
NPRG041 – 2023/24 Winter – Labs MS – Big Assignment A02

Graphs

Flexible Array
For the purpose of the intended graph implementation, it is first necessary to implement a custom templated
container of a flexible array lib::Array<T>, which will allow for storing elements of any data type T in
a way that guarantees the immutability of element locations throughout their existence. In other words,
when manipulating this container (e.g., when adding or removing individual elements), there will never
be a need to perform the internal storage reallocation. This will not only result in a more friendly work
with dynamically allocated memory, but, at the same time, there will never be a need to relocate the
existing elements in memory (at best, by moving, at worst, by copying, according to the capabilities of these
elements), and thus invalidate any references or pointers to these elements held by the users. Both of these
properties will be essential for our graph.

The extent of functionality of the flexible array container and the associated iterators is assumed to
be at the level of the last two small homework assignments. On a practical level, however, it is actually
not necessary to have this implementation fully complete, as it will obviously suffice to have only those
functions that you really want to use within the graph. As for the iterators, in particular, it will most likely
be enough just to reach the category of forward iterators. On the other hand, if need be, it is possible to
extend the existing functionality of the array even further. Specifically, another constructor could become
useful, namely in the form of Array(size_t count, const element& value), which would create a new
array instance containing count copies of the sample element value, or possibly also a global function void
swap(Array<element>& a, Array<element>& b), which would swap all the internal components of both
the flexible arrays with each other using moves, and so swap both the array instances as a whole.

Graph Representation
The main goal of this assignment is to program a class template that would allow us to represent a graph,
both directed and undirected. In both these cases, there can be at most one edge only (in a given direction)
between any pair of nodes, so we only consider an ordinary graph, not a multigraph. It is also important to
note that we also need to be capable of binding these nodes and edges with any additional information we
want to store with them.

The graph class as such Graph<NData, EData> will provide a basic common interface for both the
mentioned variants of graphs. It will, however, be abstract, it will not be possible to create instances from it.
This will only be possible for a particular derived variant of a directed graph DirectedGraph<NData, EData>
and an undirected graph UndirectedGraph<NData, EData>. In all cases (as with the other classes listed
below), the template argument NData describes an arbitrary data type used to represent the information
associated with individual nodes, and, analogously, EData with edges.

In terms of the logical decomposition, the graph class will contain two separate components, namely
an instance of a Nodes<NData, EData> class for handling all the functionality related to the graph nodes,
and, analogously, an instance of an Edges<NData, EData> class for the edges. Each individual node will
be implemented as an instance of a Node<NData> class, an edge as an instance of an Edge<EData> class,
regardless of whether or not it is directed. In other words, edges themselves do not need to distinguish this
fact, nor to be aware of it.

Although a large part of the entire solution design will not be restricted in any way, certain aspects of
the expected interface must, as usual, be observed. Moreover, in many situations, we will need variants of
functions for modifiable but also constant graphs or their components. In order to avoid duplication of the
headers of such functions in the following text, we just mark them with the [♠] symbol.

Nodes and Edges
Each node and edge is assigned a unique identifier from the set N0, i.e., natural numbers including zero.
These identifiers are immutable, i.e., once assigned, they can never be changed later. If the graph contains
n ∈ N0 nodes, then their identifiers cover all the numbers from 0 to n− 1. In other words, these identifiers
follow each other continuously, we do not skip any. The same applies analogously (separately) to the edges.
Technically, we will use data type size_t for these identifiers, but we will work with the alias Identifier
in the code (to facilitate possible future changes). Finally, let us add that the graph will only allow for the
addition of new nodes and edges (gradually in the order according to their identifiers), we will not want to
remove the existing ones.

Specifically for the node class, the following interface needs to be implemented:

• Identifier getId() const: returns the identifier of a given node
• NData& getData() [♠]: returns a reference to the data content associated with a given node

In the case of the edge class, the interface is analogous, we just add the possibility of accessing nodes
determining a given edge:

• Identifier getId() const: returns the identifier of a given edge
• Identifier getSource() const: returns the identifier of the source node
• Identifier getTarget() const: returns the identifier of the target node
• EData& getData() [♠]: returns a reference to the data content associated with a given edge

We will further program the << operators for nodes as well as edges, with which we will be able to print
them to any output stream:

• std::ostream& operator<<(std::ostream& stream, const Node<NData>& node)
• std::ostream& operator<<(std::ostream& stream, const Edge<EData>& edge)

In both cases, the following output format needs to be respected. If we have a node with identifier n,
we serialize it into a string node (n {data}), where data (that is, the string between the pair of curly
braces) represents the serialized data content. Whatever it looks like, it will never contain other embedded
curly braces. It is assumed that each NData type we will want to use also implements the corresponding
operator <<, and thus can itself be printed in this way. Similarly, for an edge with identifier m between
nodes with identifiers i and j, we will expect the output in the form edge (i)-[m {data}]->(j), where
data again constitutes the serialized content of the EData instance obtained by the appropriate << operator.
The output of individual nodes and edges will not be terminated by the ends of lines.

For example, if we had a graph DirectedGraph<std::string, std::string>, it could contain a node
node (1 {one}) or an edge edge (1)-[3 {one-four}]->(4).

Graph Components
Each graph must store at least the following three members in terms of its data content: 1) internal storage
for node instances, 2) internal storage for edge instances, and also 3) the adjacency matrix, which we will
use to efficiently find edges based on the knowledge of identifiers of pairs of nodes they should connect. In all
three cases, we assume that our flexible array lib::Array will solely be used, not the standard std::vector
container. In addition to the listed items, it is, of course, possible to store other data if need be.

The graph class will expose the components for nodes and edges as follows:

• Nodes<NData, EData>& nodes() [♠]: returns the reference to the component handling nodes
• Edges<NData, EData>& edges() [♠]: analogously for edges

When it comes to placing the mentioned data members, there are two basic solutions: either you put them
all in one place directly in the graph class Graph<NData, EData>, or you can split them up and place them
accordingly into the classes of both the components Nodes<NData, EData> and Edges<NData, EData>.
Both variants offer certain advantages, but they also have their pitfalls. Therefore, think carefully about
which approach is closer to you. In any case, both components must be preserved, if only to encapsulate
the expected functionality, since it simply cannot be provided in just one place directly in the graph itself.

When it comes to the flexible array container for node objects, all nodes in that array are assumed to be
arranged exactly in the order of their identifiers. In other words, node at position n in the flexible array has
the identifier n. The same will analogously be satisfied for the flexible array container for the edge objects.

The adjacency matrix will technically contain pointers to the respective edges. Just note that position
(i, j) corresponds to the edge leading from a node with identifier i to a node with identifier j. In the case
of an undirected graph, the matrix must be symmetric along the main diagonal. Loops, i.e., edges starting
and ending at the same node, are also supported.

Graph Serialization
We must be able to print the graph as a whole, meaning its nodes and edges, to the standard output (or to
another stream). It applies that we always print all the nodes first, in ascending order according to their
identifiers, only then all the edges, again in ascending order according to their identifiers. Always one node
or one edge per line, terminating each one with std::endl. As expected, the Nodes<NData, EData> class
will be able to print the nodes, while the Edges<NData, EData> class will be able to print the edges. In
both cases, we achieve this via the following interface:

• void print(std::ostream& stream = std::cout) const: prints the component of nodes or edges

We will also analogously provide an implementation of the stream insertion operators, too:

• std::ostream& operator<<(std::ostream& stream, const Nodes<NData, EData>& nodes)
• std::ostream& operator<<(std::ostream& stream, const Edges<NData, EData>& edges)

Subsequently, we can easily add the following functions to the graph class as a whole:

• void print(std::ostream& stream = std::cout) const: prints the entire graph (i.e., first all the
nodes and then all the edges) to the specified stream

• void print(const std::string& filename) const: prints the graph in the same way to the output
file with a given name

Sample graph serialization could then look like this:

node (0 {zero})
node (1 {one})
node (2 {two})
edge (0)-[0 {zero-one}]->(1)
edge (0)-[1 {zero-two}]->(2)

For debugging and testing purposes, the edges class will also have the following function, using which
will be able to separately print the content of the already discussed adjacency matrix:

• void printMatrix(std::ostream& stream = std::cout) const: prints the current content of the
adjacency matrix to a given stream; we write each matrix row on a separate line of the output; we
then list the values (individual columns) in the matrix row one after the other and separate them with
the | symbol; if there is an edge at a given position, we print its identifier; otherwise we print the -
symbol

The serialization of the adjacency matrix for the previous sample graph (in the undirected variant) would
then, in particular, look like this:

-|0|1
0|-|-
1|-|-

Inserting Nodes and Edges
The newly constructed graph will always be empty, i.e., it will not contain any node or edge. We can then
add them individually using the functions that we will focus on now. In particular, the component of nodes
will offer the following interface:

• Node<NData>& add(Identifier id, const NData& data): inserts a new node with the specified
identifier and associated data into the graph; at this moment, it is assumed that the specified identifier
is valid, i.e., it corresponds to the first next unused position in the flexible array; note that inserting a
new node will, of course, cause the adjacency matrix to be modified; a reference to the created node
object is returned

• Node<NData>& add(Identifier id, NData&& data): the same, analogously
• Node<NData>& add(const NData& data): the same, only the identifier of the newly inserted node is

implicitly specified as the next free
• Node<NData>& add(NData&& data): the same, analogously

The component of edges will similarly offer the following functionality:

• Edge<EData>& add(
Identifier id, Identifier source, Identifier target, const EData& data

): inserts a new edge with the specified identifier and associated data into the graph, namely an
edge connecting the specified pair of nodes; again, for this moment, we assume the correctness of all
parameters; a reference to the created edge object is returned

• Edge<EData>& add(
Identifier id, Identifier source, Identifier target, EData&& data

): the same, analogously
• Edge<EData>& add(

Identifier source, Identifier target, const EData& data
): the same, only the identifier of the inserted edge is implicitly determined as the next free

• Edge<EData>& add(
Identifier source, Identifier target, EData&& data

): the same, analogously

If for some reason it happens that a new node or a new edge cannot be inserted into the graph (due to
failed memory allocation within our flexible array container or due to failed copying of bound data instances),
it is necessary to treat such a situation correctly and achieve the expected atomicity. That is, the insertion
operation will either succeed in its entirety, or it will not at all. In case of a partial failure, it is therefore
necessary to return all graph structures to a state that will again be consistent.

Graph Import
To make creating graphs easier, we also implement functions with which we will be able to load and import
the content of a graph from an input file (or another stream). In this case, we can only import nodes and
edges into a graph instance already created. Moreover, the import function can be called repeatedly, and
thus the graph instance can be composed, for example, from several input files containing individual smaller
parts of the entire graph, as well as interleaved arbitrarily with calls of the previously discussed functions
for the manual addition of individual nodes or edges.

We define the import functions at the level of the graph class as a whole:

• void import(std::istream& stream = std::cin): imports nodes and edges from a given input
stream

• void import(const std::string& filename): imports nodes and edges from an input file with a
given name

Nodes and edges can be mixed arbitrarily in the input data. Therefore, it does not have to be true that
all the nodes are listed first and only then all the edges. But it is always true that each line contains only
one node or one edge. At the same time, we can also rely on the fact that the records of each node and edge

are syntactically correctly formed and conform to the structure we already described within the respective
serialization functions.

When it comes to data content linked to nodes and edges, we need to retrieve it from the string between
the pair of curly braces using the >> operator. In other words, we assume that each specific data type we
want to use for nodes or edges in this sense must implement the corresponding function std::istream&
operator>>(std::istream& is, NData& data), or analogously for EData.

It is assumed that the import function will internally use the previously introduced functions for adding
individual nodes and edges. Any completely empty line will be skipped. For illustration, let us provide
the following valid input file, which, despite the mixed order of nodes and edges, corresponds to our first
example:

node (0 {zero})
node (1 {one})
edge (0)-[0 {zero-one}]->(1)
node (2 {two})
edge (0)-[1 {zero-two}]->(2)

Accessing Nodes and Edges
The nodes component class will offer the following functions, with which we will be able to access or query
particular nodes:

• size_t size() const: returns the current number of nodes in the graph
• bool exists(Identifier id) const: tests for the existence of a node, i.e., returns true if a node

with a given identifier exists in the graph, otherwise false
• Node<NData>& get(Identifier id) [♠]: returns a reference to a node with a given identifier; for

now, let us assume we can only access the existing nodes
• Node<NData>& operator[](size_t id) [♠]: the same

Analogously, we will prepare the following functions for the edges component class:

• size_t size() const: returns the current number of edges in the graph
• bool exists(Identifier id) const: tests for the existence of an edge, i.e., returns true if an edge

with a given identifier exists in the graph, otherwise false
• bool exists(Identifier source, Identifier target) const: the same, only for the existence of

an edge between the specified pair of nodes determined by their identifiers
• Edge<EData>& get(Identifier id) [♠]: returns a reference to an edge with a requested identifier;

for now let us again assume valid identifiers only
• Edge<EData>& get(Identifier source, Identifier target) [♠]: the same, only for a given pair

of nodes according to their identifiers

We will also add the [] operator to the edges component so that we can access particular edges. However,
not as a one-level approach using the identifiers of such edges, but as a two-level approach using the identifiers
of a pair of the corresponding nodes source and target (in that order). We thus want to be able to use
code fragments of the form graph.edges()[source][target] [♠].

Graph Iterators
The components of nodes and edges will also offer iterators that will allow for the iteration over individual
nodes and edges in the graph. Of course, it is not necessary to implement anything new, we just need to
utilize and expose the iterators we already have within the flexible array in the following way. Specifically,
for the nodes component (analogously also for the edges), we need to define the following two pairs of
functions with an obvious meaning:

• typename lib::Array<Node<NData>>::iterator begin()
• typename lib::Array<Node<NData>>::iterator end()
• typename lib::Array<Node<NData>>::const_iterator begin() const
• typename lib::Array<Node<NData>>::const_iterator end() const

Graph Manipulation
As for the graph class, it is also necessary to implement its standard copy and move (stealing) constructors
and assignment operators, thanks to which we will be able to manipulate graphs as a whole. To avoid any
misunderstandings, let us add that every node and edge is in the logical and physical ownership of a graph
instance to which it belongs. Therefore, if we are about to copy graphs as a whole, we have to copy their
entire content as well.

Error Situations
Until now, we have mostly assumed that parameters of our functions were valid, as well as that nothing else
could get wrong. Within this section, we will describe how to modify all the affected parts of our code in
such a way that we will be able to detect the majority of extreme and error situations and also treat them
appropriately.

To achieve this, we will introduce a simple hierarchy of custom exceptions. The abstract ancestor will be
our own Exception class. It will provide a single function, const char* message() const, whose purpose
is to return a specific textual description of the error that occurred. For practical reasons, however, we will
need to distinguish between two types of particular derived exceptions, namely exceptions with static text
messages (known at compile time), and dynamically constructed messages (composed at runtime).

In the first category, there will only be a single derived class MemoryException. This is because it
will be invoked when there is insufficient memory for dynamic allocation. At such a moment, of course,
it is not possible to throw exceptions that would need it by themselves. The second category will contain
all other derived exception types, namely IdentifierException, ElementException, ConflictException,
and FileException.

The following overview contains particular situations we want to handle, their order, expected exception
types, as well as anticipated messages. These messages will contain placeholders in the form of $something,
which we just replace with the appropriate particular values:

• Access to a particular node using the get function or the [] operator based on its identifier:
– ElementException("Node with identifier $id does not exist");

when accessing a node that does not exist

• Addition of a new node using the add function:
– IdentifierException("Invalid node identifier $id requested");

when an invalid (not-following-up) identifier is used
– ConflictException("Node with identifier $id already exists");

when an identifier of an already existing node is used
– MemoryException("Unavailable memory for a new node in the nodes container");

when it is not possible to insert a node object into the flexible array for nodes
– The original exception when making a copy of the bound data instance fails
– MemoryException("Unavailable memory for the adjacency matrix extension");

when it is not possible to add a new column and row into the adjacency matrix

• Access to a particular edge using the get function based on its identifier:
– ElementException("Edge with identifier $id does not exist");

when accessing an edge that does not exist

• Access to a particular edge using the get function or [] operator based on a pair of nodes:
– ElementException("Source node with identifier $source does not exist");

when the source node does not exist
– ElementException("Target node with identifier $source does not exist");

when the target node does not exist
– ElementException("Edge between nodes $source and $target does not exist");

when a non-existent edge is accessed between an otherwise valid pair of nodes

• Existence test of an edge using the exists function based on a pair of nodes:

– ElementException("Source node with identifier $source does not exist");
when the source node does not exist

– ElementException("Target node with identifier $source does not exist");
when the target node does not exist

• Addition of a new edge using the add function:
– IdentifierException("Invalid edge identifier $id requested");

when an invalid (not-following-up) identifier is used
– ConflictException("Edge with identifier $id already exists");

when an edge with the specified identifier already exists
– ElementException("Source node with identifier $source does not exist");

when the source node does not exist
– ElementException("Target node with identifier $source does not exist");

when the target node does not exist
– ConflictException("Edge between nodes $source and $target already exists");

when an edge between a given pair of nodes already exists
– The original exception when making a copy of the bound data instance fails
– MemoryException("Unavailable memory for a new edge in the edges container");

when it is not possible to insert an edge object into the flexible array for edges

• Printing a graph to a specified file using the print function:
– FileException("Unable to open output file $filename");

when a given output file cannot be opened

• Importing a graph from a specified file using the import function:
– FileException("Unable to open input file $filename");

when a given input file cannot be opened

Final Instructions
Submit all the created source files (probably only Graph.h and Array.h) except the Main.cpp file, which
is already part of the prepared test. It contains a single directive #include <Graph.h> and also the main
function, which will control the course of the test as usual.

The objective of the task is to show the ability to work with the constructs we have encountered since
the beginning of the semester. In addition to basic skills, it is mainly about working with text files, streams,
design of classes, use of constructors and destructors, inheritance, virtual methods, dynamic allocation,
templates, pointers, operators, iterators or exceptions.

The submitted implementation must, of course, be correct and stable, the compilation must take place
without any warnings. The overall quality of the code will also be evaluated, though. Therefore, especially,
but not exclusively, organization of code into individual files, classes and functions, use of header files, naming
of files, functions and variables, overall visual style of the code and indentation, passing of parameters by
value or reference, quality of the class design and use of inheritance and virtual methods, not repeating
the same code fragments unnecessarily, using named constants, handling error situations, as well as using
standard libraries, containers or functions.

