 GROUP BY forum),

 Max_amount_of_contrib(number)

 AS (SELECT MAX(number)
 FROM Amount_of_contrib)

SELECT C1.*
FROM Amount_of_contrib C1 INNER JOIN
 Max_amount_of_contrib C2 ON
 C1.number = C2.number

Note: CTEs work in the same way as derived tables (given
by SELECT behind FROM)

13

Query languages

A movement to recursion

WITH Superiors(name, supID, empID) AS

 (SELECT name, supID, empID

FROM Employees

WHERE function = 'manager'

)

SELECT * FROM Superiors

Q5.

name supID empID

Lomský 2 3

Bor 2 4
14

empID name function supID

1 Novák director NULL

2 Srb vice-director 1

3 Lomský manager 2

4 Bor manager 2

Query languages

Recursive queries

◼ It is possible to refer R in CTE for table R

◼ the temporary table is created (exists only during query
evaluation)

◼ three parts
WITH

anchoring (initialization subquery)

UNION ALL

recursive member
• recursion runs when no further record is added or the recursion

limit (MAXRECURSION) is not exceeded.

• be careful to cycle occurrence in the recursive member

SELECT
• outer SELECT - returns the query result

15

Query languages

Example
WITH RECURSIVE Superiors(name, supID, empID) AS

(SELECT name, supID, empID

FROM Employees

WHERE name = 'Nový'

UNION ALL

SELECT E.name, E.supID, E.empID

FROM Employees AS E

INNER JOIN

Superiors AS S

ON S.supID = E.empID)

SELECT * FROM Superiors

anchoring: executed only once

recursive member: repeatedly

join with the previous step

output

name supID empID

Nový 11 13

Ryba 6 11

Rak 5 6

Syka 4 5

Bor 2 4

Srb 1 2

Novák NULL 1

What was the query?

16

Query languages

Example
WITH RECURSIVE Superiors(name, supID, empID) AS

(SELECT name, supID, empID

FROM Employees

WHERE name = 'Nový'

UNION ALL

SELECT E.name, E.supID, E.empID

FROM Employees AS E

INNER JOIN

Superiors AS S

ON S.supID = E.empID)

SELECT * FROM Superiors

anchoring: executed only once

recursive member: repeatedly

join with the previous step

output

name supID empID

Nový 11 13

Ryba 6 11

Rak 5 6

Syka 4 5

Bor 2 4

Srb 1 2

Novák NULL 1

Q6.: Find all managers of employee
Nový (including himself).

17

Query languages

Restrictions of recursive queries

◼ It is not allowed to refer CTE in anchor

◼ Recursive part always self-refers CTE
◼ SQL:99 supports only "linear" recursion: each FROM has at most one

reference to recursively defined relation.

◼ Recursive part must not contain

◼ SELECT DISTINCT

◼ GROUP BY

◼ HAVING

◼ scalar aggregation

◼ TOP

◼ OUTER JOIN
◼ each column in recursive subquery has to be type-compatible with

associated column in initialization subquery
◼ type conversion – CAST can be used

18

Query languages

Content

1. Introduction

2. Creating recursive queries

3. Recursive calculation

4. Recursive searching

5. Logical hierarchies

6. Recursion termination

7. Conclusion

19

Query languages

Recursive calculation

Q7. Which parts (including their amounts) are

necessary to construct wing of a plain.

20

Recursive calculation (on

Czech)

D7. Jaké součástky (včetně počtu) jsou potřeba

pro výrobu křídla

křídlo

vzpěra křidélko podvozek

nýt

pant

1
1

5

100

10 5
8

2

4

3

Dotazovací jazyky 20 Czech

Query languages

Recursive calculation

◼ simplified storing in DB (relation Components) with

quantities of particular parts in a part
Part Subpart Qty

wing strut wing strut 5

wing wing flap 1

wing landing gear 1

wing rivet 100

wing strut rivet 10

wing flap hinge 2

wing flap rivet 5

landing gear hinge 3

landing gear rivet 8

hinge rivet 4

21

Query languages

Recursive calculation – queries

Q8. How many rivets are used to construct

a wing plane?

Q9. List of all subparts for creating a wing

plane including their amount.

22

Query languages

Recursive calculation – solution

◼ What we have to be aware of?

◼ recursion calling (graph walking)

◼ to sum amounts of rivets in individual parts

◼ amounts of individual sub-parts

23

Query languages

Recursive calculation – Q8

◼ CTE

WITH RECURSIVE WingParts(Subpart, Qty)
AS

 ((SELECT Subpart, Qty

 FROM Components

 WHERE Part = ‘wing’)

 UNION ALL

 (SELECT C.Subpart, W.Qty * C.Qty

 FROM WingParts W, Components C

 WHERE W.Subpart = C.Part));

[initialization
subquery]

[recursive
subquery]

◼ result

Subpart Qty

wing strut 5 directly

wing flap 1

landing

gear

1

rivet 100

rivet 50 from wing strut

hinge 2 from wing flap

rivet 5 from wing flap

hinge 3 from landing gear

rivet 8 from landing gear

rivet 8 from hinge of wing flap

rivet 12 from hinge of landing

gear

24

Query languages

Recursive calculation – Q8

◼ finally we summarize particular quantities

WITH RECURSIVE WingParts(Subpart, Qty) AS

 ((SELECT Subpart, Qty

 FROM Components

 WHERE Part = ‘wing’)

 UNION ALL

 (SELECT C.Subpart, W.Qty * C.Qty

 FROM WingParts W, Components C

 WHERE W.Subpart = C.Part))

SELECT sum(Qty) AS Qty

FROM WingParts

WHERE Subpart = ‘rivet’;

Result

Qty

183

26

Query languages

Recursive calculation – Q9

◼ To solve Q9 it is enough to change only the result query
WITH RECURSIVE WingParts(Subpart, Qty) AS

 ((SELECT Subpart, Qty

 FROM Components

 WHERE Part = ‘wing’)

 UNION ALL

 (SELECT C.Subpart, W.Qty * C.Qty

 FROM WingParts W, Components C

 WHERE W.Subpart = K.Part))

SELECT Subpart, sum(Qty) AS Qty

FROM WingParts

GROUP BY Subpart;

Result

Subpart Qty

wing strut 5

wing flap 1

landing gear 1

hinge 5

rivet 183

27

Query languages

Syntax of tree traversal v Oracle 9i

SELECT columns FROM table

[WHERE condition3]

start WITH condition1

CONNECT BY condition2

[ORDER BY …]

◼ Rows satisfying the condition in start WITH are considered

as root rows on the first level of nesting

◼ For each row at level i, direct descendants fulfilling

condition in clause CONNECT BY at level i+1 are looked

for recursively.

◼ Ancestor row in the condition is denoted by the key word PRIOR

27

Query languages

Syntax of tree traversal v Oracle 9i

◼ Finally, there are removed rows not satisfying

the WHERE clause.

◼ If sorting is not defined, the order corresponds

to the pre-order traversal.

◼ Each row contains the pseudocolumn LEVEL

containing the row level in hierarchy.

28

Query languages 2 - Recursion

Oracle 9i vs. SQL:99
◼ Oracle 9i:
 SELECT LPAD(’ ’, 2*Level) || name, Level

FROM Emp
start WITH manager IS NULL
CONNECT BY manager = PRIOR empID;

◼ SQL:99
 WITH RECURSIVE Emp1 AS (

 SELECT x.name AS name, 0 AS Level
 FROM Emp x WHERE manager IS NULL
 UNION ALL
 SELECT y.name, Level+1
 FROM Emp y JOIN Emp1 ON y.manager =
 Emp1.empID)
 SELECT * FROM Emp1;

Emp(empID, name, manager)

Inserts spaces in

number 2*Level

29

Query languages

Oracle 9i vs. SQL:99

Data

Novák

Srb

Lomský

Bor

Effect of LPAD
function

30

Query languages

Recursion support in other DBMS

◼ Yes: IBB DB2, Microsoft SQL Server,
PostgressSQL

◼ No: MySQL

31

Query languages

Content

1. Introduction

2. Creating recursive queries

3. Recursive calculation

4. Recursive searching

5. Logical hierarchies

6. Recursion termination

7. Conclusion

32

Query languages

Recursive searching

◼ Effort to find the best solution based on certain

criteria of the given problem.

◼ Example:

Let us consider an airport departure system and a

client who wants to travel from San Francisco to New

York with the lowest cost.

33

Query languages

Recursive searching – example

◼ route map (including costs for the flight):

34

Query languages

Recursive searching – example

◼ several possible paths (in different colours):

35

Query languages

Recursive searching – example

◼ The table of Flights

Q10. Find the lowest cost path from San
Francisco to New York.

Problem: the flight map is not an acyclic graph –
we have to solve the stopping of recursion.

flightno start destination cost

xxx01 SF CHG 275

xxx02 SF DLS 300

…

36

Query languages

Recursive searching – 1. solution

◼ Temporary table used in CTE is called Trips

◼ the subquery with all directly (one-flight) reachable

destinations from San Francisco will be the anchor of

the query

◼ the recursive part of the query will find others (two or

more flights) destinations

37

Query languages

Recursive searching – 1. solution

WITH RECURSIVE Trips (destination, route, totalcost) AS

 ((SELECT destination, destination, cost

 FROM Flights

 WHERE start = 'SF')

UNION ALL

 (SELECT l.destination,

 v.route || ',' || l.destination, v.totalcost + l.cost

 FROM Trips v, Flights l

 WHERE v.destination = l.start))

SELECT route, totalcost

FROM Trips

WHERE destination = 'NY';

Where is the problems?

- We add a longer expression to
the route column

- We are in endless loop.

38

Query languages

Recursive searching – 1. solution +

correction

◼ violation of the rule that the value in the column of the
recursive subquery must not be longer in the corresponding
column of the initialization subquery (anchor)

 Solution:
◼ We change data type in both subqueries (initialization and recursive) to

VARCHAR(50)

◼ This is done by the CAST expression.

◼ function CAST

 Examples:

 CAST (c1 + c2 AS Decimal(8,2))

 CAST (name||adress AS Varchar(255))

 string
◼ longer is completed with spaces

◼ shorter is cut and returns a warning

CAST (expression AS data_type)

39

Query languages

Recursive searching – 1. solution +

correction

◼ looping problem

 Solution:

◼ we will not take into account flights from the starting

place, that is from San Francisco,

◼ we will not take into account flights from the

destination, that is from New Yorku

◼ and we are interested in only flights that have a

maximum of 2 legs

40

Query languages

Recursive searching – final solution

WITH RECURSIVE Trips (destination, route, #flights, totalcost) AS

 ((SELECT destination, CAST(destination AS Varchar(50)), 1, cost

 FROM Flights

 WHERE start = 'SF'

UNION ALL

 (SELECT l.destination, CAST(v.route || ',' || l.destination AS Varchar(50)),
v. #flights + 1, v.totalcost + l.cost

 FROM Trips t, Flights f

 WHERE t.destination = f.start

 AND f.destination <> 'SF'

 AND f.start <> 'NY'

 AND t. #flights < 2))

SELECT route, totalcost

FROM Trips

WHERE destination = 'NY ' AND totalcost=(SELECT min(totalcost)

 FROM Trips

 WHERE destination='NY');

Result

route totalcost

DLS, NY 525

CHG,NY 525

41

Query languages

Content

1. Introduction

2. Creating recursive queries

3. Recursive calculation

4. Recursive searching

5. Logical hierarchies

6. Recursion termination

7. Conclusion

42

Query languages

Classification of hierarchies

◼ by graph properties

◼ convergent

◼ divergent

◼ recursive

◼ by balance

◼ balanced

• all leafs on the same level

• on each level different objects (e.g., geographical structure)

◼ unbalanced

• leafs at different levels

• uniform objects (e.g. organizational structure)

◼ Problem: representation by relations
43

Query languages

◼ each node except the root has exactly one
parent

 Ex.: geographical hierarchies
• continent, state, town, street

◼ implementation

◼ Edge (PKEY, KEYO)

◼ primary key KEYO

◼ table with referential

 integrity PKEY KEYO

Divergent hierarchies

44

Query languages

Convergent hierarchies

◼ Each object can have arbitrary number of
ancestors and descendants

 Ex.: Departments of company

◼ Define the result of query
 Q11. How many descendants has “AAA”?

• 6, 7, 8?

◼ Implementation
◼ table of objects

◼ table of relationships

45

Query languages

Recursive hierarchies

◼ similar to convergent
◼ moreover: a node can be its ascendant (directly or

undirectly)

◼ Example: supervisor-subordinate vs. project manager
and director as solver

◼ they cause cycling

◼ in practice, their use is mostly conflicting

◼ implementation
◼ as convergent ones

46

Query languages

Content

1. Introduction

2. Creating recursive queries

3. Recursive calculation

4. Recursive searching

5. Logical hierarchies

6. Recursion termination

7. Conclusion

47

Query languages

Recursion termination

◼ How remove cycling in recursive
hierarchies?

◼ Possibilities of stopping the recursion

◼ QB Server
• V MS SQL after reaching the value

MAXRECURSION (default 100)

◼ after reaching a given level

◼ to remember the path and omit already
visited nodes

48

Query languages

Problem: recursive hierarchies

PKEY CKEY

AAA BBB

AAA CCC

AAA DDD

CCC EEE

DDD AAA

DDD FFF

DDD EEE

FFF GGG

AAA

BBB CCC DDD

EEE FFF

GGG

table RH

Q12. Find all descendants AAA until level 4
49

Query languages

Stopping after reaching nth level

(attribute LVL)

◼ What to do with duplicates in result?

WITH RECURSIVE PARENT(CKEY, LVL) AS

(SELECT DISTINCT PKEY, 0

FROM RH

WHERE PKEY = 'AAA'

UNION ALL

SELECT H.CKEY, R.LVL+1

FROM RH H, PARENT P

WHERE P.CKEY = H.PKEY

AND P.LVL + 1 < 4

)

SELECT CKEY, LVL

FROM PARENT;

N = 4

50

Query languages

Shift away the duplicates (using 2

CTE)

WITH RECURSIVE PARENT(CKEY, LVL) AS

(SELECT DISTINCT PKEY, 0

FROM RH

WHERE PKEY = 'AAA'

UNION ALL

SELECT H.CKEY, R.LVL+1

FROM RH H, PARENT R

WHERE P.CKEY = H.PKEY

AND P.LVL + 1 <4

),

WITHOUT_DUPL(CKEY, LVL, NUM) AS

(SELECT CKEY, MIN(LVL), COUNT(*)

FROM PARENT

GROUP BY CKEY)

SELECT CKEY, LVL, NUM

FROM WITHOUT _DUPL
51

Query languages

Ommiting already visited nodes
WITH PARENT (CKEY, LVL, PATH) AS

(SELECT DISTINCT PKEY, 0, VARCHAR(PKEY, 20)

FROM RH

WHERE PKEY = ‘AAA‘

UNION ALL

SELECT H.CKEY, P.LVL + 1,

P.PATH || ‘>‘ || H.CKEY

FROM RH H, PARENT R

WHERE P.CKEY = H.PKEY

AND

LOCATE(H.CKEY || ‘>‘, P.PATH) = 0

)

SELECT CKEY, LVL, PATH

FROM PARENT;

Result

CKEY LVL PATH

AAA 0 AAA

BBB 1 AAA>BBB

CCC 1 AAA>CCC

DDD 1 AAA>DDD

EEE 2 AAA>CCC>EEE

EEE 2 AAA>DDD>EEE

FFF 2 AAA>DDD>FFF

GGG 3 AAA>DDD>FFF>GGG

returns the position of

pattern in argument

52

Query languages

Stack vs. recursion

◼ Problem: how efectively implement recursion –

opakování join může vést k tomu, že se věci

počítají opakovaně

◼ Recursion can be simulated using a stack.

◼ Stack model is faster then CTE
◼ Dá se použít only for querying hierarchical data

53

Query languages

Example

Vehicles(Id, parentID, name)

Id parentID name

1 NULL ALL

2 1 sea

3 1 earth

4 1 air

5 2 submarine

6 2 boat

7 3 car

8 3 two-wheeled

9 3 truck

10 4 rocket

11 4 plain

12 8 motorcycle

13 8 bicycle

54

Query languages

Example

ALL

sea
earth

air

submarine boat car rocket plain
two-

wheeled

motor-
cycle

bicycle

truck

55

Query languages

Ancestors without recursion (1)

◼ Can recursion be removed? YES, using

the stack.

◼ We add 2 new columns to the table

Vehicles: R_bound and L_bound

◼ Their values are based on the numbering

that occurs through the preorder tree

traversal.

56

Query languages

Ancestors without recursion (2)

◼ We fill the table with the data;

◼ For new columns:

UPDATE Vehicles SET L_bound = 1 , R_bound = 26 WHERE

ID = 1

UPDATE Vehicles SET L_bound = 2 , R_bound = 7 WHERE

ID = 2

…

UPDATE Vehicles SET L_bound = 12 , R_bound = 13

WHERE ID = 12

UPDATE Vehicles SET L_bound = 14 , R_bound = 14
WHERE ID = 13

57

Query languages

Ancestors - without recursion (3)

ALL

sea
earth

air

submarine boat car rocket plain
two-

wheeled

motor-
cycle

bicycle

truck

1,26

2,7 8,19 20,25

3,4 5,6 9,10

12,13 14,15

17,18 21,22 23,2411,16

58

Query languages

Example
Id parentID name L_bound R_bound

1 NULL ALL 1 26

2 1 sea 2 7

3 1 earth 8 19

4 1 air 20 25

5 2 submarine 3 4

6 2 boat 5 6

7 3 car 9 10

8 3 two-wheeled 11 16

9 3 truck 17 18

10 4 rocket 21 22

11 4 plain 23 24

12 8 motorcycle 12 13

13 8 bicycle 14 15
59

Query languages

Ancestors - without recursion (4)

Query for ancestors of motorcycle uses

intervals.

SELECT *

FROM Vehicles

WHERE R_bound > 12

 AND L_bound < 13

60

Query languages

Example
Id parentID name L_bound R_bound

1 NULL ALL 1 26

2 1 sea 2 7

3 1 earth 8 19

4 1 air 20 25

5 2 submarine 3 4

6 2 boat 5 6

7 3 car 9 10

8 3 two-wheeled 11 16

9 3 truck 17 18

10 4 rocket 21 22

11 4 plain 23 24

12 8 motorcycle 12 13

13 8 bicycle 14 15

61

	Snímek 1: Query languages (NDBI049) Recursion in SQL
	Snímek 2: Content
	Snímek 3: Recursion in SQL
	Snímek 4: Where to use recursion in SQL
	Snímek 5: You can get around without recursion
	Snímek 6: Application of recursion
	Snímek 7: Other advantages and disadvantages of recursion
	Snímek 8: Content
	Snímek 10: Common Table Expression
	Snímek 11: Composition of aggregations – without CTE
	Snímek 12: Composition of aggregations –with CTE
	Snímek 13: More CTEs in one query
	Snímek 14: A movement to recursion
	Snímek 15: Recursive queries
	Snímek 16: Example
	Snímek 17: Example
	Snímek 18: Restrictions of recursive queries
	Snímek 19: Content
	Snímek 20: Recursive calculation
	Snímek 21: Recursive calculation (on Czech)
	Snímek 22: Recursive calculation
	Snímek 23: Recursive calculation – queries
	Snímek 24: Recursive calculation – solution
	Snímek 25: Recursive calculation – Q8
	Snímek 26: Recursive calculation – Q8
	Snímek 27: Recursive calculation – Q9
	Snímek 28: Syntax of tree traversal v Oracle 9i
	Snímek 29: Syntax of tree traversal v Oracle 9i
	Snímek 30: Oracle 9i vs. SQL:99
	Snímek 31: Oracle 9i vs. SQL:99
	Snímek 32: Recursion support in other DBMS
	Snímek 33: Content
	Snímek 34: Recursive searching
	Snímek 35: Recursive searching – example
	Snímek 36: Recursive searching – example
	Snímek 37: Recursive searching – example
	Snímek 38: Recursive searching – 1. solution
	Snímek 39: Recursive searching – 1. solution
	Snímek 40: Recursive searching – 1. solution + correction
	Snímek 41: Recursive searching – 1. solution + correction
	Snímek 42: Recursive searching – final solution
	Snímek 43: Content
	Snímek 44: Classification of hierarchies
	Snímek 45: Divergent hierarchies
	Snímek 46: Convergent hierarchies
	Snímek 47: Recursive hierarchies
	Snímek 48: Content
	Snímek 49: Recursion termination
	Snímek 50: Problem: recursive hierarchies
	Snímek 51: Stopping after reaching nth level (attribute LVL)
	Snímek 52: Shift away the duplicates (using 2 CTE)
	Snímek 53: Ommiting already visited nodes
	Snímek 54: Stack vs. recursion
	Snímek 55: Example
	Snímek 56: Example
	Snímek 57: Ancestors without recursion (1)
	Snímek 58: Ancestors without recursion (2)
	Snímek 59: Ancestors - without recursion (3)
	Snímek 60: Example
	Snímek 61: Ancestors - without recursion (4)
	Snímek 62: Example

