NSWI090: Computer Networks

http://www.ksi.mff.cuni.cz/~svoboda/courses/202-NSWI090/

Addresses and Addressing I

Martin Svoboda

svoboda@ksi.mff.cuni.cz

3. 5. 2021

Charles University, Faculty of Mathematics and Physics

Lecture Outline

Addresses and addressing

- L2: MAC addresses
- L3: IP addresses
- L4: port numbers
- L7: URI identifiers

Addressing at L2

MAC addresses (hardware addresses)

- Used at L2
 - More precisely at the MAC sublayer (Media Access Control)
- Assigned to network interface controllers
 - I.e., individual L2 interfaces of end nodes as well as routers
 - Bridges / switches only have one MAC address, if any
 - In case they should explicitly be accessible as ordinary devices
 - Not because of fulfilling their L2 tasks (filtering / forwarding)
- Types of addresses
 - Standard unicast, but also multicast and broadcast
- Different technologies may have different mechanisms
 - However, sharing of address spaces may be desirable
 - So that **Wi-Fi and Ethernet** can coexist in one network

Addressing at L2

MAC addresses (cont'd)

Must be <u>locally</u> unique within a given network

- So that senders can **identify** the intended recipients
- And these recipients are able to recognize their frames
 - Since everything is / may be delivered to everyone
 - Because all nodes are mutually visible and reachable
- Assignment strategies
 - Locally administered addresses would suffice
 - However, globally unique addresses simplify everything
 - Otherwise newly connected devices would need to be treated
 - So that they do not potentially use conflicting addresses
- ⇒ globally unique burned-in addresses assigned by device manufacturers are primarily used in practice
 - Exceptions exist, though

EUI Addresses

EUI numbering systems (Extended Unique Identifier)

- EUI-48 (48 bits, 6 bytes, \approx 281 trillion addresses)
 - Formerly denoted as MAC-48
 - Which is inappropriate since MAC denotes the entire sublayer
 - And so this label should no longer be used since it is obsolete
 - Notation
 - Six hexadecimal numbers separated by hyphens or colons
 - **E.g.:** FC-77-74-19-41-1E or FC:77:74:19:41:1E
 - Deployment: Ethernet, Wi-Fi, Bluetooth, ATM, ...
- EUI-64 (64 bits, 8 bytes)
 - Newer version with larger address space
 - Conversion of EUI-48 possible by adding FF-FE in the middle
 - **E.g.:** FC-77-74-<u>FF-FE</u>-19-41-1E
 - Deployment: FireWire (IEEE 1394), ...

EUI Addresses

Internal structure

- Organizationally Unique Identifier (OUI)
 - Higher 3 bytes (24 bits)
 - Describes a particular vendor or manufacturer
 - E.g.: FC-77-74 (Intel), 90-F6-52 (TP-Link), ...
- Interface number
 - Lower 3 bytes (24 bits) in case of EUI-48
 - Lower 5 bytes (40 bits) in case of EUI-64
 - Serial number of a given network interface controller

OUI Identifiers

OUI component details

- M bit (I/G bit) = the least significant bit of the first byte
 - 0 = individual address (unicast)
 - 1 = group address (multicast, broadcast)
- X bit (U/L bit) = the second least significant bit of the first byte
 - 0 = Universally Administered Addresses (UAA)
 - Intended for globally unique addresses
 - 1 = Locally Administered Addresses (LAA)
- Examples
 - Individual (M = 0) and universal (X = 0)

- FC-77-74-19-41-1E: in binary 11111100-...

- Group (M = 1) and local (X = 1)
 - FF-FF-FF-FF-FF (L2 broadcast): in binary 11111111111...

OUI Identifiers

Observations

- Why M and X bits are the two least significant bits?
 - Ethernet uses Big Endian for the individual bytes
 - But Little Endian for individual bits within these bytes
 - Therefore the first two transmitted bits become M and X
 - And so various address modes can be distinguished easily
- Both M and X bits are set to zeros in OUI identifiers as such
 - Only when they are exploited in EUI addresses...
 - ... they can then be changed as required and so their special meaning activated and utilized

OUI Identifiers

Organizationally Unique Identifier (OUI) (cont'd)

- Unique vendor, manufacturer, or other organization identifier
 - Purchased from the IEEE Registration Authority
 - One organization may actually have multiple OUIs at a time
- Various usages
 - Our EUI-48 and EUI-64 addresses
 - But also SNAP Protocol Identifiers (IEEE 802.2 LLC extension)
 - ...
- Online list: http://standards-oui.ieee.org/oui/oui.txt
 - Current status (April 2021)
 - Almost 30 thousand OUIs are assigned
 - Huawei pprox 1100, Cisco pprox 1060, Apple pprox 890, Samsung pprox 690, ...
 - TP-Link pprox 160, Technicolor pprox 80, D-Link pprox 60, Zyxel pprox 40, ...
 - More than 17 thousand organizations only have a single OUI

Addressing at L4

Port numbers

- Assigned to access points between L4 and L7 in order to allow end-to-end communication of individual application entities
 - Within a given end node
 - Separately for each transport protocol (TCP, SCTP, DCCP, UDP)
 - Yet in practice usually the same for all these protocols
- Necessary for both incoming and outgoing directions
- Allow for the identification of transport connections
 - Tuple (sender IP₁:port₁, protocol, recipient IP₂:port₂)
 - Target of the outgoing transmission (IP₂:port₂, protocol)
 - Source of the incoming transmission (IP₁:port₁, protocol)
- Requirements
 - Ports must be unique, abstract, implicit and static

Ports

Port numbers

- 16-bit long integer numbers: permitted values 0 65535
- System and registered ports maintained by IANA
 - Internet Assigned Numbers Authority
- Online table of port numbers and service names
 - https://www.iana.org/assignments/service-names-port-numbers/

Types of ports

- System Ports (Well Known Ports) (0 1023)
 - Assigned to one purpose (usually system-oriented services)
 - Should not be used for any other purpose
 - Examples
 - FTP (21), SSH (22), SMTP (25), DNS (53), HTTP (80),
 POP3 (110), NTP (123), IMAP (143), HTTPS (443), ...

Ports

Types of ports (cont'd)

- User Ports (Registered Ports) (1024 49151)
 - Assigned to one purpose again
 - But may freely be used for any other purpose
 - Examples
 - Registered: MySQL (3306), PostgreSQL (5432), Redis (6379), Neo4j (7474), MongoDB (27017), ...
 - Not registered: Riak (unasigned 8087 and 8098), Cassandra (assigned 7000), ...
- Dynamic Ports (Private Ports) (49152 65535)
 - Not assigned, available for unrestricted usage
 - Usually for outgoing transmissions

Addressing at L7

Requirements and expectations

- Various kinds of objects need to be identified at L7
 - Web pages, files, e-mail addresses, publications, ...
- Two aspects actually need to be covered
 - Identification
 - So that objects of one kind can mutually be distinguished
 - At least locally (within a given end node) but also globally
 - Location
 - In terms of a particular node where such objects can be found
 - It make sense to logically decouple both these aspects
- Each application may have its own proprietary naming system
 - Yet it makes sense to pursue unification and coordination
 - As well as to recycle approaches that already exist

URI Framework

Uniform Resource Identifier (URI)

- Generic, federated and extensible naming system
 - Allows to identify basically anything
 - Including real-world objects (people, places, concepts, ...)
- Types of identifiers
 - Uniform Resource Locator (URL)
 - Web resource reference (web address)
 - Specifies particular location as well as retrieval mechanism
 - Uniform Resource Name (URN)
 - Globally unique persistent resource identifier
 - Does not imply any location, not widely used
 - Uniform Resource Characteristics (URC)
 - Description of meta data about URLs or URNs (citations, ...)
 - Never standardized, not even implemented

URI Examples

Sample URLs

http scheme (Hypertext Transfer Protocol)

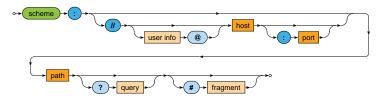
- Addresses of web pages or other resources
- E.g.: http://www.mff.cuni.cz/en/index.php?page=people#5460
- ftp scheme (File Transfer Protocol)
 - Paths to files or directories accessible using the FTP protocol
 - E.g.: ftp://svoboda:password@ulita.ms.mff.cuni.cz/
- file scheme
 - Host-specific paths on local or remote file systems
 - E.g.: file:///home/svoboda/NSWI090/Lecture-03-Layers.pdf
- mailto scheme
 - E-mail addresses including additional parameters
 - E.g.: mailto:svoboda@ksi.mff.cuni.cz?subject=NSWI090

URI Examples

Sample URLs

- tel scheme
 - Telephone numbers
 - E.g.: tel:+420-951-554-250
- sip scheme (Session Initiation Protocol)
 - Participants of multimedia sessions such as voice calls (VoIP, ...)
 - E.g.: sip:martin.svoboda@mff.cuni.cz
- jdbc scheme (Java Database Connectivity)
 - Connections to relational databases from Java applications
 - E.g.: jdbc:postgresql://nosql.ms.mff.cuni.cz:5432/database

URI Examples


Sample URNs

- isbn namespace (International Standard Book Number)
 - Printed or electronic books
 - E.g.: urn:isbn:9780132126958
- issn namespace (International Standard Serial Number)
 - Printed or electronic serial publications (journals, ...)
 - E.g.: urn:issn:0302-9743
- ietf namespace (Internet Engineering Task Force)
 - IETF family of RFC, STD, FYI, and BCP documents
 - E.g.: urn:ietf:rfc:2648
- iso (International Organization for Standardization)
 - Standards and other technical specifications
 - E.g.: urn:iso:std:iso-iec:9075:-1:ed-5:en

URI Structure

Generic syntax

- May further be restricted by particular schemes
- Syntax diagram (for context-free grammars)

- Green boxes: literals
 - Expected to be replaced with a particular value
- Blue boxes: constants (preserved as they are)
- Orange boxes: non-terminals
 - Unfolded to more complicated fragments

URI Schemes

URI components

- Scheme: case-insensitive scheme name (usually lower-case)
- Authority
 - User info: authentication tokens such as name and password
 - Deprecated for security reasons
 - Host: domain name, IP address, or a different registered name
 - Port: transport layer port
- Path: usually hierarchical path with individual segments
- Query: usually parameters in a form of attribute / value pairs
- Fragment
 - Reference to a secondary resource related to the primary one
 - E.g.: anchors in HTML pages, classes in OWL ontologies, ...

URI Framework

Both schemes and namespaces are registered with IANA

- URI schemes
 - https://www.iana.org/assignments/uri-schemes/
 - Current status (April 2021)
 - -~pprox 100 permanent, 230 provisional, and 10 historical schemes
- URN namespaces
 - https://www.iana.org/assignments/urn-namespaces/
 - Current status (April 2021)
 - -~pprox 70 namespaces

Internationalized Resource Identifier (IRI)

- Just an extended version of the traditional URIs
- Allows to use most of Unicode characters
 - And so Chinese, Japanese, Korean or other national characters

Addressing at L3

IP addresses

- Primary objective is addressing of nodes as a whole
- In spite of that...
 - IP addresses are actually assigned to their network interfaces
 - I.e., individual L3 interfaces of end nodes as well as routers
 - Note that end nodes used to usually have only one IP address
 - But nowadays, **multi-homed** hosts with more IPs are common
- Another observation...
 - Routing algorithms perceive networks as a whole
 - networks themselves must also be uniquely identified
 - Though two separate network / node identifiers could work
 - Internally structured atomic IP addresses are more practical
 - Otherwise hop-to-hop routing and forwarding would not work

IP Addresses

Requirements on IP addresses

- **<u>Globally</u> unique** within the whole system of networks
- And internally structured...

Internal components

- Network part (Network ID)
 - Prefix of the whole address
 - I.e., certain part from the beginning
 - Uniquely identifies a given network as a whole
 - Determines affiliation of nodes to a particular network
- Relative part (Host ID)
 - Remaining part of the whole address
 - Uniquely identifies a given node within a given network

Assignment Principles

Observations = rules that must be followed

- Two nodes in the same network...
 - Must have the same network parts
 - And different relative parts
 - So that they can be mutually distinguished
- Two nodes in different networks...
 - Must have different network parts
 - So that we can detect they belong to different networks
 - And as for relative parts, they do not matter
 - They may be the same as well as not

Assignment Principles

Block principle

- (1) **network as a whole** must first be assigned with a whole contiguous **block of addresses**
 - I.e., set of IP addresses belonging to a specific range
 - All with the same prefix (network part)
 - Assignment process must be globally coordinated
 - IANA and regional providers
- (2) only than individual nodes can be given their addresses
 - Of course, from this range
 - Manually or using DHCP or similar protocols

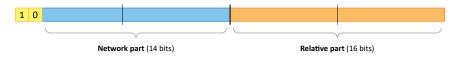
Consequence

- Unused addresses cannot be used by anyone else!
 - This may lead / actually led to unacceptable wasting

IPv4 Addresses

IPv4 addresses

- 4 bytes (32 bits) potentially pprox 4 billion values
 - Which is certainly not much from today's perspective
 - But was initially thought of as generously sufficient
- Notation
 - Four decimal numbers, one for each byte, separated by dots
 - **E.g.:** 195.113.19.170
- Internal structure: network and relative parts
 - Where the divide between the parts should be located?
 - 3 possible divide placements are possible
 - This gives us Classes A, B and C of IP addresses
 - If more options exist, though, how to recognize them?
 - Since it must be possible just from the IP address itself


Class A

- Divide is positioned after the first byte
 - \approx 128 networks
 - Each with pprox 17 million addresses
- Overall range: 0.0.0.0 127.255.255.255
 - Covers 1/2 of the entire space
- Highest bit is 0
- Suitable for very large networks

Class B

- Divide is positioned after the second byte
 - pprox 16 thousand networks
 - Each with pprox 66 thousand addresses
- Overall range: 128.0.0.0 191.255.255.255
 - Covers 1/4 of the entire space
- Highest bits are 10
- Suitable for medium-sized networks

Class C

- Divide is positioned after the third byte
 - pprox 2 million networks
 - Each with \approx 256 addresses only
- Overall range: 192.0.0 223.255.255.255
 - Covers 1/8 of the entire space
- Highest bits are 110
- Suitable for very small networks

Apparently the available space is not yet fully utilized...

- The rest is covered by Classes D and E
 - They have specific usage and they are internally unstructured

Class D: multicast addresses

- 224.0.0.0 239.255.255.255 (1/16 of the entire space)
- Highest bits are 1110

Class E: reserved for future extensions, but never used

- 240.0.0.0 255.255.255.255 (1/16 of the entire space)
- Highest bits are 1111

Special Addresses

Special addresses

- Certain addresses (even whole ranges) have dedicated usage
 - Basic principle: bit 0 = this, bit 1 = all

Nodes

- Self node: 0.0.0.0
 - Useful when standard unicast address is not yet known
- Node in a local network: 0.X.Y.Z, 0.0.X.Y, or 0.0.0.X

Networks

Network as a whole: X.0.0.0, X.Y.0.0, or X.Y.Z.0

Broadcasts

- Targeted broadcast: X.255.255.255, X.Y.255.255, or X.Y.Z.255
- Limited broadcast: 255.255.255.255

Special Addresses

Loopback

- 1 A-block: 127.X.Y.Z
 - 127.0.0.1 is in particular usually used
 - But the whole block is in fact available

Link local addresses

- 1 B-block: 169.254.X.Y
 - Auto-configuration when standard address cannot be obtained

Private addresses

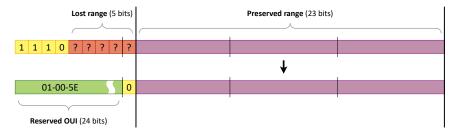
- 1 A-block: 10.X.Y.Z
- 16 B-blocks: 172.16.X.Y 172.31.X.Y
- 256 C-blocks: 192.168.0.X 192.168.255.X

Multicast transmissions

- Intended recipients are all nodes in a given group
 - This group is predefined or created dynamically on demand
 - IGMP (Internet Group Management Protocol)
- Certain blocks are assigned and approved by IANA
 - https://www.iana.org/assignments/multicast-addresses/
 - Current status (April 2021)
 - -~pprox 60 static multicast addresses (beside other)
- Class D addresses are used
 - Start with 1110 and they are internally unstructured
 - I.e., there is no network / relative part

Static groups (well known groups)

- Node membership is fixed and given in advance
- Range: 224.0.0.0 224.0.0.255 (≈ 256 addresses)
 - Reserved for routing and other low-level protocols
 - Topology discovery, maintenance, ...
 - 224.0.0.1: all hosts in a given network
 - 224.0.0.2: all routers in a given network
 - ...


Dynamic groups

- Global: 224.0.1.0 238.255.255.255 (≈ 252 million)
 - Group scope can span multiple different networks
- Local: 239.0.0.0 239.255.255.255 (≈ 17 million)
 - Group scope is limited to a particular network

Translation of multicast addresses (IP \rightarrow EUI-48)

- L3 multicast IP address
 - 4 bits at the beginning are fixed ⇒ only **28 bits are relevant**
 - Unfortunately, only the last 23 bits can be considered
 - And so the remaining 5 bits in the middle must be truncated
 - \Rightarrow 32 different addresses are mapped to the same value!
- L2 multicast EUI-48 address
 - 00-00-5E reserved OUI is used (24 bits)
 - Of course, altered to 01-00-5E so that M bit = 1
 - The 25th bit is set to 0
 - The remaining 23 bits are taken from the original IP address

Translation of multicast addresses (IP \rightarrow EUI-48) (cont'd)

Allocation Strategies

Basic principle

- Whole blocks of addresses are / must be assigned to networks
- These blocks correspond to our classes
 - One Class A block pprox 17 million individual addresses
 - One Class B block \approx 66 thousand individual addresses
 - One Class C block \approx 256 individual addresses

Strategies

- Formerly: one closest larger block principle
 - E.g.: 1 Class B address for 1000 requested individual addresses
 - Extremely wasteful approach...
- Later: multiple closest smaller blocks principle
 - E.g.: just 4 Class C addresses for the same requested number
 - Better, but still not enough...

Lack of IPv4 Addresses

Temporary mitigating solutions

- 1985: Subnetting
 - One larger network is divided into separate sub-networks
- 1988: Allocation mechanism
 - One larger block → more smaller blocks principle
- 1993: CIDR (Classless Inter-Domain Routing)
 - Original concept of IP address classes is entirely dropped
- 1994: Private addresses
 - Usage of private IPv4 addresses instead of globally unique ones
 - Requires NAT (Network Address Translation)

Permanent solution

- 1995: IPv6 protocol and its IPv6 addresses
 - 6 bytes instead of 4 bytes ⇒ significantly larger address space

Lecture Conclusion

L2: MAC addresses

- EUI-48 and EUI-64 numbering systems, OUI, M and X bits
- L3: IP addresses
 - Network and relative parts
 - Classes A, B, C, D, and E
 - Special and multicast addresses
- L4: port numbers
 - System / User / Dynamic ports
- L7: URI identifiers
 - URI (IRI) framework: URL locators, URN names