B4M36DS2, BE4M36DS2: Database Systems 2

http://www.ksi.mff.cuni.cz/~svoboda/courses/211-B4M36DS2/

Lecture 13

Advanced Aspects

Lecturer: Martin Svoboda, author: Irena Holubová martin.svoboda@fit.cvut.cz

13. 12. 2021

Charles University, Faculty of Mathematics and Physics **Czech Technical University in Prague**, Faculty of Electrical Engineering

Graph Databases

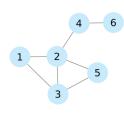
A bit of theory

- Data: a set of entities and their relationships
 - □ e.g., social networks, travelling routes, ...
 - ☐ We need to efficiently represent graphs
- Basic operations: finding the neighbours of a node, checking if two nodes are connected by an edge, updating the graph structure, ...
 - □ We need efficient graph operations
- \blacksquare G = (V, E) is commonly modelled as
 - □ set of nodes (vertices) V
 - □ set of edges E
 - \square n = |V|, m = |E|
- Which data structure should be used?

Adjacency Matrix

- Bi-dimensional array A of n x n Boolean values
 - □ Indexes of the array = node identifiers of the graph
 - \Box The Boolean junction A_{ij} of the two indices indicates whether the two nodes are connected
- Variants:
 - □ Directed graphs
 - □ Weighted graphs
 - □ ...

Adjacency Matrix



/0	1	1	0	0	0\
1	0	1	1	1	0 \
1	1	0	0	1	0 0 0 1 0
0	1	0	0	0	1
0 /	1	1	0	0	0 /
\o	0	0	1	0	0/

Pros:

- □ Adding/removing edges
- Checking if two nodes are connected

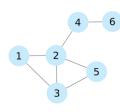
Cons:

- □ Quadratic space with respect to *n*
 - We usually have sparse graphs → lots of 0 values
- □ Addition of nodes is expensive
- Retrieval of all the neighbouring nodes takes linear time with respect to n

Adjacency List

- A set of lists where each accounts for the neighbours of one node
 - ☐ A vector of *n* pointers to adjacency lists
- Undirected graph:
 - □ An edge connects nodes i and j => the list of neighbours of i contains the node j and vice versa
- Often compressed
 - □ Exploitation of regularities in graphs, difference from other nodes, ...

Adjacency List



 $N1 \rightarrow \{N2, N3\}$ $N2 \rightarrow \{N1, N3, N5\}$ $N3 \rightarrow \{N1, N2, N5\}$ $N4 \rightarrow \{N2, N6\}$ $N5 \rightarrow \{N2, N3\}$ $N6 \rightarrow \{N4\}$

Pros:

- □ Obtaining the neighbours of a node
- Cheap addition of nodes to the structure
- More compact representation of sparse matrices

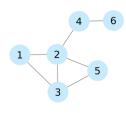
Cons:

- Checking if there is an edge between two nodes
 - Optimization: sorted lists => logarithmic scan, but also logarithmic insertion

Incidence Matrix

- Bi-dimensional Boolean matrix of n rows and m columns
 - □ A column represents an edge
 - Nodes that are connected by a certain edge
 - □ A row represents a node
 - All edges that are connected to the node

Incidence Matrix



 $\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

pros:

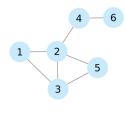
□ For representing hypergraphs, where one edge connects an arbitrary number of nodes

Cons:

□ Requires *n x m* bits

- Bi-dimensional array of *n x n* integers
 - □ Diagonal of the Laplacian matrix indicates the degree of the node
 - ☐ The rest of positions are set to -1 if the two vertices are connected, 0 otherwise

Laplacian Matrix



■ Pros:

- □ Allows analyzing the graph structure by means of spectral analysis
 - Calculates the eigenvalues

$$\begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 4 & -1 & -1 & -1 & 0 \\ -1 & -1 & 3 & 0 & -1 & 0 \\ 0 & -1 & 0 & 2 & 0 & -1 \\ 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

Improving Data Locality

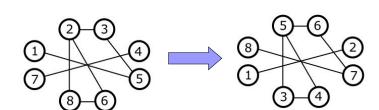
- Idea: take into account computer architecture in the data structures to reach a good performance
 - The way data is laid out physically in memory determines the locality to be obtained
 - Spatial locality = once a certain data item has been accessed, the nearby data items are likely to be accessed in the following computations
 - e.g., graph traversal
- Strategy: in graph adjacency matrix representation, exchange rows and columns to improve the cache hit ratio

Breadth First Search Layout (BFSL)

- Trivial algorithm
- Input: sequence of vertices of a graph
- Output: a permutation of the vertices which obtains better cache performance for graph traversals
- BFSL algorithm:
 - 1. Selects a node (at random) that is the origin of the traversal
 - Traverses the graph following a breadth first search algorithm, generating a list of vertex identifiers in the order they are visited
 - Takes the generated list and assigns the node identifiers sequentially
- Pros: optimal when starting from the selected node
- Cons: starting from other nodes

Bandwidth of a Matrix

- Graphs ↔ matrices
- Locality problem = minimum bandwidth problem
 - □ Bandwidth of a row in a matrix = the maximum distance between nonzero elements, with the condition that one is on the left of the diagonal and the other on the right of the diagonal
 - ☐ Bandwidth of a matrix = maximum of the bandwidth of its rows
- Matrices with low bandwidths are more cache friendly
 - $\hfill \square$ Non zero elements (edges) are clustered across the diagonal
- Bandwidth minimization problem (BMP) is NP hard
 - ☐ For large matrices (graphs) the solutions are only approximated

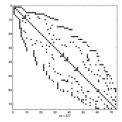


1	0	0	0	1	0	0	0
0	1	1	0	1 0 1 0 1 0 0 0	1	0	1
0	1	1	0	1	0	0	0
0	0	0	1	0	0	1	0
1	0	1	0	1	0	0	0
0	1	0	0	0	1	0	1
0	0	0	1	0	0	1	0
0	1	0	0	0	1	0	1

(1 1 0 0 0 0 0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0
0	0	1	1	1	0	0	0
0	0	1	1	1	0	0	0
0	0	1	1	1	1	0	0
0	0	0	0	1	1	1	0
0	0	0	0	0	1	1	1
0	0	0	0	0	0	1	1

Cuthill-McKee (1969)

- Popular bandwidth minimization technique for sparse matrices
- Re-labels the vertices of a matrix according to a sequence, with the aim of a heuristically guided traversal
- Algorithm:
 - Node with the first identifier (where the traversal starts) is the node with <u>the smallest degree</u> in the whole graph
 - Other nodes are labeled sequentially as they are visited by BFS traversal
 - In addition, the heuristic prefers those nodes that have the smallest degree



Graph Partitioning

- Some graphs are too large to be fully loaded into the main memory of a single computer
 - Usage of secondary storage degrades the performance of graph applications
 - □ Scalable solution <u>distributes</u> the graph on multiple computers
- We need to partition the graph reasonably
 - ☐ Usually for particular (set of) operation(s)
 - ☐ The shortest path, finding frequent patterns, BFS, spanning tree search, ...

One and Two Dimensional Graph Partitioning

- Aim: partitioning the graph to solve <u>BFS</u> more efficiently
 - □ Distributed into shared-nothing parallel system
 - □ Partitioning of the <u>adjacency matrix</u>
- 1D partitioning
 - □ Matrix rows are randomly assigned to the P nodes (processors) in the system
 - □ Each vertex and the edges emanating from it are owned by one processor

One and Two Dimensional Graph Partitioning

- BFS with 1D partitioning
 - Input: starting node s having level 0
 - Output: every vertex v becomes labeled with its level, denoting its distance from the starting node
 - Each processor has a set of frontier vertices F
 - At the beginning it is node s where the BFS starts
 - The edge lists of the vertices in F are merged to form a set of neighbouring vertices N
 - Some owned by the current processor, some by others
 - Messages are sent to all other processors to (potentially) add these vertices to their frontier set F for the next level
 - A processor may have marked some vertices in a previous iteration => ignores messages regarding them

One and Two Dimensional Graph Partitioning

- 2D partitioning
 - □ Processors are logically arranged in an R x C processor mesh
 - □ Adjacency matrix is divided C block columns and R x C block rows
 - □ Each processor owns C blocks
- Note: 1D partitioning = 2D partitioning with C = 1 (or R = 1)
- Consequence: each node communicates with at most R +
 C nodes instead of all P nodes
 - ☐ In step 2 a message is sent to all processors in the same row
 - □ In step 3 a message is sent to all processors in the same column

2 0 0 1 0 0 0 0 1 0 0 0 0 0													
2 0 0 1 0 0 0 0 1 0 0 0 0 0		1	2	3	4	5	6	7	8	9	10	11	12
2 0 0 1 0 0 0 0 1 0 0 0 0 0	1	0	0	0	0	0	0	0	0	0	1	1	0
4 0 0 0 0 1 0 0 0 0 0 0 1 5 0 0 0 1 0 0 0 0 0 0 0 1 6 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 7 0 0 1 0 0 1 0 1 0 1 0 1 0 8 0 1 1 0 0 0 1 0 0 0 0 0 0 9 0 0 0 0 0 0 0 1 0 0 0 1 1 10 1 0 0 0 0	2	0					-		1	0	0	0	0
4 0 0 0 0 1 0 0 0 0 0 0 1 5 0 0 0 1 0 0 0 0 0 0 0 1 6 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 7 0 0 1 0 0 1 0 1 0 1 0 1 0 8 0 1 1 0 0 0 1 0 0 0 0 0 0 9 0 0 0 0 0 0 0 1 0 0 0 1 1 10 1 0 0 0 0	3	0	1	0_	0	0_	0	1	1	0	0	0	0
6 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 7 0 0 1 0 0 0 1 0 0 1 0 1	4	0	0	0	0	1	100		0	0	0	0	1
7 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0	5	0	0	0	1	0	0	0	0	0	0	0	1
8 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	6	0	0	0	0	0	0	1	0	0	0	1	0
9 0 0 0 0 0 0 0 0 0 0 0 1 1 10 1 0 0 0 0	7	0	0	1	0	0	1	0	1	0	1	1	0
10 1 0 0 0 0 0 1 0 0 0 1 0 11 1 0 0 0 0	8	0	1	1	0	0	0	1	0	0	0	0	0
11 1 0 0 0 0 1 1 0 1 1 0 0	9	0	0	0	0	0	0	0	0	0	0	1	1
i i	10	1	0	0	0	0	0	1	0	0	0	1	0
12 0 0 0 1 1 0 0 0 1 0 0 0	11	1	0	0	0	0	1	1	0	1	1	0	0
	12	0	0	0	1	1	0	0	0	1	0	0	0

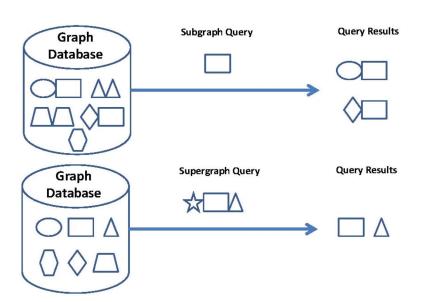
Partitioning of vertices: Processor (i, j) owns vertices corresponding to block row $(j-1) \times R + i$ $A_{i,j}^{(*)}$

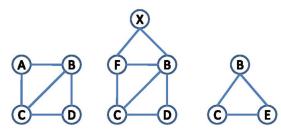
= block owned by processor (i,j)

$A_{1,1}^{(1)}$	$A_{1,2}^{(1)}$		$A_{1,C}^{(1)}$
$A_{2,1}^{(1)}$	$\left(A_{2,2}^{(1)}\right)$		$A_{2,C}^{(1)}$
$\overline{}$		·	:
$A_{R,1}^{(1)}$	$A_{R,2}^{(1)}$		$A_{R,C}^{(1)}$
	:		
	:		
	:		
$A_{1,1}^{(C)}$	$A_{1,2}^{(C)}$		$A_{1,C}^{(C)}$
$A_{2,1}^{(C)}$	$A_{1,2}^{(C)}$ $A_{2,2}^{(C)}$		$A_{1,C}^{(C)} = A_{2,C}^{(C)}$
$\begin{array}{c} A_{1,1}^{(C)} \\ A_{2,1}^{(C)} \\ \vdots \\ \end{array}$	$A_{1,2}^{(C)}$ $A_{2,2}^{(C)}$ \vdots		$A^{(C)}$

Transactional Graph Databases Types of Queries

- Sub-graph queries
 - □ Searches for a specific pattern in the graph database
 - ☐ A small graph or a graph, where some parts are uncertain
 - e.g., vertices with wildcard labels
 - □ More general type: sub-graph isomorphism
- Super-graph queries
 - Searches for the graph database members of which their whole structures are <u>contained</u> in the input query
- Similarity (approximate matching) queries
 - □ Finds graphs which are <u>similar</u>, but not necessarily isomorphic to a given query graph
 - Key question: how to measure the similarity





sub-graph:

 $q_1: g_1, g_2$ q_2 : \emptyset

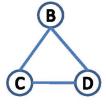
 g_1

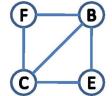
 g_2

 g_3

super-graph:

 $q_1\!\!:\varnothing$ q₂: g₃





Performance Tuning Goals

Example from 2010: Tweets add up to 12 Terabytes per day. This amount of data needs around 48 hours to be written to a disk at a speed of about 80 Mbps.

- MapReduce creates a bottleneck-free way of scaling out
- To reduce latency
 - Latency:
 - Non-parallel systems: time taken to execute the entire program
 - Parallel systems: time taken to execute the smallest atomic sub-task
 - Strategies:
 - Reducing the execution time of a program
 - Choosing the most optimal algorithms for producing the output
 - Parallelizing the execution of sub-tasks
- To increase throughput
 - Throughput = the amount of input that can be manipulated to generate output within a process
 - □ Non-parallel systems:
 - Constrained by the available resources (amount of RAM, number of CPUs)
 - □ Parallel systems:
 - "No" constraints
 - Parallelization allows for any amount of commodity hardware

Performance Tuning Linear Scalability

- Typical horizontally scaled MapReduce-based model: linear scalability
 - □ "One node of a cluster can process x MBs of data every second $\rightarrow n$ nodes can process $x \times n$ amounts of data every second."
 - Time taken to process y amounts of data on a single node = t seconds
 - Time taken to process y amounts of data on n nodes = t/n seconds
- Assumption: tasks can be parallelized into equally balanced units

Performance Tuning

$$S(N) = \frac{1}{(1 - P) + \frac{P}{N}}.$$

Amdahl's Law

- Formula for <u>finding the maximum improvement</u> in performance of a system when a part is improved
 - \square P = the proportion of the program that is parallelized
 - \Box 1 P = the proportion of the program that cannot be parallelized
 - $\hfill \ensuremath{\square}$ $\ensuremath{\mathcal{N}}$ = the times the parallelized part performs as compared to the non-parallelized one
 - i.e., how many times faster it is
 - e.g., the number of processors
 - Tends to infinity in the limit
- Example: a process that runs for 5 hours (300 minutes); all but a small part of the program that takes 25 minutes to run can be parallelized
 - □ Percentage of the overall program that can be parallelized: 91.6%
 - □ Percentage that cannot be parallelized: 8.4%
 - Maximum increase in speed: $1/(1-0.916) = \sim 11.9$ times faster
 - N tends to infinity

Performance Tuning

L = kW

Little's Law

- Origins in economics and queuing theory (mathematics)
- Analyzing the load on stable systems
 - □ Customer joins the queue and is served (in a finite time)
- "The average number of customers (∠) in a stable system is the product of the average arrival rate (k) and the time each customer spends in the system (W)."
 - □ Intuitive but remarkable result
 - i.e., the relationship is not influenced by the arrival process distribution, the service distribution, the service order, or practically anything else
- Example: a gas station with cash-only payments over a <u>single</u> counter
 - □ 4 customers arrive every hour
 - □ Each customer spends about 15 minutes (0.25 hours) at the gas station
 - ⇒ There should be on average 1 customer at any point in time
 - ⇒ If more than 4 customers arrive at the same station, it would lead to a bottleneck

Performance Tuning

C = a + bN

Message Cost Model

linear dependence on size

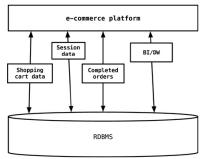
initialization

0.08

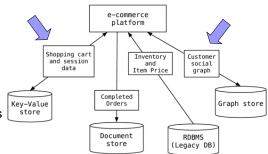
- Breaks down the cost of sending a message from one end to the other in terms of its fixed and variable costs
 - \Box C = cost of sending the message from one end to the other
 - \Box a = the upfront cost for sending the message
 - \Box b = the cost per byte of the message
 - \square *N* = number of bytes of the message
- Example: gigabit Ethernet
 - a is about 300 microseconds = 0.3 milliseconds
 - b is 1 second per 125 MB
 - Implies a transmission rate of 125 MBps.
 - \square 100 messages of 10 KB => take 100 × (0.3 + 10/125) ms = 38 ms
 - $\,\square\,$ 10 messages of 100 KB => take 10 \times (0.3 + 100/125) ms = 11 ms
 - A way to optimize message cost is to send as big packet as possible each time

0,8

- Different databases are designed to solve different kinds of problems
- Using a single database engine for all of the requirements usually leads to partially non-performant solutions
- Example: e-commerce
 - □ Many types of data
 - Business transactions, session management data, reporting, data warehousing, logging information, ...
 - Do not need the same properties of availability, consistency, or backup requirements



- Polyglot programming (2006)
 - ☐ Applications should be written in a mix of languages
 - □ Different languages are suitable for tackling different problems
- Polyglot persistence
 - Hybrid approach to persistence
 - e.g., a data store for the shopping cart which is highly available vs.
 finding products bought by the customers' friends



Polyglot Persistence

- There may be other applications in the enterprise
 - e.g., the graph data store can serve data to applications that need to understand which products are being bought by a certain segment of the customer base
- ⇒ Instead of each application talking independently to the graph database, we can wrap the graph database into a service
 - Assumption:
 - Nodes can be saved in one place
 - Queried by all the applications
 - Allows for the databases inside the services to evolve without having to change the dependent applications

