NSWI090: Computer Networks

http://www.ksi.mff.cuni.cz/~svoboda/courses/202-NSWI090/

Addresses and Addressing II

Martin Svoboda

svoboda@ksi.mff.cuni.cz

10. 5. 2021

Charles University, Faculty of Mathematics and Physics

Lecture Outline

Addresses and addressing

- L3
 - IPv4 addresses
 - Subnetting and supernetting
 - CIDR
 - Registries
 - Private addresses and NAT
 - IPv6 addresses

IPv4 Address Exhaustion

Temporary mitigating solutions

- 1985: Subnetting
 - One larger network is divided into separate sub-networks
- 1988: Allocation mechanism
 - One larger block → more smaller blocks principle
- 1993: CIDR (Classless Inter-Domain Routing)
 - Original concept of IP address classes is entirely dropped
- 1994: Private addresses
 - Usage of private IPv4 addresses instead of globally unique ones
 - Requires NAT (Network Address Translation)

Permanent solution

- 1995: IPv6 protocol and its IPv6 addresses
 - 6 bytes instead of 4 bytes \Rightarrow significantly larger address space

Subnetting

Motivation

- One closest larger block allocation principle is used
- \Rightarrow inner block address space may not be used efficiently
 - Since unused addresses cannot be used by anyone else
 - This in fact led to unacceptable wasting
- Objective
 - Higher utilization of addresses within allocated blocks
- Principle
 - Division of larger blocks into smaller ones
 - In terms of decomposition of networks into subnetworks

Subnetting

Subnetting

- Standard network is internally divided into subnetworks
 - Standard means Class A, B, or C block
- Divide position is shifted to the right (toward lower bits)
 - By one or more bits as needed
- \Rightarrow divide position must be somehow remembered
 - Since the traditional class boundaries will no longer work
 - And we still must be able to recognize IP address parts
 - Which will now be impossible without extra information
- Netmask (subnet mask) was proposed for this purpose
 - Written as an ordinary IP address
 - Contains bits 1 in the intended network part, bits 0 elsewhere
 - E.g.: 255.255.0.0 as an equivalent of Class B network

Subnetting: Example

Assume we have a Class C network 195.113.19.0

• Permits \approx 256 addresses, netmask would be 255.255.255.0

It can be divided into the following subnetworks

- Subnetwork 195.113.19.0 with netmask 255.255.255.128
 - I.e., 195.113.19.0000000_B, netmask 255.255.255.10000000_B
 - Divide shifted by +1, allows \approx 128 individual addresses
- Subnetwork 195.113.19.128 with netmask 255.255.255.192
 - I.e., 195.113.19.10000000_B, netmask 255.255.255.11000000_B
 - Divide shifted by +2, allows \approx 64 individual addresses
- Subnetwork 195.113.19.192 with netmask 255.255.255.192
 - I.e., 195.113.19.11000000_B, netmask 255.255.255.11000000_B
 - Divide shifted by +2, allows \approx 64 individual addresses

Subnetting

Observations

- Both routers and end nodes must support the whole concept
 - Which is not a big deal since...
 - We are the owners of the infrastructure within the network
 - End nodes can easily be adapted via software updates
- Subnetting is always limited to a given standard network only
 - Its impact must not be visible from outside
 - I.e., network as a whole still must act as an atomic unit
 - And so global routing and forwarding are not impacted at all

Supernetting

Motivation

- More closest smaller blocks allocation principle is used
- \Rightarrow size of **routing tables** increases
 - Since each individual network must have its own record
 - Routing tables therefore became unacceptably large
 - As well as routing tables lookup slowed down
- Objective
 - Reducing overall size of routing tables in backbone routers
 - And so with no impact on depletion of IP addresses themselves
- Principle
 - Aggregation of smaller blocks into larger ones
 - In terms of records in routing tables

Supernetting

Supernetting (Aggregation)

Several adjacent aligned blocks are merged together

- They must share the same prefix of their network IDs
- Entire address space defined by this prefix must be covered
- All the original blocks must have the same routing direction
- Divide position is shifted to the left (toward higher bits)
- \Rightarrow once again, **netmasks** are needed

Observations

- Supernetting is entirely transparent
 - Contrary to subnetting...
 - And so all routers within the system must support the concept

Supernetting: Example

Assume we have the following individual Class C networks

- Or just one network with the following address blocks...
 - Target network 195.113.16.0 (i.e., 195.113.00010000_B.0)
 - Target network 195.113.17.0 (i.e., 195.113.00010001_B.0)
 - Target network 195.113.18.0 (i.e., 195.113.00010010_B.0)
 - Target network 195.113.19.0 (i.e., 195.113.00010011_B.0)
- They all have the same routing direction

Their routing records can thus be grouped together

- Target network 195.113.16.0 with netmask 255.255.252.0
 - I.e., 195.113.00010000_B.0, netmask 255.255.11111100_B.0
 - Divide shifted by -2

Regional Registries

Original arrangement

- Entire address space was managed by IANA
 - I.e., individual blocks were directly assigned to end users
 - In terms of Class A, B, or C blocks
- Involved agenda became far too extensive and demanding
 - \Rightarrow individual regional registries were gradually founded
 - And related agenda correspondingly transferred

Regional Internet Registry (RIR)

- **Organization** managing **allocation** and **registration** of Internet resources within a given region
 - IP addresses and Autonomous System Numbers
- 5 individual RIRs around the world exist nowadays
 - Each obtains larger blocks of IP addresses from IANA

Regional Registries

Regional registries

- 1992: RIPE NCC (Réseaux IP Européens Network Coordination Centre)
 - Europe, Central Asia, Russia, West Asia
- 1993: APNIC (Asia Pacific Network Information Centre)
 - South, East, and Southeast Asia, Oceania
- 1997: ARIN (American Registry for Internet Numbers)
 - USA, Canada, Antarctica, ...
 - Operating in fact since 1991
- 1999: LACNIC (Latin America and Caribbean Network Information Centre)
 - Latin America, Caribbean
- 2004: AFRINIC (African Network Information Centre)
 - Africa

Regional Registries

CIDR

Motivation

• Allocation of address blocks is still not flexible enough

- Because of coarse granularity of possible block sizes
- Especially for networks of mid-sized organizations
 - $-\,$ Class C with \approx 256 addresses is too small
 - -~ Class B with \approx 66 thousand addresses is too large
- Subnetting and supernetting both helped...
 - But transparent solution is needed so that the entire address space can be exploited efficiently enough (not just parts of it)
- Objective
 - Hierarchical allocation of address blocks with arbitrary sizes
 - So that block sizes can better match projected needs
- Principle: fully classless routing mechanism

CIDR

CIDR (Classless Inter-Domain Routing)

• Concept of classes is now definitely abandoned

- Except for Classes D (multicast addresses) and E (future use)
 - Their meaning and ranges were preserved untouched
 - Including the meaning of other special addresses

• Divide can now be placed anywhere

- I.e., leading bits no longer determine anything
- And so divide position must once again be explicitly declared
 - Though analogous to netmasks...
 - ... different and more convenient notation was introduced
- CIDR Prefix (or simply prefix)
 - Number of bits forming the network part
 - Written as a decimal number after the slash symbol at the end
 - E.g.: 172.217.0.0/16 as an equivalent of former Class B network

CIDR: Example

Assume we have an allocated block 195.113.19.0/24

- It can internally be divided into the following networks
 - Network A: 195.113.19.0/25 (i.e., 195.113.19.00000000_B/25)
 - Network B: 195.113.19.128/26 (i.e., 195.113.19.10000000_B/26)
 - Network C: 195.113.19.192/26 (i.e., 195.113.19.11000000_B/26)

Detailed routing information...

- Can remain entirely undisclosed
 - 195.113.19.0/24 for all our networks
- As well as intentionally fully or partially exposed if needed
 - 195.113.19.0/25 for network A
 - 195.113.19.128/25 for aggregated networks B and C

CIDR

Observations

CIDR is deployed globally and fully transparent

- I.e., its scope is not limited just to a particular internetwork
 - As was the case of subnetting alone
- Meaning of former classes can be preserved
 - Class A / B / C blocks correspond to CIDR prefixes 8 / 16 / 24
 - By the way, individual addresses have CIDR prefix 32
- However, they can also be transparently decomposed...
 - E.g., 172.217.23.0/24 is a CIDR block with prefix 24
 - $-\,$ I.e., it provides \approx 256 individual addresses
 - As if it was just an ordinary Class C block
 - But it is not, since it is just a part of a former Class B block
 - Such a thing would not be possible without CIDR
- As a consequence, entire address space is treated uniformly

CIDR

Observations (cont'd)

- Ideas of both subnetting and supernetting are supported
 - Larger blocks can be divided into smaller ones
 - In terms of decomposition of networks
 - So that the address space can be utilized more efficiently
 - Because block sizes can be chosen with finest granularity

Smaller blocks can be aggregated into larger ones

- In terms of grouping of routing records
- So that size of routing tables can hopefully be reduced
- And so detailed routing information can remain localized
- Without needing it to be disseminated globally
- Allows for hierarchical assignment of address blocks
 - And so the whole hierarchy of registries
 - Which also helps with the growing agenda

Hierarchy of Registries

Hierarchy levels

- CIR (Central Internet Registry) = IANA
- RIR (Regional Internet Registry)
 - RIPE NCC, APNIC, ARIN as well as later on LACNIC and AFRINIC
 - Later on liaised through NRO (Number Resource Organization)
 - Informal body coordinating matters of global importance
- Optional NIR (National Internet Registry)
 - National allocaters in larger countries only
 - APNIC region: China, India, Japan, Korea, Indonesia, ...
 - LACNIC region: Brazil, Mexico
- LIR (Local Internet Registry)
 - ISPs, larger enterprises, or academic institutions
 - Membership in a given RIR / NIR is required

Example: end node 195.113.19.170

- IANA
 - 195.0.0/8 (≈ 17 million addresses) → RIPE NCC
- RIR: RIPE NCC
 - 195.113.0.0/16 (\approx 66 thousand addresses) \rightarrow Cesnet
 - Autonomous System AS2852
 - 195.113.0.0/18 (\approx 16 thousand) \rightarrow Charles University
 - Publicly invisible as for routing records
- Internal invisible decomposition
 - ...
 - 195.113.18.0/23 (≈ 512 individual addresses)
- Target end node
 - 195.113.19.170/32 \rightarrow nosql.ms.mff.cuni.cz

Allocation process

- IANA
 - Delegates /8 blocks to individual RIRs
 - Certain blocks are assigned to particular organizations directly
 - E.g.: US Postal Service, US Department of Defense, ...
 - Online database
 - https://www.iana.org/assignments/ipv4-address-space/
 - Contains only records for /8 blocks
- RIRs / NIRs
 - Delegate parts of allocated blocks to subordinated LIRs
- LIRs
 - Assign smaller blocks to end users
 - Often singleton addresses only
 - Consequence: addresses became dependent on particular LIRs

IANA top level database for /8 blocks

- Types of records
 - Allocated
 - Delegated entirely to a specific RIR or other organization
 - Legacy
 - Formerly allocated by IANA prior to the foundation of RIRs
 - Later on transferred to and administered by individual RIRs
 - Reserved
 - Designated for **specific purposes** (e.g., loopback, ...)
 - Unallocated
 - Not yet allocated or reserved and so available for assignment

Current situation (May 2021)

- Distribution of /8 blocks between individual RIRs
 - ARIN (93), APNIC (50), RIPE NCC (40), LACNIC (10), AFRINIC (6)
 - Class D multicast addresses (16), Class E future use (16), ...
- Overall allocation of /8 blocks
 - 2011: IANA delegated the very last available blocks
 - One to every individual of all 5 RIRs
 - \Rightarrow there is **no longer any unallocated /8 block**
- Situation in RIPE NCC
 - 2019: the very last block from the pool was allocated
 - Only recovered addresses via a waiting list are now available
 - I.e., blocks returned by former LIR holders
 - Currently \approx 320 thousand individual addresses available

Private Addresses

Motivation

- Each node must have a <u>globally</u> unique IP address
 - I.e., address distinct within the whole system of networks
 - Otherwise routing will not work
 - Number of available addresses is still decreasing, though
 - Despite all the other already discussed mitigating measures
- Idea
 - Nodes in a private network can use private addresses instead
 - These private addresses will then be translated to public ones
 - In order to ensure they do not leave a given private network
- Two basic translation mechanisms are available
 - NAT (Network Address Translation)
 - L7 Gateways

Private Addresses

Observations

• Any range of addresses could theoretically be used

- However, it is not desirable and correct
- In particular, when such addresses would (even accidentally) leak out from a given private network...
 - It will not be possible to remedy the situation later on
 - Simply because other routers will not be able to detect them
- Therefore dedicated addresses should be used
 - 1 Class A block: 10.X.Y.Z
 - I.e., 10.0.0/8
 - 16 Class B blocks: 172.16.X.Y 172.31.X.Y
 - I.e., 172.16.0.0/12
 - 256 Class C blocks: 192.168.0.X 192.168.255.X
 - I.e., 192.168.0.0/16

Network Address Translation

Network Address Translation (NAT)

- Generic translation mechanism
 - Allows not just to spare public IP addresses
 - Probably the most successful mitigating solution
- Deployment
 - Inner private and outer public networks
 - Separated by a router implementing the NAT mechanism
- Disadvantages
 - Decreases the overall throughput
 - May not always work
 - Since the translation primarily works at L3 / L4 layers
 - Therefore it is incapable of modifying L7 data which may also contain the same addresses otherwise subjected to translation

NAT Principle

Delivery mechanism

- Outgoing transmission
 - (1) inner node sends an IP datagram in a standard way
 - Source address is set to private IP_s address of a given node
 - Destination address is IP_T address of the intended recipient
 - (2) this datagram is captured by the router and NAT is applied
 - <u>Source</u> address is replaced with appropriate public IP_P address
 - (3) modified datagram is then sent to the public network
 - As if its sender was actually the router itself
- Incoming transmission
 - (4) response from the target recipient is delivered back to IP_P
 - (5) this response is captured by our router and translated
 - Destination address is replaced with the original IPs
 - (6) modified response is internally sent to our node

Static and Dynamic NAT

Static NAT

- Mapping table is fixed and given in advance
 - Each node will always be mapped to the same public address
 - And so individual bindings are predictable in advance
- Inner nodes are always reachable from outside
 - In terms of incoming transmissions initiated from outside
 - I.e., not in terms of responses to our outgoing transmissions
 - Since these are always deliverable
- Disadvantage
 - Sizes of both public and private blocks must be identical
 - And so there is no saving effect
 - At least unless certain inner nodes shall not communicate at all

Static and Dynamic NAT

Dynamic NAT

- Records in mapping tables are added / removed dynamically
 - I.e., individual bindings are created on demand
 - Only when they are really needed (new outgoing connection)
 - And will only exist for a limited period of time
 - Assigned address may always be different for a given node
 - And so it cannot be determined in advance
- Inner nodes are not (automatically) reachable from outside
 - Unless their bindings already exist
 - This may be treated as a disadvantage
 - As well as on the contrary...
 - Since NAT can therefore act as a kind of firewall

Not all inner nodes must necessarily have their bindings

And so we can really save public addresses

Port Address Translation

Network Address and Port Translation (NAPT)

- Also abbreviated just as Port Address Translation (PAT)
- Motivation
 - Suitable when we do not have as many public addresses as nodes in our private network
 - This often means we may only have just a single public address

• Principle

- All inner nodes are mapped to the same public address
- Individual transmissions are distinguished via different ports

PAT Principle

Delivery mechanism

- Outgoing transmission
 - (1) inner node sends an IP datagram in a standard way
 - Source transport private address is IP_s:port_s
 - Destination transport address of recipient is IP_T:port_T
 - (2) this datagram is captured by the router and PAT is applied
 - Source address is replaced with appropriate public IP_P:port_P
 - Datagram TCP / UDP payload is also accordingly translated
 - (3) modified datagram is then sent to the public network
 - As if its sender was actually the router itself
- Incoming transmission
 - Steps (4), (5), and (6) for response delivery are analogous...

PAT Observations

Dynamic character

- Created bindings always exist only for a limited period of time
 - And so responses can only be delivered during this window
- Depends on a particular L4 protocol and its implementation
 - UDP: 30 300 seconds
 - TCP: 30 60 minutes

PAT alternatives

- How the assigned public IP_P:port_P address is to be resolved?
 - It can depend solely on the source private IP_S:port_S address
 - Full / IP Restricted / Port Restricted Cone NAT
 - As well as even on the intended destination IP_T:port_T address

Symmetric NAT

Incoming transmissions from which nodes will be accepted?

PAT Alternatives

Full Cone NAT

- Assigned public IP_P:port_P depends...
 - Solely on private IP_S:port_S address
 - I.e., assigned public address remains the same even for further connections to possibly different intended destinations
- Responses to IP_P:port_P are accepted from...
 - All IP addresses and all their ports without any limitation
- IP Restricted Cone NAT (or just Restricted Cone NAT)
 - Assignment rules are the same
 - Responses to IP_P:port_P are accepted only from...
 - Contacted IP addresses and still all their ports

PAT Alternatives

Port Restricted Cone NAT

- Assignment rules are the same once again
- Responses to IP_P:port_P are accepted only from...
 - Contacted IP addresses and only from contacted ports

Symmetric NAT

- Assigned public IP_P:port_P depends...
 - Both on private IP_S:port_S and destination IP_T:port_T addresses
 - I.e., assigned public address (in particular its port) changes every time a different destination is requested
- **Responses** to IP_P:port_P are accepted only from a given single...
 - Contacted IP address and its only contacted port

Motivation

- IPv4 exhaustion problem
 - Temporary mitigating measures worked
 - And actually worked better than it was perhaps anticipated
 - Since the first exhaustion threat appeared around 1990
 - And IPv4 is still the primary approach even after 30 years
 - Nevertheless, permanent solution was needed
 - Formerly intended Class E was not found realistically applicable
 - Since IPv4 would need to be entirely redesigned
 - Together with dozens of other related protocols (OSPF, RIP, ...)
 - And so an entirely new solution was introduced
- IPv6 protocol and addresses
 - Primarily larger address space
 - But also several other major improvements and changes

IPv6 addresses

Differences to IPv4

More address hierarchy levels

- Allows for better aggregation
- And so smaller and localized routing tables

Easier assignment of addresses

- Including autoconfiguration options
- Network interface can have several unicast addresses at a time

Introduction of anycast addresses

- And removal of broadcast addresses
- Significantly larger address space
 - 128 bits (16 bytes) instead of just 32 bits (4 bytes)
 - Theoretically $\approx 3.4 \times 10^{38}$ individual addresses
 - Compared to just $pprox 4.3 imes 10^9$ in case of IPv4

IPv6 addresses

- Notation
 - Eight 2-byte-long words, written as 4-digit hexadecimal numbers, mutually separated by colons
 - E.g.: 805b:2d9d:dc28:0000:0000:fc57:d4c8:1fff
- Abbreviations
 - Suppressed leading zeros
 - Leading zeros in individual words are truncated
 - E.g.: 805b:2d9d:dc28:0:0:fc57:d4c8:1fff
 - Zero-compressed
 - One adjacent group of zero words is entirely omitted
 - E.g.: 805b:2d9d:dc28::fc57:d4c8:1fff
 - Mixed notation for embedded IPv4 addresses
 - E.g.: 0:0:0:0:0:0:0:212.200.31.255 or ::212.200.31.255

Types of addresses

- Unicast addresses
 - Allow for standard communication with individual nodes
- Multicast addresses
 - Allow for communication with all nodes in a given group
 - Always start with ff/8 ($11111111_B...$)
 - Can be used to simulate traditional broadcasts, too
- Anycast addresses
 - Allow for communication with one node from a given group

Types of unicast addresses

- Global Unicast
 - Globally unique public individual addresses
- Local Unicast (Unique Local Addresses) (ULA)
 - Private addresses unique within all subnets of a given site
 - Labeled with such site and subnet identifiers
 - Therefore suppressed chances of accidental leak outs
 - Always start with fc00/7 (1111110_B...)
- Link Local
 - Private addresses unique within a given individual subnet
 - Allow for **autoconfiguration** based on MAC addresses
 - Always start with fe80/10 (1111111010_B...)
- Site Local
 - Private addresses unique within all subnets of a given site
 - Should no longer be used

Global individual addresses

- Three components
 - Site identifier
 - Identifies a particular site = group of related networks
 - Subnet identifier
 - Identifies a particular network within a given site
 - Interface identifier
 - Identifies a particular node within a given subnet
- Routing mechanisms
 - Public topology
 - Routing algorithms in public Internet only work with sites
 - Site topology
 - Internal site topology is concealed to the public Internet

Lecture Conclusion

L3: IPv4 addresses

- Subnetting and supernetting
- CIDR blocks and prefixes
- RIR, NIR, and LIR registries
- Private addresses and NAT / PAT translation
- L3: IPv6 addresses
 - Site, subnetwork, and interface parts
 - Types of addresses