http://www.ksi.mff.cuni.cz/~svoboda/courses/231-NPRG041/

Practical Class

NPRGO041: Programming in C++

2023/24 Winter

Martin Svoboda
martin.svoboda@ matfyz.cuni.cz

Charles University, Faculty of Mathematics and Physics

http://www.ksi.mff.cuni.cz/~svoboda/courses/231-NPRG041/
mailto:martin.svoboda@matfyz.cuni.cz

Class 1: Introduction

Function main
Standard output
Decomposition
Array

Required Tools

Visual Studio Community / Enterprise 2022
e https://visualstudio.microsoft.com/vs/community/
¢ https://portal.azure.com/

Gitlab

¢ https://gitlab.mff.cuni.cz/
= _../teaching/nprg041/2023-24/svoboda-1540/

TortoiseGit

e https://tortoisegit.org/

https://visualstudio.microsoft.com/vs/community/
https://portal.azure.com/
https://gitlab.mff.cuni.cz/
https://gitlab.mff.cuni.cz/teaching/nprg041/2023-24/svoboda-1540/
https://tortoisegit.org/

Required Tools

Mattermost

e https://ulita.ms.mff.cuni.cz/mattermost/
= .../ar2324zs/channels/nprg041-cpp-english

ReCodEx
e https://recodex.mff.cuni.cz/

https://ulita.ms.mff.cuni.cz/mattermost/
https://ulita.ms.mff.cuni.cz/mattermost/ar2324zs/channels/nprg041-cpp-english
https://recodex.mff.cuni.cz/

E1l: Hello World

Create a traditional Hello World application

e |.e., print the aforementioned greeting to the standard output
e Creating a new project in Visual Studio

= Language: C++

= Project type: Empty Project
* Useful hints

" #include <iostream>

= int main(int argc, char** argv) { ... }
* int main() { ... }

= std::cout << "..." << std::endl;

E2: Finding Subsets

Find and print all subsets of a given set on the input
* Simulate the input using a local variable for now
= const char items[] = { 'A', 'B', 'C', 'D' };
" const size_t count =
sizeof (items) / sizeof (items[0]);
* Decompose the entire problem into appropriate functions

* Print each found subset to the standard output
= Put exactly one subset on each line
— Preserve the order of individual elements
— Presence of an element takes precedence over its absence
= Qutput format: { A, C, D }
e Dynamic allocation of an array with size unknown in advance
" bool* signature = new bool[count];
* delete[] signature;

Class 2: Options |

Header files

Program arguments
Strings std::string
Container std::vector
Type aliases

Passing parameters
Iteration

Named constants

E1l: Printing Arguments

Print all the provided input arguments to the standard output

* Use the extended main function interface

* int main(int argc, char** argv) { ... }
 First, transform the arguments to strings std: :stringand

insert them into a container std: :vector

= #include <string>

" #include <vector>

® using args_t = std::vector<std::string>;

* args_t arguments(argv + 1, argv + argc);
* Wrap the executive code into a separate function

= Pass the container with arguments using a reference

= Use the following approach to iterate over its items

— for (auto&& item : arguments) { ... }

E1l: Printing Arguments

Cont’d...

» Separate definitions from declarations in header files

=" #ifndef, #define, #endif
= #include "..."

e Setting input arguments in VS
= (Project) Properties — Debugging — Command Arguments

E2: Options Detection

Detect a predefined set of expected short and long options
e |n particular, expect the following options
= -t,-x, -y
= —-grayscale, -——transparent
* Introduce names of these options via global named constants

= constexpr char OPTION_TRANSPARENT_SHORT = 't';
= constexpr char OPTION_TRANSPARENT LONG[] =
"transparent";

* Allow grouping of short options, too
= E.g.: -xy
e Print the recognized options to the standard output

= Flag option <x> detected
= Unknown option <something> found!

E2: Options Detection

Cont’d...

* Use iterators to iterate over the arguments this time
= |t allows us to control the course of iteration manually

= for (
auto it = arguments.begin();
it != arguments.end();
++it
>y { ... %

— lterator data type is args_t::const_iterator
— Andso std::vector<std::string>::const_iterator

e Iterator dereferencing

= const std::string& item = *it;

E2: Options Detection

Cont’d...
* Useful methods over strings
= std::string substr(size_t pos, size_t len)
— Second parameter can be omitted

= size_t size()

¢ Determine the exit code based on the detection success
= 0in the case of success, 1 otherwise

E3: Value Options

Extend our program with detection of value options

e |n particular, expect the following new value options
= -r,-g, b, -a
= —-red, -—green, ——blue, ——alpha

* Support the following means of passing values
= -xy -r 255, -xyr255, -xyr 255
= -xy —--red 255

* Detect missing values as well as extra standalone values
= -r,-x something

e Print everything to the standard output again

= Value option <r> detected with value <255>
= Value option <r> detected but its value is missing!
= Standalone value detected <something>

Class 3: Options lI

Parsing of numbers

Functions std::stoi and std::stof
Handling of exceptions
Structure struct

E1l: Parsing of Numbers

Extend our program with parsing of numeric values
¢ Recognition of integer / floating point numbers
= int stoi(const std::string& s, size_t* p)
— Library <string>
— std::invalid_argument, std: :out_of_range

* float stof(const std::string& s, size_t* p)
* Expect the following behavior

® |ntegers: -r, --red, -g, -—green, -b, ——blue

= Floats: —a, -—alpha

= Strings: —o, ——output
e Print suitable error messages to the standard output

= Value <text> is not a valid integer number!
= Value <text> is not a valid floating point number!

E2: Storing Options

Store detected options and their values in a suitable structure
» Define this structure in our header file

" struct options_t {
bool flag _x = false;
bool flag r false; int value_r;

}
» Store standalone values within a vector of strings
= values.push_back(..)
e Print the stored information at the end of our program
= Flag option <x> is <disabled>
= Value option <r|red> is <enabled> and associated with value
<255>
= Standalone value <something>

Class 4: Counter

Streams std::istream, std::ostream

File streams std::ifstream, std::ofstream
Function std::getline

Classes with static methods

Throwing exceptions

Pointers

E1l: Printing File

Print the contents of an input text file to the standard output
e Use the following constructs

= Libraries <iostream>, <fstream>, <string>
" std::ifstream

— void open(const char* filename);
— bool good();
— void close();
* std::istream& std::getline(
std::istream& is,
std::string& line
)3

* Print the following message after an unsuccessful file opening
= Unable to open input file

E2: Counting Letters

Count and print the overall number of characters
* Place the code into an appropriate class and its static methods
* void process(const std::string& filename,
size t*x letters);
= void process(std::istream& is,
size_t* letters);
* void print(const std::string& filename,
const size_t* letters);
* void print(std::ostream& os,
const size_t* letters);

e Variable 1etters will be initialized by the caller
= That allows to accumulate the value across multiple inputs
— These can be input files, but also the standard input

E2: Counting Letters

Cont’d...

* Throw a text exception after an unsuccessful file opening
= throw "...";
— Unable to open input file
— Unable to open output file

= try { ... } catch (const charx e¢) { ... }

E3: Extended Counter

Extend the previous code to calculate selected statistics

* Let us have the following assumptions about the text input

= |t contains an arbitrary number of sentences

= Sentences are ended by . ! ? and separated by spaces

= Sentence contains words or numbers separated by spaces

= Word contains only letters, number only digits O to 9 or dot .

* Use a class to detect and store these records across all inputs

= QOverall number of lines, sentences, words, and numbers
= Qverall number of letters, digits, spaces, symbols
= Sum of all integer and separately decimal numbers

* Use the following functions
" int isdigit(int c); int isalpha(int c);
* Enable printing of the calculated statistics again

NPRGO41: Programming in C++ | Practical Class 4: Counter | 23. 10. 2023

21

Class 5: Database |

Streams std::stringstream

Function std::getline (with separator)
Class with data members

Constructors and initializers

Inline functions

Function std::move and rvalue references
Emplace mechanism

Container std::set

E1l: Movie Representation

Propose a class for a movie database record representation
* Each movie has the following private data items
= Name (std: :string)
= Filming year (unsigned short)
= Genre (std: :string)
= Rating (unsigned short)
= Set of actor names (std: :set<std: :string>)
¢ |Implement the following functions first

= Parameterized constructor
= Functions for accessing individual data items

— In the form of inline functions

E1l: Movie Representation

Cont’d...
e Add a function for printing the movie as a JSON object

* void print_json(std::ostream& stream =
std::cout) const;

— { name: "Bobule", year: 2008, genre: '"comedy",
rating: 65, actors: ["Krystof Hadek", "Tereza
Voriskova"] }

= Actors field is not listed at all when no actors are provided

e Experimentally test your code directly in the main function
= We first create a container for movie instances
— std::vector<Movie> db;
= We then manually add a couple of sample movies
= And print the container content to the standard output

E2: Movie Construction

Allow for more efficient creation of movie objects
* Implement a constructor accepting rvalue references
= |n particular, for name, genre, and set of actors data items

* Try the following means of new movies creation and insertion
= Standard push_back
= Improved push_back combined with function std: :move
= Mechanism emplace_back

E3: Importing Movies

Extend our database by importing movies from CSV files
* Assume class Database and its static member functions
* void import(const std::string& filename,
std: :vector<Movie>& db);
* void import(std::istream& stream,
std: :vector<Movie>& db);
* Use the following constructs to parse the CSV records
" std::istringstrean (library <sstream>)
" istream& std::getline(istream& stream,
string& line, char delimiter);
e Specifically, the following delimiters are assumed
= Semicolon ; for records and comma , for actors

E3: Importing Movies

Cont’d...
e Extreme situations will be treated using structured exceptions
" struct Exception { int code; std::string text;
e Code 1
= Unable to open input file <filename>
* Code 2 (fields name, year, genre, rating, and actors)

= Missing field <name> on line <line>

= Empty string in field <name> on line <line>

= |nvalid integer in field <name> on line <line>

= QOverflow integer in field <name> on line <line>

= Malformed integer in field <name> on line <line>

= |nteger out of range <min, max> in field <name> on line <line>
— Intervals [1900, 2100] for years and [0, 100] for ratings

E4: Retrieving Movies

Prepare the following two simple database queries
* Q1: all movies

= void db_query_1(const std::vector<Movie>& db,
std::ostream& stream = std::cout);
= Print the whole JSON objects of the found movies

* Q2: names of comedies filmed before 2010, in which Ivan
Trojan or Tereza Voriskova played
= void db_query_2(const std::vector<Movie>& db,
std::ostream& stream = std::cout);
= Print names of the found movies only

Class 6: Expressions |

Classes with inheritance

Constructors and destructors

Virtual and pure virtual functions
Enumeration classes

Dynamic allocation (non-trivial life cycle)

E1l: Arithmetic Expressions

Assume simple integer arithmetic expressions

* These expressions may only contain...
= Basic binary operations
— Addition +, subtraction -, multiplication * and division /
= Natural numbers including zero as simple operands

Propose classes for inner tree nodes of such expressions

Abstract class Node as a common ancestor

Final derived class NumberNode for leaf nodes with numbers

Abstract derived class OperationNode for inner nodes

Final derived classes for individual operations

* AdditionNode, SubtractionNode, MultiplicationNode,
DivisionNode

NPRGO41: Programming in C++ | Practical Class 6: Expressions | | 6. 11. 2023 30

E1l: Arithmetic Expressions

Cont’d...
* Basic use of the inheritance concept
® class NumberNode final : public Node { ... }
e Distribute data members appropriately into individual classes

= Leaf nodes: private number
= Inner nodes: protected pointers to left and right subtrees

* Define the following constructors

= NumberNode (int number);
= OperationNode(Nodex left, Nodex right);

— using OperationNode: :OperationNode;
e Use enum class to distinguish between these two node types
* enum class Type { ... }

E1l: Arithmetic Expressions

Cont’d...

* Use virtual member functions appropriately
* virtual Type get_type() const;
* virtual Type get_type() const = 0;
= Type get_type() const override;
e In particular, implement the following member functions
= Type get_type() const;
— Avoid usage of data members to store the types of nodes
= char get_operator() const;

— Only as a protected function for operation nodes
— Define operator symbols via global constants
— Do without data members for these operators, too

E1l: Arithmetic Expressions

Cont’d...
¢ Dynamic allocation mechanism is assumed to be used

® Node* node_ptr = new NumberNode(2);
= delete node_ptr;

* Do not forget virtual destructor
= ~Node();
* Finally, add Expression class to encapsulate the expression

= Constructor Expression(Node* root);
= Destructor

E1l: Arithmetic Expressions

Cont’d...

» Test all functionality experimentally
= Implicit input: (2+3)*4
* Expression el(
new MultiplicationNode(
new AdditionNode(
new NumberNode(2), new NumberNode(3)
),
new NumberNode (4)
)
);

E2: Expression Evaluation

Extend our application for arithmetic expressions
* Add a function for calculating the expression result

= int evaluate() const;

E3: Expression Printing

Extend our application for arithmetic expressions
e Add a function for printing the expression in postfix notation
= |.e., the so-called reverse Polish notation
— You just need to perform a postorder depth-first tree traversal
= void print_postfix(
std::ostream& stream = std::cout
) const;
= Always separate operators and numbers with exactly one space
° Example
= Implicit input: 1%2+3% (4+5)-6
= Qutput: 1 2 * 3 4 5 + % + 6 -

E4: Expression Printing

Extend our application for arithmetic expressions

* Add a function for printing the expression in infix notation
= yvoid print_infix(
std::ostream& stream = std::cout
) const;

= Do not print any spaces around operators or parentheses
= Only print absolutely necessary parentheses

— Operations * and / have higher precedence than + and -
* Example
= Implicit input: (7+(9-(3%1))/3)-(5-1)
= Qutput: 7+(9-3%1)/3-(5-1)

Class 7: Expressions Il

Polymorphic container
Container std::stack
Shunting-yard algorithm
Hierarchy of exceptions

E1l: Custom Exceptions

Propose your own hierarchy of classes for exceptions

* Common ancestor Exception
= Constructors

— inline Exception(const std::string& message) ;
— inline Exception(std::string&& message);

* Method inline const std::string& what() const;
* Derived classes

= EvaluationException

= ParsingException

= MemoryException
¢ Deal with division by zero when evaluating expressions

= Exception EvaluationException
= Text message Division by zero

E2: Expression Parsing

Create a simple parser for infix arithmetic expressions

e Only syntactically well-formed expressions are considered
= We continue to work only with natural numbers and zero
— lLe., numbers cannot be preceded by a unary minus -
= They may also contain auxiliary round parentheses ()
e Convert the input expression to postfix notation
= |.e., print the expression in postfix notation to the output

— Input: 10%2+3* ((1+14)-18)-10
— Output: 10 2 * 3 1 14 + 18 - * + 10 -

= Separate operators and numbers with exactly one space

* Use the shunting-yard algorithm for the transformation

NPRGO41: Programming in C++ | Practical Class 7: Expressions Il | 13. 11. 2023

40

E2: Expression Parsing

Cont’d...

* We assume the following properties of operations

= They are all left-associative
= QOperations * and / have higher precedence than + and -

e Use the standard stack container

= std::stack<char> (library <stack>)
* Methods push(..), top(), pop(), size (), empty OO

E2: Expression Parsing

foreach token tin the input infix expression do

1

2 if £is a number then print ¢ to the standard output

3 else if tis an opening parenthesis (then put (onto the stack

4 else if tis a closing parenthesis) then

5 while there is an operator o on top of the stack do

6 L remove o from the stack and print it to standard output
7 remove (from the stack

8 else tis an operator n

9 while there is an operator o with precedence higher than n,
10 or the same, but only if n is left-associative do

11 L remove o from the stack and print it to standard output
12 add n onto the stack

13 while the stack is non-empty do
14 L remove o from the stack and print it to standard output

NPRGO41: Programming in C++ | Practical Class 7: Expressions Il | 13. 11. 2023 42

E3: Syntactic Tree

Extend our parser for arithmetic expressions
* Construct a syntactic tree representing the input expression

» Use a modified shunting-yard algorithm
= We will now also need a second stack for operands
— std::stack<Nodex*>
= Creation of leaf nodes for numbers...
— Create a new node and put it onto this stack
= Creation of internal nodes for operations...

— Remove the right and then left operand from this stack
— Create a new node and insert it onto this stack

= We will find the root node on this stack at the very end
— It will be its only element

NPRGO41: Programming in C++ | Practical Class 7: Expressions Il | 13. 11. 2023

43

E3: Syntactic Tree

1 foreach token tin the input infix expression do

2 if £is a number then create a new leaf node for t...

3 else if tis an opening parenthesis (then put (onto the operator st.
4 else if tis a closing parenthesis) then
5
6

while there is an operator o on top of the stack of operators do
|_ remove o from the stack and create a new inner node for o...
7 remove (from the stack of operators

8 else tis an operator n

9 while there is an operator o with precedence higher than n,

10 or the same, but only if n is left-associative do

11 |_ remove o from the stack and create a new inner node for o...

12 add n onto the stack of operators

13 while the stack of operators is non-empty do
14 |_ remove o from the stack and create a new inner node for o...

E3: Syntactic Tree

Non-standard situations will be handled using exceptions
e ParsingException
= Unknown token (e.g., a, 3a, ...)
— Unknown token
= Unsuccessful number recognition including overflows
— Malformed number token
Lack of operands when creating an operation node
— Missing operands
= Unpaired opening / closing round parentheses

— Unmatched opening parenthesis
— Unmatched closing parenthesis

Incorrect number of operand nodes at the algorithm end

— Unused operands
— Empty expression

E3: Syntactic Tree

Cont’d...

¢ MemoryException
= QOut of memory for dynamically allocated operands
— Unavailable memory
— Response to the exception std: :bad_alloc
e Pay attention to ensuring atomic behavior
= |.e., we must empty the operand stack in the event of errors

— This means we need to deallocate all the prepared nodes
— We would otherwise uncontrollably lose our memory

= Exception rethrowing

-try { ... }
catch (const Exception& e) { ...; throw; }

* Finally, add a new constructor to the Expression class

= Expression(const std::string& input);

Class 8: Database Il

Container std::set (custom class members)
Custom comparison operators

Custom stream insertion / extraction operators
Friend mechanism

Smart pointers std::shared_ptr

Dynamic casting

E1l: Structured Actors

Modify and extend our movie database application
» Actor will no longer be just an atomic string with a name,
but a structured record with the following items
= First name (std: :string)
= Last name (std: :string)
= Year of birth (unsigned short)
* Propose a class to represent such an actor
= Prepare default and parameterized constructors
— Actor() = default;
= Add access functions for individual items, too

* Implement a custom comparison operator for actors

= Global function bool operator<(const Actor& ,
const Actor&)

— Order is defined by a triple of surname, first name, and year

NPRGO41: Programming in C++ | Practical Class 8: Database Il | 20. 11. 2023 48

E1l: Structured Actors

Cont’d...
* Allow for printing of actors via a custom operator <<

" std::ostream& operator<<(std::ostream& stream,

const Actor& actor);
= We will again utilize a JSON object

— { name: "Ivan", surname: "Trojan", year: 1964 }
* Importing actors will also be solved with our own operator >>

" std::istream& operator>>(std::istream& stream,

Actor& actor);
= Individual data items are separated by spaces

— Ivan Trojan 1964
= Entirely empty actors will be skipped

E1l: Structured Actors

Cont’d...
e Actor import errors will again be handled via exceptions
= We will use conversion of the stream to a logical value
= Final text messages will be constructed in two stages
e Code 2 (attributes name, surname, and year)
= Missing attribute <name> in actor <actor> on line <line>
= Missing, invalid or overflow value in attribute <year> in actor

<actor>on line <line>

= Integer out of range <min, max> in attribute <year>in actor
<actor>on line <line>

— In particular, interval [1850, 2100] is assumed for the years

e Refactor the remaining parts of the current code as well
= |.e., at least the database queries

E2: Titles Hierarchy

Extend our application to support different types of titles
e First, refactor the current code
= Rename class Movie to Title
= Database container will now contain smart pointers
— std::shared_ptr<..> (library <memory>)
— std::vector<std::shared_ptr<Title>> db;
— Function std: :make_shared<Title>(...);
* Next, propose a new hierarchy of titles
= Class Title will become abstract
= Derived class Movie with an additional item
— Length in minutes (unsigned short) with values [0, 300]
= Derived class Series with additional items

— Number of seasons (unsigned short) with values [0, 100]
— Number of episodes (unsigned short) with values [0, 10000]

E2: Titles Hierarchy

Cont’d...

e Add also the following functions

= Constructors and functions for accessing new items

= Enumeration to distinguish types of titles
= Function for returning such a type

— Type type() comnst;

¢ Modify the function for printing titles
= Add a field describing the title type to the beginning

— Movies: { type: "MOVIE", ... }
— Series: { type: "SERIES", ... }

= Add new specific items to the end, on the contrary

— Movies: { ..., length: 112 }
— Series: { ..., seasons: 8, episodes: 73 }

E2: Titles Hierarchy

Cont’d...

* Modify the function for importing titles
= Expect a string distinguishing the title type at the beginning

— Movies: MOVIE; . ..
— Series: SERIES; . ..

= Expect newly added specific items at the end, on the contrary

— Movies: ...;112
— Series: ...;8;73

* We continue to use exceptions to treat extreme situations
= Code 2 (also for fields type, length, seasons, and episodes)
— Invalid type selector in field <name> on line <line>
» Refactor the remaining parts of the current code as well
= |.e., at least the database queries

E3: Type Conversion

Prepare the following two simple database queries

* Q3: series with at least seasons number of seasons or at least
episodes number of episodes

* void db_query_3(
const std::vector<std::shared_ptr<Title>>& db,
unsigned short seasons,
unsigned short episodes,
std::ostream& stream = std::cout

);

= Dynamic retyping of smart pointers
— (Series*)&*title_ptr;
— dynamic_cast<Series*>(&*title_ptr);
— std::dynamic_pointer_cast<Series>(title_ptr);

= Print whole JSON objects of the found series

E3: Type Conversion

Cont’d...
* Q4: names of titles with type type filmed in years [begin, end)

= void db_query_4(
const std::vector<std::shared_ptr<Title>>& db,
const std::type_info& type,
unsigned short begin, unsigned short end,
std::ostream& stream = std::cout

);
= Interpret the interval of years as open from the right
= Title type is determined using the class type

— l.e., not using our enumeration
— std::type_info (library <typeinfo>)
— typeid(..);

= Print names of the found titles only

Class 9: Database lli

Containers std::map and std::multimap

Structure std::pair and function std::make_pair

Container std::unordered_multimap

Structures std::less, std::hash, and std::equal_to

Functions std::copy, std::copy_if, std::remove_if, and std::erase
Functions std::sort and std::for_each

Functors

Lambda expressions

El: Title Names

Create an index for searching titles by their names
e Use an ordered map container
= std::map<std::string, std::shared_ptr<Title>>
= Library <map>
* Create this index using the following function
= void db_index_titles(
const std::vector<std::shared_ptr<Title>>& db,
std: :map<std::string,
std::shared_ptr<Title>>& index

);
* Inserting entries into the index
* std::pair<.., ..> item; or std::make_pair(.., ..);

= Methods index.insert(..); or index.emplace(..) ; resp.

El: Title Names

Implement the following database query
* Q5: title with name name
= void db_query_5(
const std::map<std::string,
std: :shared_ptr<Title>>& index,
const std::string& name,
std::ostream& stream = std::cout
);
= Finding the intended title
— Function index.find (name) ;
= Internal pair std: :pair (items first and second)
= Print the whole JSON object of the found title

— "name" > { ... }
— Or"name" -> Not found! otherwise

E2: Filming Years

Create an index for searching titles by years of filming

e Use an ordered multimap container
® std::multimap<
unsigned short,
std::shared_ptr<Title>
>
= Default functor for element ordering is assumed
— std::less<unsigned short>
e Create this index using the following function
® void db_index_years(
const std::vector<std::shared_ptr<Title>>& db,
std: :multimap<unsigned short,
std::shared_ptr<Title>>& index
);

E2: Filming Years

Implement the following database queries
* Q6: titles filmed in year year
= void db_query_6(
const std::multimap<unsigned short,
std: :shared_ptr<Title>>& index,
unsigned short year,
std::ostream& stream = std::cout
)3
= Finding the intended titles

— Function index.equal_range (year);
— Returns a pair (std: : pair) of iterators [from, to)

= Print names of the found titles only

— year -> "name' for each title
— Oryear -> Not found! otherwise

E2: Filming Years

Cont’d...
* Q7: titles filmed between years [begin, end)
* void db_query_7(
const std::multimap<unsigned short,
std: :shared_ptr<Title>>& index,
unsigned short begin, unsigned short end,
std::ostream& stream = std::cout
);
= Finding the intended titles

— lterator from: index.lower_bound(begin);
— lterator to: index.lower_bound(end) ;

= Print names of the found titles only

— year -> "name' for each title
— Or [begin, end) -> Not found! otherwise

E3: Actors Cast

Create an index for searching titles by their actors
e Use an unordered multimap container

® std::unordered_multimap<
Actor,
std::shared_ptr<Title>
>
= Library <unordered_map>

¢ Create this index using the following function

= void db_index_actors(
const std::vector<std::shared_ptr<Title>>& db,
std::unordered_multimap<Actor,
std: :shared_ptr<Title>>& index
)3

E3: Actors Cast

Cont’d...

* Implement a hash functor specialization
= template<>
struct std::hash<Actor> { ... }

= Function size_t operator() (const Actor& actor)
const noexcept;

= Use actor last name and std: :hash<std::string>{}(..);
* And also a comparison operator for actors

= Global function bool operator==(const Actor& actorl,
const Actor& actor2);

E3: Actors Cast

Implement the following database query
* Q8: titles where actor actor played

" std::vector<Titlex*> db_query_8(

const std::unordered_multimap<Actor,
std: :shared_ptr<Title>>& index,
const Actor& actor
);

= Finding the intended titles
— for (const auto& [key, value] : index) { ... };

= Put the found titles into the output container

— In the form of C-style pointers, in particular

E4: Title Sorting

Implement the following database query
* Q9: titles where actor actor played
" std::vector<std::shared_ptr<Title>> db_query_9(
const std::vector<std::shared_ptr<Title>>& db,
const Actor& actor
);
* Use of selected standard algorithms is expected
= Library <algorithm>
e Put the found titles into the output container
= First, copy all the titles to the output container

— Method resize(count) ;
— Function std: :copy(begin, end, target);

E4: Title Sorting

Cont’d...
* Next, remove all non-compliant title records
= Function std: :remove_if (begin, end, predicate);
= Method erase(begin, end);
* Implement the filtering predicate using a functor

= |ts parameter will be a specific actor actor
= Add the round parentheses operator then
— bool operator() (
const std::shared_ptr<Title>& title_ptr

)

— Return true if a given title is to be removed

E4: Title Sorting

Cont’d...

¢ Finally, sort the records of titles
= Function std: :sort(begin, end, comparator);

* Implement the sorting comparator using a functor, too
= Add the round parentheses operator within it again
— bool operator() (
const std::shared_ptr<Title>& title_ptr_1,
const std::shared_ptr<Title>& title_ptr_ 2
);
— Return true if the first object precedes the second
— lLe., simulate the behavior of a common < operator
= Specifically, we want to sort the titles in descending order by
years of filming and in ascending order by their names

E5: Title Genres

Implement the following database query
* Q10: titles having genre genre

" std::vector<std::shared_ptr<Title>> db_query_10(
const std::vector<std::shared_ptr<Title>>& db,
const std::string& genre

);
e Put the found titles into the output container
= First, initialize it to the required size
= Next, copy the appropriate title records
— std::copy_if (begin, end, target, predicate);
= Finally, order the titles in ascending order by their names

* Use lambda expressions in both cases

E6: Title Aggregation

Implement the following database queries
* Q11: integer average rating of titles having type type and
genre genre
* int db_query_11(
const std::vector<std::shared_ptr<Title>>& db,
Type type, const std::string& genre

)

e Pass the calculated average using the return value

" std::for_each(begin, end, function);
= Implement everything using a custom functor

E6: Title Aggregation

Cont’d...

* Q12: number of titles having genre genre
= int db_query_12(
const std::vector<std::shared_ptr<Title>>& db,
const std::stringk genre

);
* Pass the calculated number using the return value again
= Use std: :for_each and a lambda expression

Class 10: Matrix

Class and function templates
Inner classes

Container std::array

Custom arithmetic operators
Custom subscript operators
Conversion const_cast

E1l: Matrix Core

Create a template class for a two-dimensional numeric matrix
* Template parameters: element type, matrix height and width
" template<typename , Size_t ,
size_t >
class Matrix { ... }
* Use std: :array container for the inner storage
= However, only one flat, not an array with embedded arrays
— We will therefore use the following index arithmetic
— data_[* width +]
= Two template parameters: element type, number of elements
* Define the following constructor
* Matrix(const element& = 0);

— Initialize all matrix elements to a given value
— Use method data_.fil1(..);

NPRGO41: Programming in C++ | Practical Class 10: Matrix | 4. 12. 2023 72

E1l: Matrix Core

Cont’d...

* Implement the following member functions
= const element& get(size_t row, size_t column)
const;
— Returns a reference to the element at a given position
= yvoid set(size_ t row, size_t column,
const element& value);
— Sets a new value of the element at a specified position
* void print(std::ostream& os = std::cout) const;
— Prints the matrix to a given output stream
— Use the following format: [[1, 2], [3, 4], [5, 6]]
¢ Finally, implement the stream insertion operator as well

= std::ostream& operator<<(std::ostream& stream,
const Matrix<element, height, width>& matrix);

E2: Increment Operators

Extend our matrix by adding the following operators
* Pre-increment operator
" Matrix& operator++();
* Post-increment operator

* Matrix operator++(int);

* Implement both the operators as member functions
= Global functions could alternatively be used as well

E3: Subscript Operators

Extend our matrix by adding the following subscript operators
* We start with a solution that is easier to implement...
* Single-level indexing (e.g., matrix[5])
= Physical coordinates directly to the internal storage will be used
e Required operators

= element& operator[] (size_t index);
= const element& operator[](size_t index) const;

* We then replace this code with a better solution...

E3: Subscript Operators

Cont’d...
* Two-level indexing (e.g., matrix[1] [2])

= Particular row is specified first, column subsequently
= Auxiliary class Request will be needed

— Requested row and matrix reference will be stored within it
* First level of operators over the Matrix class
" Request operator[](size_t row);

= const Request operator[] (size_t row) const;

* Second level of operators over the Request class
= element& operator[](size_t column);
— Concealing constancy with conversion const_cast<..>(..);

= const element& operator[](size_t column) const;

* Use of member functions is necessary in all cases this time

E4: Arithmetic Operators

Extend our matrix by adding the following operators
* Adding a constant to a matrix

* Matrix<element, height, width> operator+(
const Matrix<element, height, width>& matrix,
const element& increment

);
e Multiplying a matrix by a constant
* Matrix<element, height, width> operatorx(
const Matrix<element, height, width>& matrix,
const element& factor
);
* Solve all these operators as global functions
= Member functions could alternatively be used as well

E4: Arithmetic Operators

Cont’d...
* Addition of two matrices
* Matrix<element, height, width> operator+(

const Matrix<element, height, width>& matrixl,
const Matrix<element, height, width>& matrix?2

);
e Multiplication of two matrices
* Matrix<element, height, width> operatorx*(
const Matrix<element, height, depth>& matrixl,
const Matrix<element, depth, width>& matrix2

)

Class 11: Array |

Custom container

Low-level dynamic allocation
Functions malloc and free
Placement new operator
Structure std::initializer_list
Standard exceptions

E1l: Flexible Array

Implement a custom flexible array container
* Single template parameter
" |[tem type
* Internal storage organization
= First level
— Standard vector of C-style pointers to item blocks
= Second level (one block)

— C-style array for individual items
— Low-level dynamic allocation will be used

e Assumptions

= [tems will only be added / removed at the end
= Index arithmetic for accessing items

— data_[i / block_size_][i % block_size_];
= Maintaining necessary capacity only

NPRGO41: Programming in C++ | Practical Class 11: Array | | 11. 12. 2023

80

E1l: Flexible Array

Cont’d...
* Data members
= Selected fixed block size (number of items in a block)
= Internal storage as such
= Current capacity and current number of items
e Constructor
" Array(size_t block_size = 10);
— Parameter is the selected block size
= We will add more constructors later on...
e Destructor
= ~Array() noexcept;
— We will postpone its implementation for now...

E1l: Flexible Array

Cont’d...

* Basic functions
= inline size_t size() const;
— Returns the current number of items stored
* inline size_t capacity() const;
— Returns the current internal storage capacity
= void print(std::ostream& stream = std::cout)
const;
— Example: [1, 2, 3, 4, 5]
— Each individual item is printed using its << operator
" std::ostream& operator<<(
std::ostream& stream,
const Array<element>& array

)

E2: Items Manipulation

Implement functions for adding and removing items

¢ Internal block addition
= Determining required memory size
— Operator sizeof (type)
= Block dynamic allocation

— Function void* malloc(size_t size);
— Library <cstdlib>
— Returns nullptr if not successful

= Ensuring atomicity in case of failure
— Throwing std: :bad_alloc exception
— Beware of the push_back operation failure at the first level
* Internal block removal
= Block deallocation
— Function void free(void* ptr);

E2: Items Manipulation

Cont’d...
* Item addition

* void push_back(const element& item);
void push_back(element&& item);
— Inserts a new item into the flexible array
= Explicit invocation of item copy / move constructor
— new (target) element(item);
— new (target) element(std::move(item));
= Ensuring atomicity
— Beware of failed item construction
* Item removal
= void pop_back();
— Removes the last item (if any)
= Explicit destructor call ~element () ;

E3: Initializer List

Finalize basic functionality of our flexible array
* Destructor
= ~Array() noexcept;
— Removes all existing items
* Initializer list constructor
* Array(std::initializer_list<element> items);
— Library <initializer_list>
— for (auto&& item : items) { ... }

= Ensuring atomicity again

E4: Access Functions

Extend the functionality of our flexible array
* Access functions

= element& at(size_t index);

= const element& at(size_t index) const;

= element& operator[] (size_t index);

= const element& operator[](size_t index) const;

E5: Debug Exceptions

Add the support for flexible array user debugging
e Activation using a macro
* #define __DEBUG__
» #ifdef _ DEBUG__
= #endif
e |n particular, the following standard exceptions are assumed
= Library <exception>
= std::out_of_range("Invalid index")
— For an invalid index in functions at (..) and operator[] (..)
* std::invalid_argument ("Empty array")
— When trying to remove an item from an empty array

Class 12: Array Il

Copy and move constructors

Copy and move assignment operators
Custom iterators

Nested templates

Conversion operators

Custom namespace

Doxygen documentation

E1l: Advanced Constructors

Extend the implementation of our flexible array
e Copy constructor
= Array(

const Array<element>& other

)
— Testing: Array<int> a; auto b = a;
e Move constructor
= Array(

Array<element>&& other
) noexcept;

— std::swap(ol, 02); ormanually std: :move(..);
— Testing: Array<int> a; auto b = std::move(a);

E1l: Assighment Operators

Cont’d...

e Copy assignment

* Array<element>& operator=(
const Array<element>& other
)
— Testing: Array<int> a, b; b = a;
* Move assignment
* Array<element>& operator=(

Array<element>&& other
) noexcept;

— Validity check (this != &other)
— Testing: Array<int> a, b; b = std::move(a);

E2: Forward Iterator

Implement a custom forward iterator in our container
¢ Inner class
" class iterator;
= template<typename element>
class Array<element>::iterator { ... 7};
¢ Private data members
= Flexible array pointer
= Position number
e Private constructor
= jterator(
Array<element>* array,
size_t position

)

E2: Forward Iterator

Cont’d...
* Flexible array methods

" iterator begin();
= iterator end();
* Public type aliases inside the iterator class
= Library <iterator>
® using iterator_category =
std::forward_iterator_tag;
® using value_type = element;
® using pointer = elementx;
®= using reference = element&;
® using difference_type = std::ptrdiff_t;

E2: Forward Iterator

Cont’d...

* Expected basic functions

bool operator==(const iterator& other) const;
bool operator!=(const iterator& other) const;
iterator& operator++();

iterator operator++(int);

reference operator*() const;

pointer operator->() const;

E2: Forward Iterator

Cont’d...
* Experimental testing
= for (
auto it = array.begin();
it != array.end();
++it
>y { ... %

= for (auto&& item : array) { ... }

E3: Constant Iterator

Extend the functionality of our iterator
* The goal is to distinguish iterator and const_iterator
= |deally without code repetition
» First, refactor the current iterator class

= Declaration
template<bool constant>
class iterator_base;
= Definition
template<typename element>
template<bool constant>
class Array<element>::iterator_base { ... };

* Update definitions of all the other existing methods

E3: Constant Iterator

Cont’d...
* Add the following type aliases into the flexible array class

® using iterator = iterator_base<false>;

® using const_iterator = iterator_base<true>;
* We will now have the following access functions

= iterator begin();

= iterator end();

= const_iterator begin() const;

* const_iterator end() const;

= const_iterator cbegin() const;

= const_iterator cend() const;

E3: Constant Iterator

Cont’d...

* Modify the used types in the base iterator class

= In particular, aliases value_type, pointer, and reference
= And also a pointer to the flexible array as such

* We will use the following construct for this purpose
std::conditional_t<bool B, class T, class F>
= Library <type_traits>
= Makes type name T or I available based on the value of B
* Example of use
® using array_pointer = std::conditional_t<
constant,
const Array<element>*, Array<element>*
S

3

E3: Constant Iterator

Cont’d...

* Finally, we also add the following conversion operator
= So that we can change iterator to const_iterator
— And really only in this direction
* operator iterator_base<true>() const;

— Base iterator member function
— Target type name is provided
— Its new instance is returned

— Return type as such is omitted

E4: Iterator Extension

Extend the functionality of our iterator
* Extension to a bidirectional iterator
= Tag std::bidirectional_iterator_tag
* Expected methods

" iterator_base& operator--();
= iterator_base operator--(int);

E4: Iterator Extension

Cont’d...
* Extension to a random access iterator
= Tag std::random_access_iterator_tag
* Expected methods
" iterator_base operator+(
difference_type n
) const;
Analogously, operator-
difference_type operator-(
const iterator_base& other
) const;
" iterator_base& operator+=(difference_type n);
Analogously, operator-=

E4: Iterator Extension

Cont’d...
* Expected methods...

= reference operator[] (difference_type n) const;
* bool operator<(
const iterator_base& other
) const;
= Analogously, operator<=, operator> a operator>=
* Finally, one global function
" iterator_base operator+(
difference_type n,
const iterator_base& it
);
— Needs to be declared and defined using one flat template
— template<typename E, bool C>

E5: Custom Namespace

Refactor the existing flexible array code
e Put the entire implementation to namespace 1ib
* namespace 1lib { ... J};

E6: Doxygen Documentation

Get acquainted with the Doxygen documentation tool
* Download link
= https://www.doxygen.nl/download.html
* Installation
= Add path to the bin directory to the PATH system variable
* Generate a configuration file
= doxygen -g config.ini
e Configure the following directives

= PROJECT_NAME = "..."
= EXTRACT_PRIVATE = YES
= EXTRACT_STATIC = YES

https://www.doxygen.nl/download.html

E6: Doxygen Documentation

Learn how to document selected code fragments
* Files
= /// @file filename
e Classes and template parameters

= /] .
/// @tparam argname ..

* Class members
»/// .

* Global and member functions
= /// .

/// @param argname ..
/// @return ..
/// Q@exception typename ..

E6: Doxygen Documentation

Cont’d...
e Generate and browse the exported documentation

® doxygen config.ini

	Class 01: Introduction
	Class 02: Options I
	Class 03: Options II
	Class 04: Counter
	Class 05: Database I
	Class 06: Expressions I
	Class 07: Expressions II
	Class 08: Database II
	Class 09: Database III
	Class 10: Matrix
	Class 11: Array I
	Class 12: Array II

