NSWI090: Computer Networks

http://www.ksi.mff.cuni.cz/~svoboda/courses/202-NSWI090/

Internetworking II

Martin Svoboda

svoboda@ksi.mff.cuni.cz

26. 4. 2021

Charles University, Faculty of Mathematics and Physics

Lecture Outline

Internetworking

- Broadcast domains
- Interconnection devices at L3
- Virtual LANs
 - Motivation and deployment
- Firewalls

Internetworking Principles

80/20 rule

- Traditionally...
 - Usually \approx 80% of traffic was local within a given network
 - And only \approx 20% was leaving such a network

20/80 rule

- Things significantly changed with the Internet...
 - Usually only \approx 20% is still local
 - Even \approx 80% of traffic crosses the border of a local network
- Routers may no longer be able to handle increasing data flows
- Solutions
 - Virtual Local Area Networks (VLAN)
 - Harness fast interconnection at L2, but limit broadcast domains
 - L3 Switches
 - Increase overall efficiency and throughput of traditional routers

Broadcast Transmissions

L2 broadcast

- Intended recipients
 - All nodes within a given local network = broadcast domain
 - I.e., all nodes residing in the same network as the sender node
- Frame destination address
 - FF:FF:FF:FF:FF
 - Special address with binary ones only
- Delivery process
 - Bridges and switches: forwarding based on flooding
 - Routers (in our network): further propagation is stopped
- Natural motivation
 - Limiting the size of broadcast domains

Broadcast Transmissions

Local L3 broadcast

- Intended recipients
 - Once again, all nodes within a given local network
 - Only this time in the context of IP datagrams at L3
- Datagram destination address
 - **255.255.255.255**
 - Once again special address with binary ones only
- Delivery process
 - Sender: IP datagram is requested to be sent using L2 broadcast
 - Routers (in our network): further propagation is stopped

Broadcast Transmissions

Targeted L3 broadcast (Directed L3 broadcast)

- Intended recipients
 - All nodes within a given particular network
 - Usually foreign network (but also works for the local one)
- Datagram destination address
 - E.g.: 192.168.1.255
 - Network prefix at the beginning, binary ones at the end
- Delivery process
 - IP datagram is first routed and forwarded using standard <u>unicast</u> delivery
 - Once the router serving as the entry point to the target network is reached, local L2 <u>broadcast</u> is then utilized
- Security considerations
 - Incoming targeted broadcasts are usually ignored nowadays

Possible alternatives for L3 interconnection devices

- Router
 - Traditional complex device allowing for routing and forwarding
 - Suitable for transition between heterogeneous environments
- L3 Switch
 - Newer integrated device combining L2 and L3 functionality
 - Standard L2 switch for local network
 - Simplified but more efficient L3 router
 - Suitable for interconnection of homogeneous environments

Multilayer switch

- Basically L3 switch allowing to take into account information from higher layers L4 and / or even L7 for routing decisions
 - In particular, L4 Switch and L7 Switch

Router

- Optimized for logical functions (and not only the core ones)
 - Routing and forwarding
 - Network Address Translation (NAT)
 - Allows to use private IP addresses in private networks
 - Assignment of IP addresses (DHCP)
 - Security: firewall, access rights, ...
 - Monitoring, management, ...
 - •

...

- Speed and throughput are not critical
 - As router was originally designed for 80:20 environments
 - Implemented at the software level
 - On top of a dedicated operating system (Cisco IOS)

Router (cont'd)

- Suitable for transition between heterogeneous environments
 - Bigger routing tables
 - Usually bigger buffers
 - Can have physical interfaces with different technologies
 - Ethernet, EuroDOCSIS, xDSL, SDH, ...
 - Can support multiple routing protocols
- Used for connection to other networks
 - Usually smaller networks (LAN, MAN) to larger ones (WAN)
 - Emphasis is put on...
 - Adaptation, logical separation, correct decision-making, ...

L3 Switch

Optimized for speed and throughput

- As L3 switch was originally designed for 20:80 environments
- Implemented at the hardware level
 - So that it can match the wire speed
- Focuses only on the core functionality
 - I.e., routing and forwarding
- Suitable for interconnection of homogeneous environments
 - Usually smaller routing tables and smaller buffers
 - Usually Ethernet physical interfaces only
- Used for interconnection of related networks (LAN, MAN)
 - Also allows to limit broadcast domains
 - Analogously to routers, but more efficiently

L4 and L7 Switches

L4 Switch

- L3 switch which can take L4 information into account
 - I.e., routing decisions can also be based on...
 - Transport protocols (TCP, UDP, ...) and / or port numbers
- Different kinds of traffic can thus be treated differently
 - E.g., port 80 (HTTP requests), port 53 (DNS queries), ...
- L7 Switch (Content Switch)
 - L3 switch which can take L4+L7 information into account
 - I.e., routing decisions can also be based on L4 and...
 - Application protocols (HTTP, SMTP, ...) and their data
 - Analogous utilization as above
 - E.g., port 80 HTTP requests to specific URLs in GET headers, ...

L4 and L7 Switches

Use cases: diversified routing

- Distribution of requests
 - Requests to different services (e.g., HTTP, FTP, ...) are in fact forwarded to different servers each providing just one of them
- Simulation of anycast transmissions
 - Requests to the same service are in fact split between multiple standalone serves (stickiness may be required)
- Load balancing
 - Exploitation of more different routing paths
- Transparent caching
 - HTTP requests are redirected to a dedicated cache server
- Redirection of DNS queries

^{• ..}

L4 and L7 Switches

Use cases: traffic management

- Traffic prioritization
 - Multimedia data may be handled preferentially
- Traffic blocking
 - Certain kinds of traffic may be strictly prohibited
 - E.g., VoIP communication, ...
- Traffic limitation
 - Introduction of volume quotas for various kinds of traffic
 - E.g., Fair Use Policy (FUP)

Virtual Local Area Networks

Motivation

- L3 network = set of end nodes residing in one or more L2 segments interconnected using bridges / switches
 - All involved nodes are mutually visible and directly reachable
 - And so all L2 traffic is also visible to the entire network
 - This is not always desirable
 - Especially in buildings with systematic cabling deployed
 - Since individual users (end nodes) may not be related at all
- And so what if **membership of end nodes to networks** would be determined differently?
 - I.e., independently on physical locations
 - Separate switches and physical rewiring could then help
 - But this approach is not flexible enough
 - And so the concept of VLAN was introduced

Virtual Local Area Networks

VLAN (Virtual LAN)

- Principle: coexistence of multiple different virtual networks on top of one physical L1+L2 infrastructure
 - Allows to decouple...
 - Physical users locations from logical network memberships
 - And so individual VLANs can reflect different...
 - Organizational needs, groups or categories of users, access or other privileges, usage of services and servers, ...
- Whole concept is generic
 - Both older proprietary and newer standardized solutions exist
 - Implemented in several technologies
 - Ethernet, ATM, ...

VLAN Principles

Requirements

- Additional logic needs to be added into the infrastructure
 - Primarily VLAN-aware switches at L2
 - But also routers at L3
- Practical expectations
 - End nodes should remain ignorant to the whole concept
 - I.e., they should not need to know what VLAN they are part of, nor whether VLANs are being deployed and utilized at all
 - Thus their interfaces / software do not need to be upgraded
 - \Rightarrow only network administrators should concern themselves
- Fundamental requirement
 - Traffic belonging to a given VLAN must stay within that VLAN
 - I.e., it must be guaranteed that it will not leak to a different one
 - And so VLAN hopping must be avoided

VLAN Principles

Consequences and features

- Limiting broadcast domains
 - Broadcasts and unknown unicasts are flooded everywhere
- Improving security and privacy, minimizing external threats
- Enabling Quality of Service
 - Kind of VLAN side-effect, based on traffic prioritizing
- Simplifying network administration and fault management

VLAN concepts

- Two basic types of virtual networks can be distinguished
 - Local VLANs and End-to-End VLANs
- They both differ in the primary motivation and objectives
 - However, their mutual boundaries are not defined strictly

VLAN Concepts

Local VLANs

Aim at separating geographically close nodes

- In the reach of just one switch (or a small group of switches)
- This allows for easier implementation of the whole concept
- Primary goal: limiting broadcast domains

End-to-End VLANs

More generic concept

Aim at interconnecting geographically remote nodes

- Individual nodes are dispersed throughout the whole network
- And so VLANs span multiple switches across the network
 - Special links between the switches are therefore needed
 - So that they can carry traffic of several different VLANs at a time
- Primary goal: grouping users with similar interests

Logical Model

Set of VLANs, each associated with...

- Distinct integer VLAN Identifier (VID)
- Optional name allowing for user-friendly management

Types of segments involved in the infrastructure

- VLAN-unaware segments
 - Contain nodes from exactly one VLAN
 - Actually just a single node in case of microsegmentation
 - Transmitted frames do not need to be mutually distinguished
 - Correspond to switch-to-host links
- VLAN-aware segments
 - Carry traffic from several different VLANs
 - And so such frames must be tagged to be mutually recognizable
 - Correspond to switch-to-switch or switch-to-router links

Logical Model

Operation principles

- VLAN can actually be seen simply as kind of a projected network consisting of only segments where it is activated
 - From this point of view, everything works as expected
 - I.e., filtering and forwarding
 - Including Spanning Tree Protocol (STP), etc.

VLAN configuration

- Expressed via association of switch ports to VLANs
 - I.e., not directly in terms of the intended usage of segments
- In particular, each port is labeled with a set of permitted VIDs
 - Obviously, network administrator must ensure consistency
 - I.e., corresponding ports on switches containing a given segment must be configured identically

Types of Ports

Access port (untagged port)

- Connects a VLAN-unaware segment
 - Labeled with exactly one VID
 - If not specified, default VLAN is assumed (usually VID 1)
 - This very VID determines the VLAN membership of nodes
- All frames (are expected to) belong to this single VLAN
 - Incoming frame is altered by tagging it with a given port VID
 - So that it becomes prepared to enter VLAN-aware segments
 - Already tagged frame is only accepted if it matches the port VID
 - Outgoing frame is altered by removing its tag
- Tagging mechanism is required
 - Open standard IEEE 802.1q (Dot1q)
 - Proprietary approaches: Cisco ISL (Inter-Switch Link), ...

Types of Ports

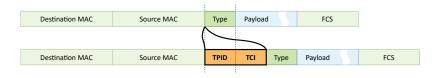
Trunk port (tagged port)

- Connects a VLAN-aware segment
 - Labeled with one or more VIDs
 - By default, all VLANs
 - Or enumeration of only selected VLANs
- Frames of all involved VLANs are carried alongside each other
 - And so they must be tagged so that they can be distinguished
 - Incoming frame is only accepted if it matches the allowed VIDs
- Native VLAN may optionally be specified
 - Its frames may remain untagged
 - This allows to have VLAN-unaware devices in trunks as well
 - Configured on a per-port and per-device basis
 - Must hence be consistent within the entire trunk segment
 - Typically the same value everywhere (for sanity)

VLAN Configuration

Static (port-based) approaches

- Each port is configured manually by network administrator
- Relatively small overhead, higher security, not flexible enough


Dynamic approaches

- VLAN membership is resolved dynamically
 - Based on MAC addresses (deprecated, not a good idea anyway)
 - Or IEEE 802.1X authentication (based on user credentials)
- Information needs to be shared between switches
 - Multiple VLAN Registration Protocol (MVRP) (IEEE 802.1ak)
 - L2 protocol allowing to de/registers VIDs on ports, ...
 - Proprietary approaches: Cisco VTP (VLAN Trunking Protocol)
- Greatly simplifies network design and deployment

Ethernet Frames

IEEE 802.1q (Dot1q tagging)

- VLAN tag is added into the original Ethernet frames
 - Between Source MAC and Type / Length header fields
 - TPID = Tag Protocol Identifier = 0x8100
 - So that tagged frames can be distinguished from untagged ones
 - TCI = Tag Control Information
 - Contains 12-bit long VLAN Identifier (VID) pprox 4094 VLANs
 - Certain values are reserved (at least 0x000 and 0xFFF)
- Adding and removing tags also involves recalculating the CRC

Routing Between VLANs

Observation

- IP traffic between VLANs must normally go through routers
- Routing options
 - VLAN-unaware router with separate physical interfaces
 - One separate port is needed for each VLAN on the router
 - They are all connected to different access ports on a switch
 - Obviously working, but not efficient enough and scales poorly
 - VLAN-aware router with sub-interfaces
 - Physical interface is split up into multiple virtual sub-interfaces
 - Each corresponds to one particular VLAN
 - Frames outgoing from the router are tagged appropriately
 - Connected to a trunk port on a switch
 - VLAN-aware L3 switch

Firewalls

Firewall

- General security system permitting to **monitor and control** both **incoming and outgoing** network traffic
 - Allows to block unauthorized / allow authorized access
 - So that users (their traffic) can only get where they are allowed
- Forms a barrier between a trusted and an untrusted network
 - I.e., between the inner (LAN) and outer (Internet) networks

Firewalls

Possible deployments

- Network-based firewall
 - Protects the whole inner corporate / school / home network
 - And so all its nodes / users
- Host-based firewall (individual, personal)
 - Protects just a single node / user

Possible implementations

- Dedicated device (combination of hardware and software)
- Purely software solution
- Set of organizational measures

Firewalls

Possible strategies

- Prohibited unless permitted
 - Everything is by default prohibited
 - Only something is explicitly permitted via positive exceptions
 - Having the nature of permissions
 - Approaches
 - Demilitarized Zones, Packet Filters
- Permitted unless prohibited
 - Everything is by default permitted
 - Only something is explicitly prohibited via negative exceptions
 - Having the nature of prohibitions
 - Approach
 - Packet Filters

Demilitarized Zones

Demilitarized Zone (DMZ) (Perimeter Network)

- Physical or logical **network acting as a barrier separating** the inner and outer networks / zones
 - Serves as kind of a gateway to the public Internet
 - Neither as secure as the inner zone, nor as insecure as the outer zone
 - Provides additional security especially from external attacks
- Permitted traffic
 - Outer zone \leftrightarrow inner zone
 - This kind of communication is entirely prohibited
 - I.e., no traffic can directly pass through DMZ
 - Outer zone ↔ DMZ and DMZ ↔ inner zone
 - Possible in principle
 - But can also be partially restricted if need be

Demilitarized Zones

Demilitarized Zone (cont'd)

• Means of implementation

- Simply via appropriate configuration of routing tables in both the routers separating the zones (i.e., at L3)
 - Only traffic commencing / terminating in DMZ is allowed
 - Which is detectable using **source / destination IP addresses**

DMZ contains...

- Public servers providing services to external users
 - E.g.: HTTP, SMTP, POP3, DNS, ...
 - These are the hosts that are most vulnerable to attacks
 - And so when any of them gets compromised, inner zone is still likely to remain protected
- Application Gateways
 - Mediate otherwise impossible outer \leftrightarrow inner communication

Demilitarized Zones

Application Gateway (L7 Gateway, Application Proxy)

- Server mediating communication with the outer zone
 - E.g.: HTTP Proxy Gateway for requesting web pages, ...
- Principle
 - (1) Inner node sends an intermediate request to the gateway
 - I.e., not directly to the intended target node
 - And so the sender must be aware of the gateway existence!
 - \Rightarrow application gateways are not transparent
 - (2) Gateway then generates and sends its <u>own</u> request
 - (3) Response from the target node is received by the gateway
 - (4) It is then forwarded to the original node in the inner zone
- Observation
 - Gateways are always application-dependent
 - I.e., specifically designed for a given particular L7 protocol

DMZ Architectures

Dual Firewalls (Back-to-Back DMZ)

- Two routers (firewalls) are needed
 - Front-end (perimeter) between the outer zone and DMZ
 - Back-end (internal) between DMZ and the inner zone
- Higher security
 - Because two devices would need to be compromised at a time
 - Especially when devices from different vendors are used
 - Since it is not likely they would have the same vulnerabilities
- Relatively costly solution
 - And so suitable only for larger corporate networks

DMZ Architectures

Single Firewall (Three-Legged DMZ)

- Only one router (firewall) with (at least) 3 network interfaces
- Represents a single point of failure
 - Since it must be able to handle all of the traffic

Integrated DMZ

- DMZ on a software basis without even a single router device
 - I.e., within a node directly separating the outer / inner zones

DMZ Host – not a true DMZ!

- Solution frequently appearing in small home routers
 - One server in the inner network can be specified
 - It then receives all unrecognized incoming traffic
 - This server is not isolated from the inner network at all
 - And so this solution has nothing to do with the DMZ concept

Packet Filters

Packet Filter

- Inspects and filters both incoming and outgoing traffic based on a set of configured rules
 - Works at L3
 - In terms of both blocking and permitting
 - In contrast, DMZ blocks at L3 and permits at L7
- Both positive and negative strategies are possible
 - Individual rules are described via Access Control Lists
- Available information
 - Source / destination IP addresses by default
 - But also information from higher layers
 - Such as transport protocols or port numbers at L4, ...

Packet Filters

Modes of operation

Stateless Packet Inspection (Static Packet Filtering)

- Each packet is treated independently on each other
- Easier to implement
- Less computationally demanding
- Stateful Packet Inspection (Dynamic Packet Filtering)
 - Each packet is treated with regard to the recent history
 - I.e., also with respected to the previously handled packets
 - And so more undesirable situations can be detected
 - Especially various concurrencies
 - Can help to prevent DOS / DDOS attacks

Packet Filters

Access Control List (ACL)

- List of rules to be applied
 - Based on positive permissions or negative exceptions
- Standard ACL
 - Only source IP address is considered
 - Recommended deployment
 - Usually as close to the target nodes as possible
- Extended ACL
 - Other information is considered as well
 - Destination IP address, port number, ...
 - Recommended deployment
 - Usually as close to the source nodes as possible

Lecture Conclusion

Broadcasts

- L2, local L3, targeted L3
- Broadcast domains

L3 interconnection devices

• Routers, L3 / L4 / L7 switches

VLANs

- VLAN-aware / VLAN-unaware segments
- Access (untagged) / trunk (tagged) ports
- Static / dynamic configuration

Firewalls

• Demilitarized zones, application gateways, packet filters