Query languages (NDBI1049)
Recursion in SQL

Jaroslav Pokorny
MFF UK, Praha
jaroslav.pokorny@matfyz.cuni.cz

Content

Introduction

Creating recursive queries
Recursive calculation
Recursive searching -
_ogical hierarchies
Recursion termination
Conclusion

NS Os e

Query languages

Recursion In SQL

m Intuitively: a query Is recursive, If it IS used In
Its own definition.

m This connection can be both direct and over
more tables.

m Advantages: In certain cases the only
effective way for obtaining the result

m Disadvantages: often worse readability a
clarity

Query languages 3

Where to use recursion in SQL

m effective for any data with hierarchical structure
m relationships in tree structures
m search in cyclic and acyclic graphs

m examples from practice:
m search for connections in timetables
m organizational structure of a company
= bill of materials

®E components in a document management system,
etc.

Query languages 4

You can get around without recursion

m SQL before the SQL:99 standard did not contain
a possibility to construct recursive gqueries,

m nhon-procedural solution: with adding certain
,2graph information®,

m procedural solution: use of cursors, cycles,

m others: ORACLE: proprietary solution + PL/SQL,
m loss of efficiency and optimization
m code is not so ,elegant”

Query languages

Application of recursion

m For graph traversal we obtain:

m reachability
Q1. Find all suborders of a given employee.

= path enumerating
Q2. Find the whole structure (all sub-products) for a
given product.
= path joining
Q3. For a given product list all its components and
Including their amount.

Query languages

Other advantages and
disadvantages of recursion

m Advantages:
m all work is specified in one query
m |t IS possible to use a big part of the result

m Disadvantages
m if only the small part of the result is really used
m possibly endless recursion calls

Query languages /

Content

Introduction

Creating recursive queries
Recursive calculation
Recursive searching

_ogical hierarchies
Recursion termination
Conclusion

NS Os e

Query languages

Common Table Expression

m generalization of table expression in SQL:92
m declared by keyword WITH

m used as a substitute in nested queries

m from SELECT, INSERT, UPDATE, DELETE

m gueries immediate after WITH keyword are
called just once time

WITH [RECURSIVE] CTE [, CTE]...
CTE ::=name_CTE[(name_sl[,name_sl]...)] AS
(CTE_query_definition)

Query languages

10

Composition of aggregations —
WIthOUt CTE Contributions(ID, forum, question)

Q4: Find the forum with the highest number of
contributions

SELECT COUNT(ID) AS number, forum
FROM Contributions
GROUP BY forum
HAVING COUNT(ID) = (
SELECT MAX(number)
FROM (SELECT COUNT(ID) AS number, forum
FROM Contributions
GROUP BY forum)

Note: We are looking for MAX(COUNT(...))

Query languages 11

Composition of aggregations —
W|th CTE Contributions(ID, forum, question)

WITH
Amount_of contrib(number, forum)

AS (SELECT COUNT(ID), forum)
FROM Contributions
GROUP BY forum)

SELECT number, forum
FROM Amount_of contrib
WHERE number = (SELECT MAX(number)
FROM Ammount_of contrib)

Query languages 12

More CTEs In one query

WITH
Amount_of contrib(number, forum)

AS (SELECT COUNT(ID), forum
FROM Contributions
GROUP BY forum),

Max_amount_of contrib(number)

AS (SELECT MAX(number)
FROM Amount_of contrib)

SELECT C1.*
FROM Amount_of contrib C1 INNER JOIN
Max_amount_of contrib C2 ON
Cl.number = C2.number

Note: CTEs work in the same way as derived tables (given
by SELECT behind FROM)

Query languages 13

A movement to recursion

emplD | name | function suplID
1 Novak |director NULL
2 Srb vice-director| 1
3 Lomsky manager 2
4 Bor manager 2
Q5.
WITH Superiors(name, supiD, empID) AS
(SELECT name, suplD, empID
FROM Employees
WHERE function = 'manager
)
SELECT * FROM Superiors
name suplD | emplD
Lomsky | 2 3
Bor 2 4

Query languages

Recursive gueries

m Itis possible to refer R in CTE for table R

m the temporary table is created (exists only during query
evaluation)

m three parts
WITH
anchoring (initialization subquery)
UNION ALL

recursive member

* recursion runs when no further record is added or the recursion
limit (MAXRECURSION) is not exceeded.

 be careful to cycle occurrence in the recursive member
SELECT
« outer SELECT - returns the query result

Query languages 15

Example

anchoring: executed only once

recursive member: repeatedly
e

join with the previous step ——

OUtpUt —

What was the query?

Query languages

WITH RECURSIVE Superiors(name, suplD, empID) AS
(SELECT name, suplID, empID
FROM Employees
WHERE name = 'Novy'
UNION ALL
SELECT E.name, E.supID, E.emplD
FROM Employees AS E
INNER JOIN
Superiors AS S
ON S.supID = E.emplID)
SELECT * FROM Superiors

name suplD | emplD
Novy 11 13
Ryba 6 11
Rak 5 6
Syka 4 5

Bor 2 4

Srb 1 2
Novak | NULL 1

16

Q6.: Find all managers of employee
Novy (including himself).

Example

anchoring: executed only once

recursive member: repeatedly
>

join with the previous step ——

OUtpUt —

Query languages

WITH RECURSIVE Superiors(name, suplD, empID) AS
(SELECT name, suplID, empID
FROM Employees
WHERE name = 'Novy'
UNION ALL
SELECT E.name, E.supID, E.emplD
FROM Employees AS E
INNER JOIN
Superiors AS S
ON S.supID = E.emplID)
SELECT * FROM Superiors

name suplD | emplD
Novy 11 13
Ryba 6 11
Rak 5 6
Syka 4 5

Bor 2 4

Srb 1 2
Novak | NULL 1

17

Restrictions of recursive qgueries

m [tis not allowed to refer CTE in anchor

m Recursive part always self-refers CTE

= SQL:99 supports only "linear" recursion: each FROM has at most one
reference to recursively defined relation.

m Recursive part must not contain
m SELECT DISTINCT

GROUP BY

HAVING

scalar aggregation

TOP

m OUTER JOIN

m each column in recursive subquery has to be type-compatible with
associated column in initialization subquery

m type conversion — CAST can be used

Query languages 18

Content

Introduction

Creating recursive queries
Recursive calculation
Recursive searching
_ogical hierarchies
Recursion termination
Conclusion

NS Os e

Query languages

19

Recursive calculation

Q7. Which parts (including their amounts) are
necessary to construct wing of a plain.

Query languages

20

Recursive calculation (on
Czech)

D7. Jaké soucastky (vCetne poctu) jsou potreba
pro vyrobu kridla

Dotazovaci jazyky 20 Czech

Recursive calculation

m simplified storing in DB (relation Components) with
guantities of particular parts in a part

Part Subpart Qty
wing strut wing strut 5
wing wing flap 1
wing landing gear 1
wing rivet 100
wing strut rivet 10
wing flap hinge 2
wing flap rivet 5
landing gear hinge 3
landing gear rivet 8
hinge rivet 4

Query languages

21

Recursive calculation — queries

Q8. How many rivets are used to construct
a wing plane?

Q9. List of all subparts for creating a wing
plane including their amount.

Query languages 22

Recursive calculation — solution

= \What we have to be aware of?
m recursion calling (graph walking)
m to sum amounts of rivets in individual parts
= amounts of individual sub-parts

Query languages 23

Recursive calculation — Q8

m CTE m result
WITH RECURSIVE WingParts(Subpart, Qty) |subpart | Qty
AS wing strut | 5 directly
((SELECT Subpart, Qty linitialization wing flap
FROM Components subquery] landing 1
WHERE Part = ‘wing’) | gear
UNION ALL RN rivet 100
(SELECT C.Subpart, W.Qty * C.Qty rivet 50 | from wing strut
FROM WingParts W, Components C hinge 2 from wing flap
WHERE W.Subpart = C.Part)); rivet 5 | from wing flap
hinge 3 from landing gear
rivet 8 from landing gear
rivet 8 from hinge of wing flap
rivet 12 from hinge of landing
gear

Query languages 24

Recursive calculation — Q8

m finally we summarize particular quantities

WITH RECURSIVE WingParts(Subpart, Qty) AS
((SELECT Subpart, Qty

FROM Components Result
WHERE Part = ‘wing’) Qty
UNION ALL 183

(SELECT C.Subpart, W.Qty * C.Qty
FROM WingParts W, Components C
WHERE W.Subpart = C.Part))

SELECT sum(Qty) AS Qty
FROM WingParts
WHERE Subpart = ‘rivet’;

Query languages

Recursive calculation — Q9

m To solve Q9 it is enough to change only the result query

WITH RECURSIVE WingParts(Subpart, Qty) AS
((SELECT Subpart, Qty
FROM Components
WHERE Part = ‘wing’)
UNION ALL
(SELECT C.Subpart, W.Qty * C.Qty
FROM WingParts W, Components C
WHERE W.Subpart = K.Part))
SELECT Subpart, sum(Qty) AS Qty
FROM WingParts
GROUP BY Subpart;

Query languages

Result
Subpart Qty
wing strut 5
wing flap 1
landing gear 1
hinge 5
rivet 183

27

Syntax of tree traversal v Oracle 9

SELECT columns FROM table
[WHERE condition3]
start WITH conditionl
CONNECT BY condition2
[ORDER BY ...]

m Rows satisfying the condition in start WITH are considered
as root rows on the first level of nesting

m For each row at level |, direct descendants fulfilling
condition in clause CONNECT BY at level i+1 are looked
for recursively.

= Ancestor row in the condition is denoted by the key word PRIOR

Query languages 27

Syntax of tree traversal v Oracle 91

m Finally, there are removed rows not satisfying
the WHERE clause.

m If sorting Is not defined, the order corresponds
to the pre-order traversal.

m Each row contains the pseudocolumn LEVEL
containing the row level in hierarchy.

Query languages 28

Emp(emplID, name, manager)

Oracle 91 vs. SQL:99

Inserts spaces in }

m Oracle 9i: number 2*Level
SELECT LPA evel) || name, Level
FROM Emp

start WITH manager IS NULL
CONNECT BY manager = PRIOR emplD;

m SQL:99
WITH RECURSIVE Emp1l AS (
SELECT x.name AS name, 0 AS Level
FROM Emp x WHERE manager IS NULL
UNION ALL
SELECT y.name, Level+1
FROM Emp y JOIN Empl ON y.manager =
Empl.empiD)
SELECT * FROM Emp1;

Query languages 2 - Recursion 29

Oracle 91 vs. SQL:99

Effect of LPAD
function

Query languages

Data

Novak

Srb

Lomsky

Bor

30

Recursion support in other DBMS

m Yes: IBB DB2, Microsoft SQL Server,
PostgressSQL

m No: MySQL

Query languages 31

Content

Introduction

Creating recursive queries
Recursive calculation
Recursive searching
_ogical hierarchies
Recursion termination
Conclusion

NS Os e

Query languages

32

Recursive searching

m Effort to find the best solution based on certain
criteria of the given problem.

m Example:
Let us consider an airport departure system and a

client who wants to travel from San Francisco to New
York with the lowest cost.

Query languages

33

Recursive searching — example

m route map (including costs for the flight):

H__‘__.:r r:hu:agl:l
San Francisco New N ork

! \
Los Angeles

Dallas

Query languages 34

Recursive searching — example

m several possible paths (in different colours):

G Chicago -(-.____;3‘)
San Francisco (/"‘_\, BlEw Y ork

S 100

Eni 300
L0s ﬁngeles% v 225
Ciallas

Query languages 35

Recursive searching — example

m The table of Flights

flightno start destination | cost
xxx01 SF CHG 275
xxx02 SF DLS 300

Q10. Find the lowest cost path from San
Francisco to New York.

Problem: the flight map is not an acyclic graph —
we have to solve the stopping of recursion.

Query languages

Recursive searching — 1. solution

m Temporary table used in CTE is called Trips

m the subquery with all directly (one-flight) reachable
destinations from San Francisco will be the anchor of
the query

m the recursive part of the query will find others (two or
more flights) destinations

Query languages 37

Recursive searching — 1. solution

WITH RECURSIVE Trips (destination, route, totalcost) AS
((SELECT destination, destination, cost
FROM Flights
WHERE start = 'SF')
UNION ALL
(SELECT l.destination,
v.route || ', || l.destination, v.totalcost + |.cost
FROM Trips v, Flights |
WHERE v.destination = |.start))

SELECT route, totalcost Where is the problems?
FROM Trips - We add a longer expression to
WHERE destination = 'NY"; the route column

- We are in endless loop.

Query languages 38

Recursive searching — 1. solution +
correction

= violation of the rule that the value in the column of the
recursive subquery must not be longer in the corresponding
column of the Initialization subguery (anchor)

Solution:

m We change data type in both subqueries (initialization and recursive) to
VARCHAR(50)

m This is done by the CAST expression.

m function CAST CAST (expression AS data_type)

Examples:
CAST (cl + c2 AS Decimal(8,2))
CAST (namel|adress AS Varchar(255))
string

m longer is completed with spaces
m shorter is cut and returns a warning

Query languages 39

Recursive searching — 1. solution +
correction

m looping problem

Solution:

= we will not take into account flights from the starting
place, that is from San Francisco,

= we will not take into account flights from the
destination, that is from New Yorku

m and we are interested in only flights that have a
maximum of 2 legs

Query languages 40

Recursive searching — final solution

WITH RECURSIVE Trips (destination, route, #flights, totalcost) AS
((SELECT destination, CAST(destination AS Varchar(50)), 1, cost
FROM Flights
WHERE start = 'SF'
UNION ALL

(SELECT l.destination, CAST(v.route || ',' || l.destination AS Varchar(50)),
v. #flights + 1, v.totalcost + |.cost

FROM Trips t, Flights f

WHERE t.destination = f.start Result
AND f.destlnatl'on .<> SF route totalcost
AND f.start <> 'NY
_ DLS, NY 525
AND t. #flights < 2)) CHG.NY 525
SELECT route, totalcost ’
FROM Trips
WHERE destination = 'NY ' AND totalcost=(SELECT min(totalcost)
FROM Trips

WHERE destination="NY");
Query languages 41

Content

Introduction

Creating recursive queries
Recursive calculation
Recursive searching
_ogical hierarchies
Recursion termination
Conclusion

NS Os e

Query languages

42

Classification of hierarchies

m by graph properties
m convergent
s divergent
m recursive

= by balance
m Dbalanced
« all leafs on the same level
« on each level different objects (e.g., geographical structure)
m unbalanced
« leafs at different levels
« uniform objects (e.g. organizational structure)

m Problem: representation by relations

Query languages 43

Divergent hierarchies

m each node except the root has exactly one

parent axa
Ex.: geographical hierarchies
P continent, Sstate, town, street ———Jlr———
m Implementation
m Edge (PKEY, KEYO) o
= primary key KEYO e
= table with referential i[[i li l
iIntegrity PKEYc KEYO i i “i E

Query languages

Convergent hierarchies

m Each object can have arbitrary number of
ancestors and descendants

ARR
EX.. Departments of company oot
m Define the result of query
Q11. How many descendants has “AAA”™? R
- 6,7,8? :
= Implementation OBJECTS RELATIONSEIES o
= table of objects KEYO |PRICE| |PKSY |CKEY U]
= table of relationships S5 | 21 jama lcoe | S|
poo | <2s| lece jmme | 23
mEE 33 | DDD | EEE 44|
FFF 24| | DDD | FFF |
e L S G b !

Query languages

Recursive hierarchies

m Similar to convergent
® moreover: a hode can be its ascendant (directly or

undirectly)
m Example: supervisor-subordinate vs. project manager

and director as solver

m they cause cycling o +
m in practice, their use is mostly conflicting .- e
- - I
m implementation S
m as convergent ones j;*‘;

46

Query languages

Content

Introduction

Creating recursive queries
Recursive calculation
Recursive searching
_ogical hierarchies
Recursion termination
Conclusion

NS Os e

Query languages

47

Recursion termination

m How remove cycling Iin recursive
nierarchies?

m Possibilities of stopping the recursion

m QB Server

« V MS SQL after reaching the value
MAXRECURSION (default 100)

m after reaching a given level

m to remember the path and omit already
visited nodes

Query languages 48

Problem: recursive hierarchies

table RH |PkeY| ckey AAA

AAA | BBB m

AAA CCC BBB CCC DDD

AAA DDD \A
EEE FFF

CCC EEE

DDD AAA GGG

DDD FFF

DDD EEE

FFF GGG

Q12. Find all descendants AAA until level 4

Query languages

Stopping after reaching nt" level
(attribute LVL)

CKEY LWL
WITH RECURSIVE PARENT(CKEY, LVL) AS 1 PAMA O
(SELECT DISTINCT PKEY, 0 - ITTEE
\IijHoEl\ég II;IKEY — 'AAA A C- |
UNION ALL 4 DDD 1
SELECT H.CKEY, R.LVL+1 5 AAA 2
FROM RH H, PARENT P 5 EEE 2
WHERE P.CKEY = H.PKEY = FFF o
AND PLVL + 1 < 4 . IETEE
)
SELECT CKEY, LVL 3 BEE 3
FROM PARENT: 10 CoC a
11 ©DD =
12 EEE 2

= What to do with duplicates in result?

Query languages

1NN

Shift away the duplicates (using 2
GNE)

WITH RECURSIVE PARENT(CKEY, LVL) AS
(SELECT DISTINCT PKEY, 0
FROM RH CKEY LWL MU
vase it SRARNY)N —
UNION ALL 5
SELECT H.CKEY, R.LVL+1
FROM RH H, PARENT R 3
WHERE P.CKEY = H.PKEY 4 DDD
5
5
7

AND P.LVL + 1 <4
1
WITHOUT DUPL(CKEY, LVL, NUM) AS
(SELECT CKEY, MIN(LVL), COUNT(*)
FROM PARENT

GROUP BY CKEY)

m
M
M
L I o o e
- = Pra a2 TR

SELECT CKEY, LVL, NUM

FROM WITHOUT _DUPL
Query languages S51

Ommiting already visited nodes

WITH PARENT (CKEY, LVL, PATH) AS

(SELECT DISTINCT PKEY, 0, VARCHAR(PKEY, 20)

FROM RH
WHERE PKEY = ‘AAA
UNION ALL
SELECT H.CKEY, P.LVL + 1,
P.PATH || *>' || H.CKEY
FROM RH H, PARENT R
WHERE P.CKEY = H.PKEY
AND
LOCATE(H.CKEY || *>, P.PATH) = 0
)
SELECT CKEY, LVL, PATH
FROM PARENT:

Query languages

Result

LVL

PATH

AAA

AAA>BBB

AAA>CCC

AAA>DDD

AAA>CCC>EEE

AAA>DDD>EEE

AAA>DDD>FFF

WINININ(FP|IFP]|FP|O

AAA>SDDD>FFF>GGG

52

Stack vs. recursion

m Problem: how efectively implement recursion —
opakovani join muze vést k tomu, Ze se Vvéci
pocitaji opakovane

m Recursion can be simulated using a stack.

m Stack model is faster then CTE

m Da se pouzit only for querying hierarchical data

Query languages 53

Vehicles(Id, parentID, name)
Example

Q

parentiD name
NULL ALL
sea

earth

air

submarine

boat

car

two-wheeled

O | N[O | [W[IN|PF

truck

rocket

=
o

=
=

plain

=
N

motorcycle

|| [RPRIWW|IWINDNIN|IFP[(FRL|PF

=
W

bicycle

Query languages >4

Example

ALL

|
(earth) |
Sea air

' \ two-
' wheele

Query languages

55

Ancestors without recursion (1)

m Can recursion be removed? YES, using
the stack.

m We add 2 new columns to the table
Vehicles: R _bound and L _bound

m Their values are based on the numbering
that occurs through the preorder tree
traversal.

Query languages 56

Ancestors without recursion (2)

m We fill the table with the data;

m For new columns:

UPDATE Vehicles SET L_bound =1, R bound = 26 WHERE
ID=1

UPDATE Vehicles SET L _bound =2, R _bound = 7 WHERE
ID =2

UPDATE Vehicles SET L_bound =12, R _bound = 13
WHERE ID = 12

UPDATE Vehicles SET L_bound =14 , R _bound = 14
WHERE ID =13

Query languages 57

Ancestors - without recursion (3)

ALL 1,26

earth
111 2,7 (> 8,19 Sir 20,25

two-
wheele
‘Li7 I il li

12,13 14,15
Query languages >8

Example

Query languages

Id parentiD | name L bound R_bound
1 NULL ALL 1 26
2 1 sea 2 7
3 1 earth 8 19
4 1 air 20 25
5 2 submarine |3 4
6 2 boat 5 6
7 3 car 9 10
8 3 two-wheeled | 11 16
9 3 truck 17 18
10 4 rocket 21 22
11 4 plain 23 24
12 8 motorcycle |12 13
13 8 bicycle 14 15

Ancestors - without recursion (4)

Query for ancestors of motorcycle uses
Intervals.

SELECT *

FROM Venhicles

WHERE R bound > 12
AND L bound < 13

Query languages

60

Example

Query languages

Id | parentID | name L _bound R_bound
1 NULL ALL 1 26
2 |1 sea 2 7
3 |1 earth 8 19
4 |1 air 20 25
5 |2 submarine 3

6 |2 boat 5 6
7 |3 car 9 10
8 |3 two-wheeled |11 16
9 |3 truck 17 18
10 |4 rocket 21 22
11 (4 plain 23 24
12 |8 motorcycle 12 13
13 |8 bicycle 14 15

61

	Snímek 1: Query languages (NDBI049) Recursion in SQL
	Snímek 2: Content
	Snímek 3: Recursion in SQL
	Snímek 4: Where to use recursion in SQL
	Snímek 5: You can get around without recursion
	Snímek 6: Application of recursion
	Snímek 7: Other advantages and disadvantages of recursion
	Snímek 8: Content
	Snímek 10: Common Table Expression
	Snímek 11: Composition of aggregations – without CTE
	Snímek 12: Composition of aggregations –with CTE
	Snímek 13: More CTEs in one query
	Snímek 14: A movement to recursion
	Snímek 15: Recursive queries
	Snímek 16: Example
	Snímek 17: Example
	Snímek 18: Restrictions of recursive queries
	Snímek 19: Content
	Snímek 20: Recursive calculation
	Snímek 21: Recursive calculation (on Czech)
	Snímek 22: Recursive calculation
	Snímek 23: Recursive calculation – queries
	Snímek 24: Recursive calculation – solution
	Snímek 25: Recursive calculation – Q8
	Snímek 26: Recursive calculation – Q8
	Snímek 27: Recursive calculation – Q9
	Snímek 28: Syntax of tree traversal v Oracle 9i
	Snímek 29: Syntax of tree traversal v Oracle 9i
	Snímek 30: Oracle 9i vs. SQL:99
	Snímek 31: Oracle 9i vs. SQL:99
	Snímek 32: Recursion support in other DBMS
	Snímek 33: Content
	Snímek 34: Recursive searching
	Snímek 35: Recursive searching – example
	Snímek 36: Recursive searching – example
	Snímek 37: Recursive searching – example
	Snímek 38: Recursive searching – 1. solution
	Snímek 39: Recursive searching – 1. solution
	Snímek 40: Recursive searching – 1. solution + correction
	Snímek 41: Recursive searching – 1. solution + correction
	Snímek 42: Recursive searching – final solution
	Snímek 43: Content
	Snímek 44: Classification of hierarchies
	Snímek 45: Divergent hierarchies
	Snímek 46: Convergent hierarchies
	Snímek 47: Recursive hierarchies
	Snímek 48: Content
	Snímek 49: Recursion termination
	Snímek 50: Problem: recursive hierarchies
	Snímek 51: Stopping after reaching nth level (attribute LVL)
	Snímek 52: Shift away the duplicates (using 2 CTE)
	Snímek 53: Ommiting already visited nodes
	Snímek 54: Stack vs. recursion
	Snímek 55: Example
	Snímek 56: Example
	Snímek 57: Ancestors without recursion (1)
	Snímek 58: Ancestors without recursion (2)
	Snímek 59: Ancestors - without recursion (3)
	Snímek 60: Example
	Snímek 61: Ancestors - without recursion (4)
	Snímek 62: Example

