NSWI090: Computer Networks

http://www.ksi.mff.cuni.cz/~svoboda/courses/222-NSWI090/

Lecture 1

Paradigms

Martin Svoboda

martin.svoboda@matfyz.cuni.cz

2023

Charles University, Faculty of Mathematics and Physics

Lecture Outline

Introduction and motivation

- Basic concepts
- Network paradigms
- Telecommunication / computer networks

Motivation

Ultimate objective

- Transmission of data
 - I.e., not processing
 - Algorithms, data structures, time complexities, ...
 - As well as not storing
 - Database systems, logical models, query languages, ...

Major requirement

- Transmitted data should not change
 - However...

Relevant questions

Distance, volume, velocity, latency, reliability, ...

Transmission path

- Path between the sender and recipient in a network
- Includes any means of transmission
 - Regardless of technical implementation
 - Wired (metallic, optical), wireless
 - At different levels of abstraction
 - Physical, virtual

Transmission channel

One-way transmission path in telecommunication networks

Transmission circuit

- Two-way transmission path
 - Physical, emulated / virtual

Simplex mode

- Allows for transmissions in one direction only
 - E.g., television and radio broadcasting

Half-duplex mode

- Allows for transmissions in both directions, but not simultaneously
 - Communicating entities need to take turns

Full-duplex mode

Allows for transmissions in both directions at the same time

Unicast transmissions

- One sender, one intended recipient
 - The most common situation

Anycast transmissions

Any node in a given predefined group

Multicast transmissions

Every node in a static / dynamically created group

Broadcast transmissions

Any reachable node (in a given network, ...)

Telecommunication / computer network / infrastructure

 System of nodes mutually interconnected by transmission paths formed by network elements

Nodes

- Anything wanting to communicate
 - Servers, terminals, personal computers, laptops, ...
 - Printers, mobile phones, smart TVs, ...

Network elements

- Active
 - Repeaters, switches, routers, gates, ...
 - Switchboards, controllers, transceivers, ...
- Passive

Networks provide services to their users

- · Television and radio broadcasting
- Voice and video calls
- Video on demand
- Electronic mail
- Messaging platforms
- File transfers
- Web pages browsing
- ...

Services (cont'd)

- Provided at different levels of abstraction
 - Internal implementation details are concealed
 - Services can be built on top of other services
 - HTTP web page request at L7 → reliable connection-oriented
 TCP at L4 → best effort IP at L3 → Ethernet at L2
- Different requirements and expectations
 - Different principles, protocols, and technologies are needed

Network Paradigms

Fundamental questions to be figured out

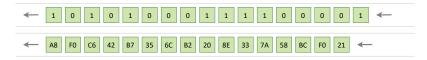
- Stream vs. block transmissions
 - In what form will the data be transmitted?
- Circuit vs. packet switching
 - How will the data reach the intended recipient?
- Connection-oriented vs. connectionless transmissions
 - Do we need to agree on the communication in advance?
- Reliable vs. unreliable transmissions
 - What level of transmission reliability is required?
- Guaranteed vs. non-guaranteed services
 - Will sufficient resources be available all the time?
- ...

Data Transmission

In what form will the data be transmitted?

Stream transmissions

Data is sent as a continuous stream without any logical division

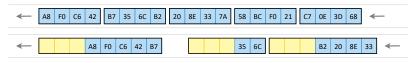

Block transmissions

 Data is divided into reasonably large blocks, these blocks are then sent one by one

Stream Transmissions

Streams

- Data is transferred as a continuous unstructured stream
 - At the level of individual symbols (bits, bytes, words, ...)



- Features
 - Preserves order (works as a FIFO queue)
 - Suitable for point-to-point connections
 - I.e., in case there is only one intended recipient
- Examples
 - L1: Ethernet, Wi-Fi, ...
 - L4: TCP (virtual streams for L7 over L3 blocks)

Block Transmissions

Blocks

- Data is divided into reasonably large units called blocks
 - Fixed size
 - Variable size
 - Restrictions on maximal / minimal lengths may be in effect, too

- Features
 - Blocks may not directly follow each other
 - Nothing is remaining to be sent at a moment
 - Intentional delays between the blocks may be needed
 - Order may not be preserved

Block Transmissions

May (but also may not) be enriched with additional metadata

- Sender / recipient addresses
 - So that blocks can be correctly forwarded when a given transmission path is not direct
- Transmission identification
 - So that multiple different transmissions can be mutually distinguished on a shared path
- Block ordinal numbers
 - So that the original data can once again be reconstructed
- ..

Block Transmissions

Main tasks

- Internal structure
 - Header, body, footer
- Combinations of both the approaches
 - Blocks over streams (framing)
 - Blocks over blocks (encapsulation)
 - Streams over blocks

Names of blocks

- Depend on particular layers / technologies / protocols
 - L2: Ethernet frames, ATM cells, ...
 - L3: IPv4 datagrams, IPv6 packets, ...
 - L4: TCP segments, UDP datagrams, ...
 - L7: HTTP messages (requests, responses), ...

Connection Schemes

Do we need to agree on the communication in advance?

Connection-oriented transmissions

- Both the communicating parties need to establish, maintain, and eventually terminate a connection with each other
- Order of data is / must be preserved

Connectionless transmissions

- Communication is based on sending separate messages
- Order of data is not preserved

Connection-Oriented Transmissions

Connection-oriented approach

- Connection is established
 - This means that...
 - Both the parties really exist
 - They are able to locate each other
 - They agree with the communication
 - Communication parameters can be negotiated
 - Transmission path can be laid out, resources allocated, ...
- The actual data is then transferred
- Connection is eventually terminated
 - E.g., resources are returned, marked circuits are released, ...

Connection-Oriented Transmissions

Analogy

- Traditional voice call over a telephone network
 - Phone number is dialed \rightarrow call is established \rightarrow parties are talking to each other \rightarrow call is hanged up and terminated

Examples

- L2: ATM (Asynchronous Transfer Mode)
- L4: TCP (over a connectionless IP at L3)
 - Ordering of segments needs to be enforced
- L7: HTTP, SMTP, POP3, ...
 - I.e., anything over TCP from L4

Connection-Oriented Transmissions

Stateful operation

- Communicating parties transition between the states
 - E.g.: closed, established, ...
- Transitions must be correct and coordinated
 - Mutual misunderstandings must be avoided
 - Deadlocks must be avoided
- Non-standard situations must be detected and treated
 - Connection failures, ...

Connectionless Transmissions

Connectionless approach

- Separate messages called datagrams are sent
 - No connection is established
 - Recipient may not exist, may not want to communicate, ...
 - Nothing is established, no termination is required, ...
 - Stateless operation
 - Datagrams are delivered independently on each other
 - They may be routed differently
 - Their order cannot be guaranteed
 - Must contain full recipient identification

Connectionless Transmissions

Analogy

- Traditional postal services
 - Postcards, letters, parcels, ...

Examples

- L4: **UDP**
- L3: IP, ICMP
- L2: Ethernet

Switching Mechanisms

How will the data reach the intended recipient?

Circuit switching

- Transmission circuit is created first, all data is then sent through this circuit
- Based on reserved capacity
 - Mainly in telecommunication networks

Packet switching

- Each block of data is routed and forwarded separately
- Based on shared capacity
 - Mainly in computer networks
 - Very revolutionary idea in its time (in 1960s)
 - Aims at robustness and resilience against failures and outages

Circuit Switching

Basic mechanism

- Transmission circuit is created on demand
 - I.e., transmission path is found and laid out
 - Physically interconnected
 - Marked virtually at higher layers
- All data is then sent directly through this circuit

Examples

- PSTN (traditional Public Switched Telephone Network)
 - Originally manual switching by operators → later on automated electronic switching → fully digital switching nowadays

Circuit Switching

Features and consequences

- Always connection-oriented
- Illusion of a direct connection
 - Though a circuit will most likely in reality be laid out across multiple network elements
- ⇒ low and constant latency
- ⇒ preserves order
- Effect of reserved capacity
 - No one else is entitled to use a given circuit
- ⇒ enables guaranteed transmissions
- Supports both streams and blocks

Switching node logic

- Each interface (path) has its own inbound / outbound buffer
- Whenever a new block is received
 - It is stored within a given inbound buffer
- Waiting blocks are perpetually iterated over and processed
 - Routing decision is made for a given block
 - It is then moved to the corresponding outbound buffer
 - Finally, it is sent as soon as it is possible

Examples

- L2: Ethernet switches, ...
- L3: IP routers, ...

Only possible for block transmissions

- ⇒ the following pieces of metadata is necessary
 - Recipient identification
 - So that the intended recipient can be located as well as the individual ongoing transmissions mutually distinguished
 - Sender identification
 - So that error messages can be sent back in case of failures

Available capacity is shared and limited

- Transmission capacity of paths
- Computing (switching) capacity of switching nodes
 - Buffer sizes, processor throughput
- ⇒ significantly higher, variable, and unpredictable latency
 - Which also depends on the current load
 - I.e., it can never be estimated in advance
- ⇒ available capacity may be insufficient
 - Excessive blocks will then need to be discarded

Packet switching itself may be...

- Connection-oriented: virtual circuits
 - Transmission path is laid out only virtually
 - Suitable Virtual Circuit Identifier (VCI) is assigned
 - Individual network elements must note the actual path
 - Blocks are then forwarded based on these VCIs
 - Each is delivered via the same path
 - Example
 - L2: ATM
- Connectionless: datagram service
 - Example
 - L2: Ethernet

Reliability Levels

What level of transmission reliability is required?

Observations

- Transmissions are never ideal
 - It may always happen that the data will be damaged
 - Entire blocks can be lost
 - Actual data can be corrupted

Reliable transmissions

- Sender considers their duty to take care of the remedy
- Errors are detected and treated

Unreliable transmissions

- · Errors are not detected, nor treated
- · Transmission simply goes on

Reliable Transmissions

Detection mechanisms

- · Parity, checksums, CRC, ...
 - Whatever particular approach is exploited, it is impossible to detect all the possible errors and extents of damage

Remedy options

- Error correction codes
- Repeated transmission
 - Positive acknowledgment when received successfully
 - Negative acknowledgment otherwise
 - I.e., request for a retransmission

Example

L4: TCP (Go-Back-N or Selective Repeat ARQ)

Reliable Transmissions

Consequences

- Messages are slightly bigger
 - Because of the checksums
- Higher number of messages
 - Positive / negative acknowledgments and retransmissions
- Delivery regularity is disrupted
 - Significant delays occur
- Higher usage of computing and transmission capacity
 - Sender / recipient nodes
 - The entire mechanism needs to be deployed
 - Network: handling of extra messages
- Reliability is never absolute

Unreliable Transmissions

In other words...

- Reliability is always relative only
 - While insufficient in one case, excessive in another
- It is always connected with a non-zero overhead
- ⇒ unreliable transmissions make sense as well
 - Especially in case of multimedia applications
 - Audio / video, interactive / non-interactive
 - Regularity of delivery is essential, lower latency may as well

Examples

- L4: UDP
- L3: IP
- L2: Ethernet, ATM

Guarantee Options

Will sufficient resources be available all the time?

Guaranteed transmission / service

- Provides such a guarantee for all the currently ongoing data transmissions
 - In terms of computing and transmission capacity
- Resources must be reserved in advance
 - During the connection process
- Realized via circuit switching

Non-guaranteed transmission / service

- It may happen that sufficient resources will be missing
- Realized via packet switching

Guaranteed Transmissions

Exclusive capacity

Solely for the purpose of the given communicating parties

\Rightarrow disadvantages

- Must be high enough to cover the maximum expected load
- Unused capacity cannot be left to anyone else
 - It is forfeited uselessly
- The whole approach is ineffective and expensive
 - Everything must be dimensioned for the sum of maxima

Non-Guaranteed Transmissions

Shared capacity

- Cheaper and more efficient solution
 - Everything can be dimensioned for the average load

⇒ disadvantages

- When sufficient remaining resources are not available
 - Because of...
 - Completely filled buffers
 - Overloaded processor
 - Transmission capacity of individual paths
- Certain packets will need to be discarded!
 - Note that this is the only possible measure
- The question is which...

Extent of Guarantees

Best Effort principle

- Maximum effort...
 - All packets are delivered as long as it is possible
- ... but uncertain outcome
 - Should packet loss be inevitable, all data is treated equally
 - I.e., there are no rules, no priorities, no criteria
- Examples
 - L3: **IP**
 - L2: Ethernet, ATM (but also various QoS alternatives)

Quality of Service (QoS)

- Anything else compared to the best effort principle
 - The extent of particular guarantees may vary

Quality of Service

Relative QoS – principle of prioritization

- Better conditions are provided for certain kinds of data
 - Based on different priorities

Absolute QoS – principle of reservation

- Guarantees the same conditions regardless of the current situation and load
- Resources must be reserved in advance
 - Reservation request must be rejected when not attainable
- Similar to circuit switching
 - And so has the same advantages, but disadvantages as well

Different Worlds

World of telecommunication networks

- · Significantly older
 - Communication was considered a strategic interest
- Smart network, dumb devices paradigm

World of computer networks

Dumb network, smart devices paradigm

Both the worlds traditionally built their own separate networks

- They have always differed greatly in many aspects
- But integration and convergence attempts are intensifying

Telecommunication Networks

Smart network, dumb devices

- All intelligence is concentrated in the network
 - Network elements are often single-purpose
 - Easier and usually central management
 - Expensive, cumbersome, inflexible
- User devices can, therefore, be very simple and foolproof

Preferred transmission characteristics

- Circuit switching
- Connection-oriented
- Reliable
- Guaranteed (QoS)

Telecommunication Networks

Additional observations

- Assumption of insufficient resources
 - There are not enough resources to satisfy everyone
 - Focusing on exclusive resource allocation
 - Afraid to sell unreliable services
- Considered a matter of strategic importance
 - High level of regulation
 - Directive decision-making by national governments
 - Gradually liberalized
 - Monopolies are becoming incumbents
- Network owners and users are different entities

Computer Networks

Dumb network, smart devices

- Intelligence is concentrated in user devices
- Network should be minimalist and as efficient as possible
 - The only goal is to transfer data without understanding it
 - Easily adaptable to changes in user behavior
 - Cheaper, straightforward, flexible

Preferred transmission characteristics

- Packet switching
- Connectionless
- Unreliable
- Non-guaranteed (Best Effort)

Computer Networks

Additional observations

- Availability of resources is not a major limiting factor
 - I.e., resources are sufficient
 - Technical factors have higher importance than the commercial
- Liberalized from the very beginning
 - Bottom-up approach
 - Standardization and coordination challenges
 - In order to achieve compatibility and interoperability
- Network owners and users are often the same entities

Management of Resources

Moore's law

- Observation that the number of transistors in a dense integrated circuit doubles about every 2 years
 - Projection of a historical trend
 - In effect for more than 55 years...
 - Originally 1 year, later 1.5 years, now 2 years
- Implication
 - Cost of equivalent computing power drops in half every 2 years

Gilder's law

Transmission capacity triples every 1 year

Disk law

Storage capacity doubles every 1 year

Lecture Conclusion

Basic concepts

- Stream / block transmissions
- Circuit / packet switching
- Connection-oriented / connectionless transmissions
- Reliable / unreliable transmissions
- Guaranteed / non-guaranteed transmissions
 - Best Effort / Quality of Service