
Query languages 1

Query languages (NDBI049)

SQL language

Jaroslav Pokorný

MFF UK, Praha

jaroslav.pokorny@matfyz.cuni.cz

Query languages 2

Content

Start - overview of SQL92

Example: relational schema

1. Data definition in SQL

1.3 Indexes in SQL – Non-clustered vs. clustered

2. Data manipulation in SQL

2.1 Arithmetic

2.2 Aggregate functions

2.3 Value expressions

2.4 Predicate LIKE

2.5 Other predicates in SQL92

2.6 Set predicates

2.7. Predicates ANY, ALL, SOME

Query languages 3

Content

2.8 Quantification in SQL

2.9 Set operations

2.10 Join of tables

3. Updating in SQL

4. Views

5. Integrity constraints

5.1 Referential integrity

5.2 Other possibilities of IC

6. System catalogue

7. Data protection

8. Standardization of SQL

9. Conclusion

Query languages 4

Start - overview of SQL92

1) data definition language,

2) interactive data manipulation language,

3) data manipulation language in host version,

4) possibility of views definition,

5) possibility of IC definition,

6) possibility of definition přístupových práv,

7) system catalogue

8) module language,

9) transaction management.

Query languages 5

Example: relational schema

RENTS(COPY_N, RENTAL_ID, PIN, PRICE, DATE_DB)

{data about rents of copies – rental Id, customer PIN, price, date due back}

CINEMAS(C_NAME, ADDRESS, MANAGER)

{data about cinemas and their managers}

MOVIES(TITLE, DIRECTOR) {data about movies and their directors}

MOVIE_SHOWINGS(C_NAME, TITLE, DATE)

 {data about cinemas playing movies}

CUSTOMERS(PIN, NAME, ADDRESS) {data about customers}

EMPLOYEES(E_ID, ADDRESS, NAME, SALARY)

 {data about the rental employees}

COPIES(COPY_N, TITLE) {copies of movies}

BOOKING(TITLE, PIN) {booking of movies by customers}

Query languages 6

1. Data definition in SQL

▪ CREATE TABLE

Possibilities:

global temporary,

local temporary tables

Also: derived tables ( views).

CREATE TABLE RENTS

(COPY_N CHAR(3) NOT NULL,

RENTAL_ID CHARACTER(6) NOT NULL,

PIN CHARACTER(10) NOT NULL,

PRICE DECIMAL(5,2),

DATE_DB DATE);

Query languages 7

1. Data definition in SQL

Data types in SQL

▪ numeric (exact and approximate),

▪ character strings,

▪ bit strings,

▪ temporal data,

▪ time intervals.

NULL (is element of all domain type)

TRUE, FALSE, UNKNOWN

Conversions: automatically, explicitly (function CAST)

Query languages 8

1. Data definition in SQL

▪ column ICs

– NOT NULL the column cannot contain the NULL value,

– DEFAULT sets column default value for the column

 when no value is specified,

– UNIQUE ensures that all values in the column are

 different, NULL value nevadí,

– PRIMARY KEY column combination of NOT NULL and

 uniquely identifies each row in column table,

– FOREIGN KEY column is a foreign key defining

 referential integrity with another table

– CHECK logical expression defining a specific IC

▪ table ICs (e.g., composite primary key), named ICs

Query languages 9

1. Data definition in SQL

▪ ALTER TABLE;

▪ DROP TABLE

▪ CREATE SCHEMA

– contains definitions of basic tables, views, domains,

integrity constraints, authorization privilege

▪ DROP SCHEMA

Df.: Database in SQL is a collection of tables and

views. It can be defined by one or more schemas.

CREATE TABLE table_name(list_of_table_elements)

list_of_table_elements ::= table_element[,table_element]...

table_element ::= column_definition | table_IC_definition

Query languages 10

1. Data definition in SQL

. . .

CREATE TABLE CINEMAS . . .

. . .

CREATE TABLE MOVIE_SHOWINGS

 (C_NAME Char_Varying(20) NOT NULL,

 TITLE Char_Varying(20) NOT NULL,

 DATE Date NOT NULL,

 PRIMARY KEY (C_NAME, TITLE),

 FOREIGN KEY (C_NAME) REFERENCES CINEMAS,

 FOREIGN KEY (TITLE) REFERENCES MOVIES);

Remark: Tables in SQL may not have a primary key!

Query languages 11

1.3 Indexes in SQL - Nonclustered vs. clustered

lists

of pointers

index

records

(index

file)

(relation)relation rows

nonclustered

relation rows

lists

of pointers

clustered

CREATE INDEX Idx_Cust_name_addr

ON CUSTOMERS (NAME, ADDRESS)

Query languages 12

2. Data manipulation in SQL

Simple queries in SQL: Boolean expressions, event. with

new predicates, are allowed in the WHERE clause

 DATE_DB BETWEEN '2015-04-23' AND '2015-05-23’

Q1. Find customer names with their addresses.

SELECT [{DISTINCT | ALL}] [{* | name_atr1[, name_atr2]... }]

FROM name_rel1[, name_rel2]...

[WHERE condition]

[ORDER BY sorting_specification]

SELECT NAME, ADDRESS SELECT DISTINCT NAME,

FROM CUSTOMERS FROM CUSTOMERS;

ORDER BY NAME ASC;

Query languages 13

2. Data manipulation in SQL

Semantics:

Q2. Find couples of customers, having the same address.

From version SQL92: local renaming columns

SELECT X.PIN AS first, Y.PIN AS second

FROM CUSTOMERS X, CUSTOMERS Y

WHERE X.ADDRESS = Y.ADDRESS AND X.PIN < Y.PIN;

(R1  R2 ...  Rk)()[A1,A2,...,Aj]

SELECT DISTINCT A1,A2,...,Aj

FROM R1,R2,...,Rk

WHERE 



Query languages 14

2. Data manipulation in SQL

Q3. Find rows in RENTS with date due back until 23.4.2015.

SELECT DISTINCT DIRECTOR

FROM MOVIES, BOOKING

WHERE MOVIES.TITLE = BOOKING.TITLE;

SELECT * FROM RENTS

WHERE DATE_DB  '2015-04-23';

Q4. Find directors, whose some movies are booked.

Query languages 15

2. Data manipulation in SQL

Semantics of comparisons:

 x  y = UNKNOWN if and only if at least one from x, y is NULL

So: NULL = NULL is evaluated as UNKNOWN

Vyhodnocení logických podmínek.

A B A and B A or B not A

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE FALSE

TRUE UNKNOWN UNKNOWN TRUE FALSE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE TRUE

FALSE UNKNOWN FALSE UNKNOWN TRUE

UNKNOWN TRUE UNKNOWN TRUE UNKNOWN

UNKNOWN FALSE FALSE UNKNOWN UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

Evaluation of logical conditions

Query languages 16

2.1 Arithmetic

Q5. Find for Heinrich Götz numbers of copies, he borrowed,

with the rents prices in EUR.

– operators /,+, - and *, precedence order from usual

practice

 Recommendation: better to use always parentheses

– NULL is propagated into the result, i.e., when one from

operands is NULL, the operation result is NULL.

SELECT R.COPY_N, R.PRICE/25.15

FROM RENTS R, CUSTOMERS C

WHERE C.NAME = ' Götz H.' AND R.PIN = C.PIN;

Query languages 17

2.2 Aggregate functions

COUNT, SUM, MAX, MIN and AVG.

▪ They are applied on by a query specified column of a

table.

Exception: COUNT(*) counts items including their

duplicates and empty rows

▪ Aggregate functions applied on columns ignore NULL

values.

▪ inclusion or non-inclusion of duplicates in the result is

obeyed by ALL and DISTINCT.

▪ In the case of  (empty table) COUNT() = 0.

aggregate_function([{ALL|DISTINCT}] columns_names)

Query languages 18

2.2 Aggregate functions

Q6. How many movies are booked?

Q7. Find the number of rents with rent prices up to 899 CZK.

SELECT COUNT(DISTINCT TITLE)

FROM BOOKING;

SELECT COUNT(*)

FROM RENTS

WHERE PRICE  899.00;

Query languages 19

2.2 Aggregate functions

▪ SUM and AVG calculate (DISTINCT is not specified) with

duplicate values.

▪ Inclusion of duplicate values also explicitly with ALL.

▪ SUM() = NULL and AVG() = NULL.

Q8. What is the total amount of money in rents of H. Götz?

▪ MIN() = NULL and MAX() = NULL.

SELECT SUM(R.PRICE)

FROM RENTS R, CUSTOMERS C

WHERE C.NAME = ' Götz H.' AND R.PIN = C.PIN;

Query languages 20

2.2 Aggregate functions

value expression uses arithmetical expressions,

applications of aggregate functions, values of scalar

subqueries (return just one value).

 Rule: The use of aggregate functions in SELECT clause

precludes the use of another column.

Q9. Find copie numbers with the highest rent price.

SELECT [{DISTINCT | ALL}] {*|

value_expression1[,value_expression2] ...}

SELECT COPY_N, MAX(PRICE)

FROM RENTS;

Incorrectly

Query languages 21

2.2 Aggregate functions

Q9 with a scalar subquery:

Q10. Find PINs of customers, having rented more than 2 copies.

Remark: If we only want PIN, it is not necessary to write

COUNT(COPY_N) in SELECT clause. Older SQL

implementations require it often.

SELECT COPY_N, PRICE

FROM RENTS

WHERE PRICE = (SELECT MAX(PRICE) FROM RENTS);

SELECT PIN, COUNT(COPY_N) AS number_of_copies

FROM RENTS

GROUP BY PIN

HAVING 2 < COUNT(COPY_N);

Query languages 22

2.2 Aggregate functions

Q11. Find cinemas and their addresses, where they have

more than 8 movies in the programme.

Remark: placing a scalar subquery on both sides of the

comparison operator  is possible.

Q12. Find average price from minimum prices of rented

copies for each customer.

In SQL89 it is not possible to formulate this query by one SQL

statement.

SELECT DISTINCT C.NAME, C.ADDRESS

FROM CINEMAS C

WHERE 8 < (SELECT COUNT(TITLE)

FROM MOVIE_SHOWINGS M

WHERE M.NAME = K. NAME);

Query languages 23

2.2 Aggregate functions

▪ Multi-level aggregation

Q13. Find for each customer and the given price the

number of his/her rents (with this price) and total

amount of money for all his/her rents.

SELECT PIN, PRICE, COUNT(COPY_N) AS počet_kopií,

(SELECT SUM(R.PRICE) FROM RENTS R

WHERE R.PIN = PIN) AS TOTAL_PRICE

FROM RENTS

GROUP BY PIN, PRICE;

Query languages 24

2.3 Value expressions

▪ CASE expressions

ELSE is also possible. In example, we suppose implicitly

ELSE NULL, i.e., if GENDER value is not given, then

NULL is inserted in the row on place of the value of the

column.

CASE

WHEN GENDER = 'M' THEN 1

WHEN GENDER = ‚W' THEN 2

END

Query languages 25

2.3 Value expressions

▪ function COALESCE

 COALESCE(RENTS.PRICE, "PRICE IS NOT GIVEN")

 returns in the case, when price of the copy is NULL,

"PRICE IS NOT GIVEN", otherwise, value RENTS.PRICE.

Generally:

evaluates from left to right and returns the first value that is

not NULL. If it does not exist, the result is NULL.

COALESCE(V1,V2,...,Vn)

Query languages 26

2.3 Value expressions

▪ function NULLIF

 NULLIF(V1, V2), is equivalent to expression

 CASE WHEN V1 = V2 THEN NULL ELSE V1 END

Q14.(SQL92)

SELECT DISTINCT MANAGER

FROM CINEMAS C, CUSTOMERS CU

WHERE C.MANAGER = CU.NAME AND

2000 > COALESCE((SELECT SUM(R.PRICE)

FROM RENTS R

WHERE R.PIN = CU.PIN),0);

Query languages 27

2.4 Predicate LIKE

Q16. Find salaries of employees, who are from Kolín.

The problem is we do not know whether the database

contains 'Kolin', or 'Kolín'.

SELECT E.SALARY

FROM EMPLOYEES E

WHERE E.ADDRESS LIKE '%Kol_n%';

_ the underscore represents a single character,

% the percent sign represents zero, one, or

multiple characters.

Query languages 28

2.5 Other predicates in SQL92

Q18. Find rental IDs of rents, that are rented indefinitely

(DATE_DB is missing).

possibilities: IS NOT NULL,

 comparisons with TRUE, FALSE and

 UNKNOWN.

SELECT RENTAL_ID

FROM RENTS

WHERE DATE_DB IS NULL;

Query languages 29

2.6 Set predicates

▪ Predicate IN

Q19. Find the addresses of the cinemas where they play

the movie Aquaman.

– column_name IN () returns FALSE

– column_name IN () returns UNKNOWN

column_name [NOT] IN subquery

or

column_name [NOT] IN (list_hodnot)

SELECT ADDRESS FROM CINEMAS

WHERE NAME IN (SELECT NAME

FROM MOVIE_SHOWINGS

WHERE TITLE = ‚Aquaman');

Query languages 30

2.6 Set predicates

Q20. Find movies with given directors.

Q21. Find names of customers booking a movie

directed by Spielberg.

SELECT TITLE FROM MOVIES

WHERE DIRECTOR IN (' Menzel ',' Chytilová ', ‘Kachyňa');

SELECT NAME FROM CUSTOMERS WHERE PIN IN

(SELECT PIN FROM BOOKING B

WHERE B. TITLE = (SELECT M.TITLE FROM MOVIES M

WHERE M.DIRECTOR = ‘Spielberg’));

Query languages 31

2.7. Predicates ANY, ALL, SOME

▪ >SOME, <SOME, <>SOME ( NOT IN),

=SOME ( IN)). ANY is synonym for SOME.

▪ > ALL expresses: "greater than all items from

the specified set" (+ another comparisons)

– column_name  ALL() returns TRUE,

– column_name  ALL() returns UNKNOWN,

– column_name  ANY() returns FALSE,

– column_name  ANY() returns UNKNOWN.

Query languages 32

2.7. Predicates ANY, ALL, SOME

Q22. Find employees having salary higher that all

employees from Praha.

SELECT E_ID, NAME

FROM EMPLOYEES

WHERE SALARY > ALL(SELECT Z.SALARY

FROM EMPLOYEES E

WHERE E.ADDRESS LIKE '%Praha%');

Query languages 33

2.8 Quantification in SQL

Ex. "For all movies holds, they have a director".

Logic: universal () and existential () quantifier are
related by transformation:

  x (p(x))    x ( p(x)) /* is equivalent to*/

Equivalent expression: „There is no movie such that it is
not true, that this movie has a director".

More simply: "Each movie has a director " is equivalent
to „There is no movie without director".

▪ EXISTS
simulates  (test of non-emptiness of a set)

[NOT] EXISTS subquery

Query languages 34

2.8 Quantification in SQL

Q23. Find names of customers having booked a movie.

Q23'. Find names of customers such that there is a

movie, they have booked.

Semantics:

– The expression is evaluated as TRUE, if the set

given by the subquery is non-empty. Otherwise, it

gets the value FALSE.

– The evaluation goes according to the Boolean

logic.

SELECT NAME

FROM CUSTOMERS C

WHERE EXISTS (SELECT * FROM BOOKING

WHERE PIN = C. PIN);

Query languages 35

2.9 Set operations

▪ UNION,

▪ INTERSECT,

▪ EXCEPT.

– + more complex expressions, e.g., (set-like) (X  Y)  Z,

where X, Y, Z are given by subqueries or as TABLE T

– eliminate duplicates

– can be simulated using LEFT OUTER JOIN and test IS

NULL

query_expression UNION [ALL] query_expression [ORDER

BY ordering_specification]

Q24. (SELECT NAME FROM CINEMAS)

EXCEPT

(SELECT NAME FROM MOVIE_SHOWINGS);

Query languages 36

2.9 Set operations

▪ CORRESPONDING

– It is possible to specify over which common columns

the set operation is performed

– without columns specification, only columns common

for both operands appear.

– adding BY (column_list) it is possible to chose only

some common columns.

 CUSTOMERS[JM, ADDRESS]  EMPLOYEES[JM, ADDRESS]

CORRESPONDING [BY (column_list)]

TABLE CUSTOMERS UNION CORRESPONDING

TABLE EMPLOYEES

Query languages 37

2.10 Join of tables

▪ natural join,

▪ cross join,

▪ join with condition,

▪ join on listed columns,

▪ inner join,

▪ outer join,

▪ union join

Query languages 38

2.10 Join of tables

▪ Natural join

▪ Cross join

▪ Join with condition

▪ Join on listed columns

SELECT *

FROM MOVIES NATURAL JOIN

MOVIE_SHOWINGS;

SELECT *

FROM R CROSS JOIN S;

SELECT *

FROM R JOIN S ON AB;

SELECT *

FROM U JOIN V USING (Z, Y);

Query languages 39

2.10 Join of tables

▪ inner join

▪ outer join (LEFT, RIGHT and FULL)

– again naturally or with ON.

 We obtain a table containing also the movies they do not

give anywhere.

▪ union join

 Each row of the left and right operand is completed from

the right and from the left, respectively, with NULL values

in the result .

 UNION JOIN is absent from SQL:2003!

SELECT *

FROM MOVIE_SHOWINGS NATURAL RIGHT OUTER JOIN

MOVIES;

SELECT *

FROM U UNION JOIN V;

Query languages 40

2.10 Join of tables

The FROM clause can contain derived tables specified by
SELECT ( CROSS JOIN)

Query expression is a collection of terms connected with
UNION, INTERSECT, EXCEPT. Each term is either a
query specification (SELECT) or constant row or a table
given by respective constructors.

Q12. (SQL)

SELECT AVG(T.minim_c)

FROM (SELECT MIN(PRICE)

FROM RENTS

GROUP BY PIN) AS T(minim_c);

Query languages 41

3. Updating in SQL

DELETE FROM MOVIES

WHERE TITLE = ‘Gun’;

UPDATE CUSTOMERS SET NAME = ‘Götz’

WHERE PIN = '4655292130';

What will be done, when

the movie Gun has copies,

or it is booked?

UPDATE CUSTOMERS SET NAME = ‘Müller’

WHERE NAME = ‘Muller’;

ALTER TABLE CUSTOMERS

Add NUMBER_OF_RENTS Number;

UPDATE CUSTOMERS C

SET NUMBER_OF_RENTS = (SELECT count(*) from

RENTS R WHERE R.PIN = C. PIN);

Query languages 42

4. Views

CREATE VIEW Praguers AS

SELECT RENTAL_ID, NAME, ADDRESS

FROM CUSTOMERS WHERE ADDRESS LIKE '%PRAHA%';

CREATE VIEW HOW_MANY_COPIES (PIN,

NUMBER_OF_RENTS) AS

SELECT PIN, COUNT(COPY_N) FROM RENTS

GROUP BY PIN;

CREATE VIEW view_name [(v_atr1_name[,v_atr2_name]...)]

AS query_specification

[WITH [{CASCADE | LOCAL} CHECK OPTION]

DROP VIEW Praguers;

for updatable

views

Query languages 43

4. Views

▪ view can not be indexed

Updating view leads to updating the basic table

underlining the view,

▪ a view given by a join of more tables is not

(usually) updatable,

▪ a view based on one table is not updatable, if it

– contains a column with a derived value,

– separates by a projection a column restricted by

NOT NULL constraint (mainly PRIMARY KEY)

Query languages 44

4. Views

Usage of views

▪ data confidentiality (it is possible to submit only

some columns and rows),

▪ hiding complexity (complex query hidden in the

view definition is designed only once),

▪ optimization (e.g., hiding complexity when

searching for common subexpressions).

Query languages 45

4. Views

Materialization of views

▪ Materialized views are not virtual, but real

tables.

▪ They can be automatically maintained

(incrementally or by recalculating the whole

table of the view).

▪ Support: Oracle, DB2

Query languages 46

5. Integrity constraints

▪ CREATE DOMAIN

CREATE DOMAIN

 THIS_YEAR IS DATE DEFAULT ‘2001-12-31’

 CHECK (VALUE >= ‘2010-01-01’ AND VALUE <= ‘2010-12-31’)

 NOT NULL;

CREATE TABLE RENTS

(COPY_N CHAR(3) UNIQUE NOT NULL,

RENTAL_ID CHARACTER(6) NOT NULL,

PRICE DECIMAL(5,2) CHECK (PRICE >= 100),

PIN CHARACTER(10) NOT NULL,

DATE_DB THIS_YEAR)

PRIMARY KEY (RENTAL_ID);

Query languages 47

5. Integrity constraints

▪ named IC, references to other columns, tables

IC: „No movie directed by Woody Allen is played at

cinemas" for the column TITLE in MOVIE_SHOWINGS.

▪ table ICs

CHECK (TITLE <> ANY (SELECT TITLE FROM MOVIES

WHERE DIRECTOR = ‘Woody Allen’))

PRICE DECIMAL(5,2)

CONSTRAINT GREATER100 CHECK (PRICE >= 100)

CONSTRAINT Allen_no ...

Query languages 48

5. Integrity constraints

Problem: Table ICs are satisfied in  as well

IC: „They are always playing a movie“.

Solution:

assertions - are defined out of tables

▪ CREATE ASSERTION

named IC formulated using CHECK. IC test is not

automatically TRUE if the associated table is empty!

CONSTRAINT MOVIE_SHOWINGS_ALWAYS

CHECK (SELECT COUNT(*) FROM MOVIE_SHOWINGS) > 0

Query languages 49

5.1 Referential integrity

parent table (PT)

master
dependent table (DT)

detail

child

FK foreign key, its value can be NULL,

 its domain is given by the actual domain of the unique

attribute UA (e.g., primary key or UNIQUE NOT NULL)

Remarks:

– null values are associated with cardinalities 1:M in E-R model.

– an attempt to break the referential integrity, only an error message

was raised by SQL89.

PT UA

DT FK

Query languages 50

5.1 Referential integrity

▪ Referential integrity can be defined

– in definition of a column IC

– in definition of a table IC

▪ Operational behaviour

DELETE (row from parent table)

– cascade delete of rows (ON DELETE CASCADE)

– replacing foreign key by null value (SET NULL)

– replacing foreign key by implicit value (SET DEFAULT)

– Non-deleting row with a notice (NO ACTION)

Syntax: ON DELETE action, or ON UPDATE action

FOREIGN KEY (COPY_N) REFERENCES Copies,

FOREIGN KEY (PIN) REFERENCES CUSTOMERS)

Query languages 51

5.1 Example

. . .

DROP TABLE CINEMAS CASCADE CONSTRAINTS;

CREATE TABLE CINEMAS . . .
ON DELETE CASCADE

CREATE TABLE MOVIE_SHOWINGS

 (C_NAME Char_Varying(20) NOT NULL,

 TITLE Char_Varying(20) NOT NULL,

 DATE Date NOT NULL,

 PRIMARY KEY (C_NAME, TITLE),

 FOREIGN KEY (C_NAME) REFERENCES CINEMAS,

 FOREIGN KEY (TITLE) REFERENCES MOVIES);

Query languages 52

5.1 Table definition - summary

CREATE TABLE table_name (

 {column_name data_type [NOT NULL] [UNIQUE]

 [DEFAULT value] [CHECK (selection_condition)

 [, column_name …]}

 [PRIMARY KEY (list_of_column_names),]

 { [FOREIGN KEY (list_of_column_names_creating_foreign_key)

 REFERENCES parent_table_name [(list_of_column_names)] ,

 [MATCH { PARTIAL | FULL }]

 [ON UPDATE referential_action]

 [ON DELETE referential_action]]

 [, …] }

 { [CHECK (selection_condition) [, …] }

)

Query languages 53

5.2 Other possibilities of IC

WITH CHECK OPTION provides another possibility for

expressing an IC over a basic table of a view.

View expresses referential integrity and can be an

alternative to its declarative expressing for SQL

machines, where it is not supported.

CREATE VIEW COPIES_V

AS

SELECT * FROM Copies C

WHERE C.TITLE IN (SELECT TITLE FROM MOVIES)

WITH CHECK OPTION

Query languages 54

6. System catalogue

SysIndexes(IName, ICreator, TName, Creator, .)

SysViews(ViewName, VCreator, …)

▪ queries over the catalogue using SQL

SELECT * FROM Tab

Query languages 55

7. Data protection

Examples:

▪ ALTER

▪ DELETE

▪ EXECUTE

▪ INDEX

▪ INSERT

▪ REFERENCES

▪ SELECT

▪ UPDATE

It is possible to assign a user

/user role the right to perform

the given actions over a

given object

REVOKE ALL PRIVILEGES ON

MOVIES FROM PUBLIC;

– remove access privileges

– PUBLIC refers to the implicitly

defined group of roles

GRANT ALL PRIVILEGES ON

MOVIES TO PUBLIC;

Query languages 56

8. Standardization of SQL

SEQUEL: development by IBM in 70ties

Standardizing organizations:

ANSI and ISO (International Organization of Standardization, but also

from Greek „the same“ (isos - ίδιος))

SQL standards:

▪ SQL86

▪ SQL89 (minor revision of SQL86)

▪ SQL92
– entry (minor revision of SQL89)

– intermediate (appr. a half of all functionality)

– full

Query languages 57

8. Standardization of SQL

▪ SQL99 (object extension, recursion, triggers,
…)
– all features are enumerated and either flagged

mandatory or optional

– conforming systems must comply with all mandatory
features, which are called Core SQL”

▪ SQL:2003
– something from XML

– five parts of SQL/MM (Multimedia and Application
Packages) have been completed

Query languages 58

8. Standardization of SQL

SQL:2006

– full integration of XML into SQL including XQuery

SQL/MM (Multimedia and Application Packages)

– Part 1: Framework,

– Part 2: Full Text,

– Part 3: Spatial objects,

– Part 5: Still Images

– Part 6: Data mining

– Part 7: History (draft from 2011), now ISO/IEC TS 13249-7

– Part 8: Metadata registry (draft from 2011), now ISO/IEC

11179

Query languages 59

8. Standardization of SQL

▪ SQL:2008
– part 1: Framework (SQL/Framework)

– part 2: Foundation (SQL/Foundation) 1100 p.

– part 3: Call-Level Interface (SQL/CLI*)

– part 4: Persistent Stored Modules (SQL/PSM**)

– part 9: Management of External Data (SQL/MED)

– part 10: Object Language Bindings (SQL/OLB)

– part 11: Information and Definition Schemas

(SQL/Schemata)

– part 13: SQL Routines and Types Using the Java TM PL

(SQL/JRT)

– part 14: XML-Related Specifications (SQL/XML)
* alternative to calling SQL from application programs (implementation: ODBC)

** procedural language for transaction management (alternatives: IBM: SQL PL,
Microsoft/Sybase: T- SQL, MySQL: MySQL, Oracle: PL/SQL, PostgreSQL: PL/pgSQL

Query languages 60

8. Standardization of SQL

– Parts 5, 6, 8 do not exist

Temporally suspended:

– part 7 – SQL/Temporal (partially implemented in ORACLE

11g, IBM DB2 for z/OS, Teradata 13.10),

Canceled:

– part 12 – SQL/Replication

▪ SQL:2011

– a statement for disabling validation of ICs

– contains a support of temporal databases – it distinguishes

from the approach of the canceled part 7

Query languages 61

8. Standardization of SQL

▪ SQL:2016 (has more than 4300 pages)

– recognition of rows patterns – a pattern is given by a regular

expression (appropriate for searching patterns in time series)

– support of JSON type (not natively – see XML, but it uses

character strings)

▪ SQL:2019

– multimedial arrays (type MDarray + operators)

▪ SQL:2022

– new integration object memory

▪ SQL:2023

– graph queries, more JSON,

– polymorphic functions

Query languages 62

9. Conclusion

▪ SQL is primarily the communication language

▪ aplicability vs. monstrous size

	Snímek 1: Query languages (NDBI049) SQL language
	Snímek 2: Content
	Snímek 3: Content
	Snímek 4: Start - overview of SQL92
	Snímek 5: Example: relational schema
	Snímek 6: 1. Data definition in SQL
	Snímek 7: 1. Data definition in SQL
	Snímek 8: 1. Data definition in SQL
	Snímek 9: 1. Data definition in SQL
	Snímek 10: 1. Data definition in SQL
	Snímek 11: 1.3 Indexes in SQL - Nonclustered vs. clustered
	Snímek 12: 2. Data manipulation in SQL
	Snímek 13: 2. Data manipulation in SQL
	Snímek 14: 2. Data manipulation in SQL
	Snímek 15: 2. Data manipulation in SQL
	Snímek 16: 2.1 Arithmetic
	Snímek 17: 2.2 Aggregate functions
	Snímek 18: 2.2 Aggregate functions
	Snímek 19: 2.2 Aggregate functions
	Snímek 20: 2.2 Aggregate functions
	Snímek 21: 2.2 Aggregate functions
	Snímek 22: 2.2 Aggregate functions
	Snímek 23: 2.2 Aggregate functions
	Snímek 24: 2.3 Value expressions
	Snímek 25: 2.3 Value expressions
	Snímek 26: 2.3 Value expressions
	Snímek 27: 2.4 Predicate LIKE
	Snímek 28: 2.5 Other predicates in SQL92
	Snímek 29: 2.6 Set predicates
	Snímek 30: 2.6 Set predicates
	Snímek 31: 2.7. Predicates ANY, ALL, SOME
	Snímek 32: 2.7. Predicates ANY, ALL, SOME
	Snímek 33: 2.8 Quantification in SQL
	Snímek 34: 2.8 Quantification in SQL
	Snímek 35: 2.9 Set operations
	Snímek 36: 2.9 Set operations
	Snímek 37: 2.10 Join of tables
	Snímek 38: 2.10 Join of tables
	Snímek 39: 2.10 Join of tables
	Snímek 40: 2.10 Join of tables
	Snímek 41: 3. Updating in SQL
	Snímek 42: 4. Views
	Snímek 43: 4. Views
	Snímek 44: 4. Views
	Snímek 45: 4. Views
	Snímek 46: 5. Integrity constraints
	Snímek 47: 5. Integrity constraints
	Snímek 48: 5. Integrity constraints
	Snímek 49: 5.1 Referential integrity
	Snímek 50: 5.1 Referential integrity
	Snímek 51: 5.1 Example
	Snímek 52: 5.1 Table definition - summary
	Snímek 53: 5.2 Other possibilities of IC
	Snímek 54: 6. System catalogue
	Snímek 55: 7. Data protection
	Snímek 56: 8. Standardization of SQL
	Snímek 57: 8. Standardization of SQL
	Snímek 58: 8. Standardization of SQL
	Snímek 59: 8. Standardization of SQL
	Snímek 60: 8. Standardization of SQL
	Snímek 61: 8. Standardization of SQL
	Snímek 62: 9. Conclusion

