
MIE‐PDB.16: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/211‐MIE‐PDB/

Lecture 10

Key‐Value Stores: RiakKV
Martin Svoboda
martin.svoboda@fit.cvut.cz

30. 11. 2021

Charles University, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Information Technology

http://www.ksi.mff.cuni.cz/~svoboda/courses/211-MIE-PDB/
mailto:martin.svoboda@fit.cvut.cz

Lecture Outline
Key‐value stores
• Introduction

RiakKV
• Data model
• HTTP interface
• CRUD operations
• Links and Link walking
• Data types
• Search 2.0
• Internal details

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 2

Key‐Value Stores
Data model
• The most simple NoSQL database type

Works as a simple hash table (mapping)
• Key‐value pairs

Key (id, identifier, primary key)
Value: binary object, black box for the database system

Query patterns
• Create, update or remove value for a given key
• Get value for a given key

Characteristics
• Simple model⇒ great performance, easily scaled, …
• Simple model⇒ not for complex queries nor complex data

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 3

Key Management
How the keys should actually be designed?
• Real‐world identifiers

E.g. e‐mail addresses, login names, …
• Automatically generated values

Auto‐increment integers
– Not suitable in peer‐to‐peer architectures!

Complex keys
– Multiple components / combinations of

time stamps, cluster node identifiers, …
– Used in practice instead

Prefixes describing entity types are often used as well
• E.g. movie_medvidek, movie_223123, …

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 4

Query Patterns
Basic CRUD operations
• Only when a key is provided
• ⇒ knowledge of the keys is essential

It might even be difficult for a particular database system
to provide a list of all the available keys!

Accessing the contents of the value part is not possible in general
• But we could instruct the database how to parse the values
• … so that we can index them based on certain search criteria

Batch / sequential processing
• MapReduce

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 5

Other Functionality
Expiration of key‐value pairs
• Objects are automatically removed from the database
after a certain interval of time

• Useful for user sessions, shopping carts etc.
Links between key‐value pairs
• Values can be mutually interconnected via links
• These links can be traversed when querying

Collections of values
• Not only ordinary values can be stored, but also their
collections (e.g. ordered lists, unordered sets, …)

Particular functionality always depends on the store we use!

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 6

Riak Key‐Value Store

RiakKV
Key‐value store
• http://basho.com/products/riak‐kv/
• Features

Open source, incremental scalability, high availability,
operational simplicity, decentralized design, automatic data
distribution, advanced replication, fault tolerance, …

• Developed by Basho Technologies
• Implemented in Erlang

General‐purpose, concurrent, garbage‐collected programming
language and runtime system

• Operating system: Linux, Mac OS X, … (not Windows)
• Initial release in 2009

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 8

http://basho.com/products/riak-kv/

Data Model
Riak database system structure

Instance (→ bucket types)→ buckets→ objects

• Bucket = collection of objects (logical, not physical collection)
Various properties are set at the level of buckets

– E.g. default replication factor, read / write quora, …
• Object = key‐value pair

Key is a Unicode string
– Unique within a bucket

Value can be anything (text, binary object, image, …)
Each object is also associated with metadata

– E.g. its content type (text/plain, image/jpeg, …),
– and other internal metadata as well

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 9

Data Model
Design Questions

How buckets and objects should be modeled?
• Buckets with objects of a single entity type

E.g. one bucket for actors, one for movies,
each actor and movie has its own object

• Buckets with objects of various entity types
E.g. one bucket for both actors and movies,
each actor and movie has its own object once again
Structured keys might then help

– E.g. actor_trojan, movie_medvidek
• Buckets with complex objects containing various data

E.g. one object for all the actors, one for all the movies

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 10

Riak Usage: Querying
Basic CRUD operations
• Create, Read, Update, and Delete
• Based on a key look‐up

Extended functionality
• Links – relationships between objects and their traversal
• Search 2.0 – full‐text queries accessing values of objects
• MapReduce
• …

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 11

Riak Usage: API
Application interfaces
• HTTP API

All the user requests are submitted as HTTP requests with
appropriately selected / constructedmethods, URLs, headers,
and data

• Protocol Buffers API
• Erlang API

Client libraries for a variety of programming languages
• Official: Java, Ruby, Python, C#, PHP, …
• Community: C, C++, Haskell, Perl, Python, Scala, …

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 12

Riak Usage: HTTP API
cURL tool
• Allows to transfer data from / to a server using HTTP

(or other supported protocols)
Options
• -X command, --request command

HTTP request method to be used (GET, …)
• -d data, --data data

Data to be sent to the server (implies the POST method)
• -H header, --header header

Extra headers to be included when sending the request
• -i, --include

Prints both headers and (not just) body of a response

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 13

Basic Operations

CRUD Operations
Basic operations on objects
• Create: POST or PUT methods

Inserts a key‐value pair into a given bucket
Key is specified manually, or will be generated automatically

• Read: GET method
Retrieves a key‐value pair from a given bucket

• Update: PUT method
Updates a key‐value pair in a given bucket

• Delete: DELETE method
Removes a key‐value pair from a given bucket

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 15

CRUD Operations
URL pattern of HTTP requests for all the CRUD operations

// bucketsbuckets // bucketbucket // keyskeys // keykey

?? parameterparameter == valuevalue

&&

Optional parameters (depending on the operation)
• r, w: read / write quorum to be attained
• …

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 16

CRUD Operations
Create and Update

Inserts / updates a key‐value pair in a given bucket
• PUTmethod

Should be used when a key is specified explicitly
Transparently inserts / updates (replaces) a given object

• POSTmethod
When a key is to be generated automatically
Always inserts a new object

• Buckets are created transparently whenever needed
Example

curl -i -X PUT
-H 'Content-Type: text/plain'
-d 'Ivan Trojan, 1964'
http://localhost:8098/buckets/actors/keys/trojan

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 17

CRUD Operations
Read

Retrieves a key‐value pair from a given bucket
• Method: GET

Example
Request

curl -i -X GET
http://localhost:8098/buckets/actors/keys/trojan

Response
...
Content-Type: text/plain
...

Ivan Trojan, 1964

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 18

CRUD Operations
Delete

Removes a key‐value pair from a given bucket
• Method: DELETE
• If a given object does not exist, it does not matter

Example
curl -i -X DELETE

http://localhost:8098/buckets/actors/keys/trojan

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 19

Bucket Operations
Lists all the buckets (buckets with at least one object)

// bucketsbuckets ?? bucketsbuckets == truetrue

curl -i -X GET http://localhost:8098/buckets?buckets=true

Content-Type: application/json

{
"buckets" : ["actors", "movies"]

}

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 20

Bucket Operations
Lists all the keys within a given bucket
• Not recommended to be used in production environments
since it is a very expensive operation

// bucketsbuckets // bucketbucket // keyskeys ?? keyskeys == truetrue

curl -i -X GET http://localhost:8098/buckets/actors/keys?keys=true

Content-Type: application/json

{
"keys" : ["trojan", "machacek", "schneiderova", "sverak"]

}

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 21

Bucket Operations
Setting and retrieval of bucket properties
• Properties

n_val: replication factor
r, w, …: read / write quora and their alternatives
…

• Requests
GET / PUT method: retrieve / set bucket properties

// bucketsbuckets // bucketbucket // propsprops

Example
{

"props" : { "n_val" : 3, "w" : "all", "r" : 1 }
}

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 22

Links and Link Walking

Links and Link Walking
Links
• Links are metadata that establish one‐way relationships
between pairs of objects

Act as lightweight pointers between individual key‐value pairs
I.e. represent and extension to the pure key‐value data model

• Each link…
is defined within the source object
is associated with a tag (sort of link type)
can be traversed in a given direction only
may connect objects even from different buckets

• Multiple links can lead from / to a given object
Link walking
• New way of querying – navigation between objects using links

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 24

Links
How are links defined?
• Special Link header is used for this purpose
• Multiple link headers can be provided,
or equivalently multiple links within one header

LinkLink :: << targettarget >> ;; riaktagriaktag == "" tagtag ""

,,

Example
curl -i -X PUT

-H 'Content-Type: text/plain'
-H 'Link: </buckets/actors/keys/trojan>; riaktag="tactor"'
-H 'Link: </buckets/actors/keys/machacek>; riaktag="tactor"'
-d 'Medvídek, 2007'
http://localhost:8098/buckets/movies/keys/medvidek

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 25

Link Walking
How can links be traversed?
• Standard GET requests with link traversal description

Exactly one object where the traversal is initiated
– Accessed in a standard way

Single or multiple navigational steps then follow

// bucketsbuckets // bucketbucket // keyskeys // keykey

// bucketbucket

__

,, tagtag

__

,, 11

00

__

//

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 26

Link Walking
Parameters of navigation steps
• Bucket

Only objects from a certain target bucket are selected
_ when not limited to any particular bucket

• Tag
Only links of a given tag are considered
_ when not limited to any particular tag

• Keep
1 when the discovered objects should be included in the result
0 otherwise
_means 1 for the very last step, 0 for all the other preceding

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 27

Link Walking
Examples

Actors who played inMedvídekmovie

curl -i -X GET
http://localhost:8098/buckets/movies/keys/medvidek

/actors,tactor,1

Content-Type: multipart/mixed; boundary=...

Movies in which appeared actors fromMedvídekmovie
(assuming that the corresponding actor→movie links also exist)

curl -i -X GET
http://localhost:8098/buckets/movies/keys/medvidek

/actors,tactor,0/movies,tmovie,1

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 28

Data Types

Data Types
Motivation
• Riak began as a pure key‐value store

I.e. was completely agnostic toward the contents of values
• However, if availability is preferred to consistency,
mutually conflicting replicas might exist

Such conflicts can be resolved at the application level,
but this is often (only too) difficult for the developers

• And so the concept of Riak Data Types was introduced
When used (it is not compulsory),
Riak is able to resolve conflicts automatically

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 30

Data Types
Convergent Replicated Data Types (CRDT)
• Generic concept
• Various types for several common scenarios
• Specific conflict resolution rules (convergence rules)

Available data types
• Register, flag

Can only be used embedded in maps
• Counter, set, and map

Can be used embedded in maps
as well as directly at the bucket level

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 31

Data Types
Register
• Allows to store any binary value (e.g. string, …)
• Convergence rule: the most chronologically recent value wins

Flag
• Boolean values: enable (true), and disable (false)
• Convergence rule: enable wins over disable

Counter
• Operations: increment / decrement by a given integer value
• Convergence rule: all requested increments and decrements
are eventually applied

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 32

Data Types
Set
• Collection of unique binary values
• Operations: addition / removal of one / multiple elements
• Convergence rule: addition wins over removal of elements

Map
• Collection of fields with embedded elements of any data type
(including other nested maps)

• Operations: addition / removal of an element
• Convergence rule: addition / update wins over removal

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 33

Search 2.0

Search 2.0
Riak Search 2.0 (Yokozuna)
• Full‐text search over object values
• Uses Apache Solr

Distributed, scalable, failure tolerant, real‐time search platform
How does it work?
• Indexation

Riak object extractor−−−−−→ Solr document schema−−−−→ Solr index
• Querying

Riak search query→ Solr search query→ Solr response:
list of bucket‐key pairs→ Riak response: list of objects

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 35

Search 2.0: Extractors
Extractor
• Parses the object value and produces fields to be indexed
• Chosen automatically based on a MIME type

Available extractors
• Common predefined extractors

Plain text, XML, JSON, noop (unknown content type)
• Built‐in extractors for Riak Data Types

Counter, map, set
• User‐defined custom extractors

Implemented in Erlang, registered with Riak

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 36

Search 2.0: Extractors
Plain text extractor (text/plain)
• Single field with the whole content is extracted

Example
Input Riak object

Ivan Trojan, 1964

Output Solr document
[

{ text, <<"Ivan Trojan, 1964">> }
]

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 37

Search 2.0: Extractors
XML extractor (text/xml, application/xml)
• One field is created for each element and attribute

Only fields with type suffixes are considered
E.g. _s for string, _i for integer, _b for boolean, …
Dot notation is used to compose flatten names of nested items

Example
Input Riak object / Output Solr document

<?xml version="1.0" encoding="UTF-8" ?>
<actor year_i="1964">

<name_s>Ivan Trojan</name_s>
<actor>

[
{ <<"actor.name_s">>, <<"Ivan Trojan">> },
{ <<"actor.@year_i">>, <<"1964">> }

]

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 38

Search 2.0: Extractors
JSON extractor (application/json)
• Similar principles as for XML documents are applied

Example
Input Riak object

{
name_s : "Ivan Trojan",
year_i : 1964

}

Output Solr document
[

{ <<"name_s">>, <<"Ivan Trojan">> },
{ <<"year_i">>, <<"1964">> }

]

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 39

Search 2.0: Indexation
Solr document
• Automatically extracted fields + a few auxiliary fields such as:

_yz_rb (bucket name), _yz_rk (key), …
Solr schema
• Describes how fields are indexed within Solr

Values of fields are analyzed and split into terms
Terms are normalized, stop words removed
…
Triples (token, field, document) are produced and indexed

• Default schema available (_yz_default)
Suitable for debugging,
but custom schemas should be used in production

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 40

Search 2.0: Index Creation
How is index created?
• Index must be created first,
then associated with a single bucket

Example
curl -i -X PUT

-H 'Content-Type: application/json'
-d '{ "schema" : "_yz_default" }'
http://localhost:8098/search/index/iactors

curl -i -X PUT
http://localhost:8098/search/index/iactors

curl -i -X PUT
-H 'Content-Type: application/json'
-d '{ "props" : { "search_index" : "iactors" } }'
http://localhost:8098/buckets/actors/props

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 41

Search 2.0: Index Usage
Search queries
• Parameters

q – search query (correctly encoded)
– Individual search criteria

wt – response write
– Query result format

start / rows – pagination of matching objects
…

// searchsearch // queryquery // indexindex ?? parameterparameter == valuevalue

&&

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 42

Search 2.0: Index Usage
Available search functionality
• Wildcards

E.g. name:Iva*, name:Iva?
• Range queries

E.g. year:[2010 TO *]
• Logical connectives and parentheses

AND, OR, NOT
• Proximity searches
• …

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 43

Internal Details

Architecture
Sharding + peer‐to‐peer replication architecture
• Any node can serve any read or write user request
• Physical nodes run (several) virtual nodes (vnodes)

Nodes can be added and removed from the cluster dynamically
• Gossip protocol

Each node periodically sends its current view of the cluster,
its state and changes, bucket properties, …

CAP properties
• AP system: availability + partition tolerance

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 45

Consistency
BASE principles
• Availability is preferred to consistency
• Default properties of buckets

n_val: replication factor
r: read quorum
w: write quorum (node participation is sufficient)
dw: write quorum (write to durable storage is required)

• Specific options of requests override the bucket properties
Strong consistency can be achieved
• When quora set carefully, i.e.:

w > n_val/2 for write quorum
r > n_val− w for read quorum

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 46

Causal Context
Conflicting replicas are unavoidable (with eventual consistency)
⇒ how are they resolved?
• Causal context = auxiliary data and mechanisms that are
necessary in order to resolve the conflicts

• Low‐level techniques
Timestamps, vectors clocks, dotted version vectors
They can be used to resolve conflicts automatically

– Might fail, then we must make the choice by ourselves
Or we can resolve the conflictsmanually

– Siblings then need to be enabled (allow_mult)
= multiple versions of object values

• User‐friendly CRDT data types with built in resolution
Register, flag, counter, set, map

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 47

Causal Context
Vector clocks
• Mechanism for tracking object update causality
in terms of logical time (not chronological time)

• Each node has its own logical clock (integer counter)
Initially equal to 0
Incremented by 1 whenever any event takes place

• Vector clock = vector of logical clocks of all the nodes
Each node maintains its local copy of this vector
Whenever a message is sent, the local vector is sent as well
Whenever a message is received, the local vector is updated

– Maximal value for each individual node clock is taken

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 48

Vector Clocks

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 49

Vector Clocks

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 50

Vector Clocks

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 51

Vector Clocks

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 52

Vector Clocks

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 53

Vector Clocks

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 54

Riak Ring
Replica placement strategy
• Consistent hashing function

Consistent = does not change when cluster changes
Domain: pairs of a bucket name and object key
Range: 160‐bit integer space = Riak Ring

Riak Ring
• The whole ring is split into equally‐sized disjoint partitions

Physical nodes are mutually interleaved
⇒ reshuffling when cluster changes is less demanding

• Each virtual node is responsible for exactly one partition
Example
• Cluster with 4 physical nodes, each running 8 virtual nodes
• I.e. 32 partitions altogether

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 55

Riak Ring

Source: http://docs.basho.com/

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 56

Riak Ring
Replica placement strategy
• The first replica…

Its location is directly determined by the hash function
• All the remaining replicas…

Placed to the consecutive partitions in a clockwise direction
What if a virtual node is failing?
• Hinted handoff

Failing nodes are simply skipped,
neighboring nodes temporarily take responsibility
When resolved, replicas are handed off to the proper locations

• Motivation: high availability

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 57

Request Handling
Read and write requests can be submitted to any node
• This nodes is called a coordinating node
• Hash function is calculated, i.e. replica locations determined
• Internal requests are sent to all the corresponding nodes
• Then the coordinating node waits
until sufficient number of responses is received

• Result / failure is returned to the user

But what if the cluster changes?
• The value of the hash function does not change,

only the partitions and their mapping to virtual nodes change
• However, the Ring knowledge a given node has might be obsolete!

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 58

Lecture Conclusion
RiakKV
• Highly available distributed key‐value store
• Sharding with peer‐to‐peer replication architecture
• Riak Ring with consistent hashing for replica placement

Query functionality
• Basic CRUD operations
• Link walking
• Search 2.0 full‐text based on Apache Solr

MIE‐PDB.16: Advanced Database Systems | Lecture 10: Key‐Value Stores: RiakKV | 30. 11. 2021 60

	Outline
	Introduction
	RiakKV
	Data Model
	Interfaces
	CRUD Operations
	Bucket Operations
	Links
	Data Types
	Search 2.0
	Internal Details

	Conclusion

