NSWI090: Computer Networks

http://www.ksi.mff.cuni.cz/~svoboda/courses/202-NSWI090/

Network Layer and Routing

Martin Svoboda

svoboda@ksi.mff.cuni.cz

29. 3. 2021

Charles University, Faculty of Mathematics and Physics

Lecture Outline

Network layer

- Routing and forwarding tasks
 - Basic concepts
 - Classification of routing approaches

Routing approaches

- Static Routing, Flooding, ...
- Backward Learning, Source Routing, ...
- Distance-Vector Routing
- Link-State Routing
- Path-Vector Routing

• ...

Network Layer

Network layer tasks

 Delivery of packets across a system of networks mutually interconnected by routers to the intended recipient node

Routing

- Process of finding optimal delivery routes
 - Maintenance of routing tables
 - Capture network topology and other necessary information
 - Calculation of the actual routing paths
 - Searching for the shortest paths in weighted multi-graphs

Forwarding

- Process of the actual delivery of packets
 - Based on forwarding tables

Routing and Forwarding Tables

Routing table

- List of routing records with the following fields
 - Destination: identifier of the target network
 - E.g.: 192.168.2.0 with netmask 255.255.255.0
 - Interface: local interface to be used
 - E.g.: <u>192.168.1</u>.123
 - Gateway: neighboring router forming the first hop
 - E.g.: <u>192.168.1</u>.1
 - Metric: cost estimate of reaching the target network

- E.g.: 11

Forwarding table

- Compact structure with already resolved routes
 - Allows for efficient forwarding

Common Principles

Destination-based routing

- Routing is only based on the recipient address
 - I.e., source address is not considered

Least-cost routing

Optimal route is chosen according to the lowest cost

Hop-by-hop routing

- Routers make their decisions locally and on their own
 - I.e., they are independent on other routers on the way

Content-independent routing

Contents and character of data are not taken into account

Stateless routing

Decisions are independent on history and previous datagrams

Routing Classification

Basic classification of routing approaches

- Non-adaptive / adaptive
 - Whether network changes are detected and reflected
- Centralized / distributed
 - Whether routing decisions are made by independent routers
- Isolated / non-isolated
 - Whether mutual cooperation of routers is expected
- Interior / exterior
 - What is the deployment scope within hierarchical routing

Routing Classification

Other aspects to consider

• Classful / classless

- Whether only legacy IP addresses with classes are assumed
 - Or netmasks or CIDR prefixes are supported
- Unicast / anycast / multicast / broadcast
 - What kind of transmissions is assumed

Routing Strategies

Adaptive routing (dynamic routing)

- Capable of adapting to network changes
 - Such as changes in network topology, traffic load, ...
 - Routing tables are constructed and updated dynamically
 - And so routing decisions may change in time
- More complex, used more often in practice
 - Causes considerable challenges especially in large systems

Non-adaptive routing (static routing)

- Does not adapt to changes nor cooperate with other nodes
 - Routing tables (if any) are fixed and given in advance
- Suitable in specific situations only
- Examples: Fixed Directory Routing, Random Walk, Flooding

Non-Adaptive Routing

Fixed Directory Routing (Static Routing)

- Routing tables are configured manually by administrators
 - Routing records do not change in time
- Advantages
 - Exact paths are given and known in advance
 - Higher level of achieved security
 - Since no update information is disseminated, it cannot be faked
 - Specific requirements can easily be handled
- Disadvantages
 - Insensitive to changes ⇒ cannot recover from failures
 - Too tedious in large and complex networks
 - Administrators can make unintentional mistakes

Non-Adaptive Routing

Fixed Directory Routing (cont'd)

- Combinable with adaptive approaches
 - Default route
 - Exit direction when no other routes are available or necessary
 - Failsafe backup
 - In case dynamic routing becomes unavailable, static routes can take precedence
- Random Walk Routing (Random Routing)
 - Incoming packet is sent to a <u>randomly</u> chosen neighbor
 - Different to the one it arrived from
 - Use cases
 - Only when the probability of reaching the destination is high
 - Peer-to-peer (P2P) networks

Flooding

Flooding (Flood Routing)

Incoming packet is duplicated and sent to all directions

- All except the one it arrived from
- I.e., no routing tables are used
- Advantages and disadvantages
 - Requires no network information
 - Very simple to implement
 - Always successful if path exists
 - Duplication increases the load, though
- Use cases
 - Whenever high robustness is required
 - E.g., emergency messages, military applications, ...
 - L2 local broadcast

Flooding

Issue: topologies with loops

- One loop exists...
 - Already sent packets can once again return
- Two or even more loops exist...
 - Packets will get duplicated repeatedly (broadcast storm)

 \Rightarrow recurring packets need to be <u>identified</u> and then <u>eliminated</u>

- Uncontrolled flooding
 - Does not prevent from indefinite recirculation at all
 - I.e., no precautions are taken
- Controlled flooding (selective flooding)
 - Techniques allowing to overcome the impact of loops
 - Hop Count, Sequence Numbers, Spanning Tree, ...
 - They can all be used together with adaptive routing, too

Controlled Flooding Techniques

Hop Count

- Each packet contains a counter
 - Its initial value is set by the sender
 - Must be high enough
 - Otherwise the intended recipient may not be reachable
 - Network diameter can be used
 - When no better estimate is available
- Counter is decremented at each hop
- Packet is discarded when the counter becomes zero

Controlled Flooding Techniques

Sequence Numbers

- Each packet contains a sequence number
 - Assigned sequentially by the sender
- List of sender address / sequence number pairs is kept
 - Repeatedly encountered packets are ignored
- Issues
 - Available space is always limited, it can be depleted
 - Sender can shutdown and reconnect, sequence gets restarted
 - \Rightarrow new packets can wrongly be recognized as old ones
- Alternatives
 - Packet itself or its checksum can be remembered
- Example: Sequence Number Controlled Flooding (SNCF)

Controlled Flooding Techniques

Reverse Path Forwarding

- Packet is forwarded only if it comes from the same direction that would normally be used to reply to a given sender
 - If this direction is not provided by dynamic routing, it can be remembered the first time we come across a given sender
- Example: Reverse Path Forwarding (RPF)

Spanning Tree

- Spanning tree is created first
 - Minimal connected subgraph with all the nodes (and so without loops)
- Packet is only forwarded along the links forming the tree
- Example: Spanning Tree Protocol (STP)

Adaptive Routing

Adaptive routing

- Routing tables and decisions are adaptively updated
 - Based on network topology, path costs or traffic load changes
- Ultimate goal: routing convergence
 - Process leading to the state of fully operating system when all routers have the same perception of the reality
 - Information they gathered must not be mutually inconsistent
 - Must reflect the real state of the network

Possible strategies

- Distributed routing
 - Each router makes routing decisions independently on its own
- Centralized routing
 - Routing decisions are solely made by one centralized authority

Centralized Routing

Centralized routing

- Routing decisions are made by one centralized authority
 - So called route server
- Other nodes perform forwarding only
 - Names vary: edge device, multilayer switch
 - Whenever routing information is not yet known, routing request is sent to the route server
 - Its decision is remembered...
 - ... and intentionally forgotten after a certain period of time
- Advantages and disadvantages
 - Route server has full knowledge
 - And so routing can be complex and flexible
 - However, it represents a single point of failure
 - Its failure impacts everything

Distributed Routing

Distributed routing

Each router is eligible for making routing decisions on its own

Possible strategies

- Isolated routing
 - Nodes do not cooperate with each other at all
 - Routing solely depends on the information they locally have
 - Examples: Backward Learning, Source Routing, Hot Potato
- Non-isolated routing
 - Nodes do mutually cooperate
 - They at least interchange available routing information
 - They can also interact on distributed routing calculations
 - Examples: Distance-Vector, Link-State, Path-Vector
 - Represent core Internet routing strategies

Backward Learning

- Routing table is empty at the beginning
- Whenever a packet from an unknown sender is received
 - Direction of this sender is remembered
- Incoming packet is forwarded...
 - To all directions in case a given recipient is not yet known
 - As if **flooding** mechanism is exploited
 - Just to the single remembered direction otherwise
- Requirements
 - Stored information must be periodically forgotten
 - So that we can adapt to changes in the network
 - Loops must be treated appropriately

Backward Learning (cont'd)

- Possible improvement
 - Hop counters can be incorporated
 - Each packet contains a counter that is **incremented** at each hop
 - When a new path with lower cost is discovered, the currently remembered direction is updated
- Disadvantages
 - Unacceptably slow convergence in larger systems
 - Cannot be used for routing at L3 at all
- Real-world deployment at L2
 - Ethernet
 - Forwarding of frames within complex local networks
 - Learning process is fast enough (since the scope is limited)
 - Allow bridges / switches to be used as Plug&Play devices

Source Routing (Path Addressing)

- Basic principle
 - Sender is responsible for finding the complete routing path
 - Modeled as a sequence of addresses of individual routers
 - Once found, it is then used for the actual data
- Discovery phase
 - Special explorative packet is first sent using flooding
 - Each router appends the gradually built sequence by its address
 - Sooner or later one packet copy reaches the intended recipient
 - It then sends the fully recognized path back to the sender
- Transmission phase
 - Each packet is equipped with the resolved intended sequence
 - Individual routers simply follow this sequence when forwarding

Source Routing (cont'd)

- Alternatives
 - Routing path may be determined completely or partially only
- Advantages
 - Always finds the shortest path (if any)
 - Alternative paths can actually be found as well
 - But only one particular can be prescribed
- Disadvantages
 - Flooding is needed with all its cons
 - All routers on the way must cooperate
- Real-world deployment once again at L2
 - Token Ring
 - Based on a ring logical topology over a star physical topology

Hot Potato Routing

- We have no routing table, nor we are attempting to create it
- Incoming packet is forwarded to the least busy direction
 - I.e., its output queue is the shortest one
 - Relatively to the transmission capacity of a given path
- Disadvantage
 - Chance that this direction will be the right one is, of course, low

Real-world usage

- <u>Temporary</u> strategy in the event of approaching capacity limits
 - So that we try to avoid router congestion by getting rid of packets as fast as we can
- Similarly at L2

Non-Isolated Routing

Non-isolated distributed adaptive routing

- In a nutshell...
 - Adaptive = capable of responding to network changes
 - Distributed = decisions are made by independent routers
 - Non-isolated = these routers cooperate with each other
 - The question is to what extent...
 - Differences between the existing approaches are significant
- Essential requirement
 - Interchange of necessary routing information
 - So that routers can inform each other about network changes
 - And so that their own routing tables can be updated
 - \Rightarrow suitable **protocols** are needed
 - RIP, OSPF, BGP, ...

Non-Isolated Routing

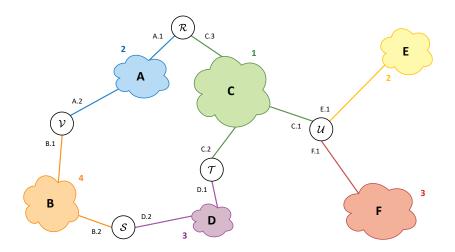
Distance-Vector Routing

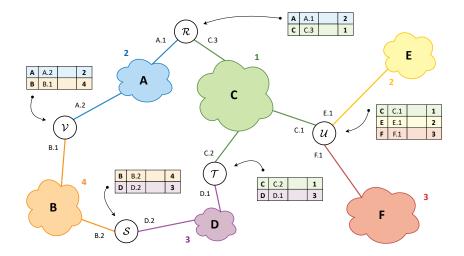
- Each node only has a partial information on network topology
 - And so distributed calculation of routing paths is involved
 - I.e., so far discovered routes are incrementally refined
- Example: RIP (Routing Information Protocol)

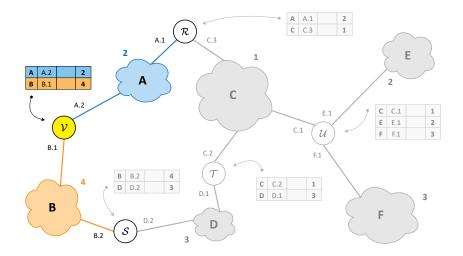
Link-State Routing

- Each node has a full knowledge of network topology
 - And so each node can make individual calculations on its own
- Example: OSPF (Open Shortest Path First)

Path-Vector Routing

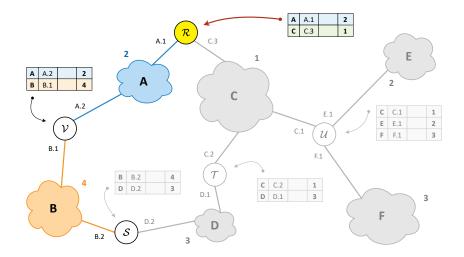

• Later on...

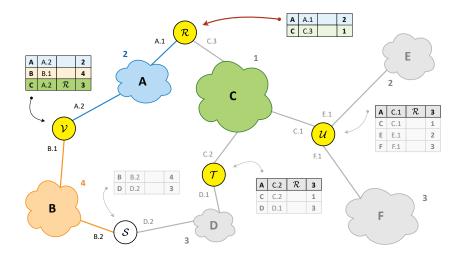

Distance-Vector Routing


- Each node maintains its own routing table
 - With the shortest resolved route to each discovered network
- These tables are mutually interchanged
 - Sooner or later convergence is attained

Distance vector = routing table with the following fields

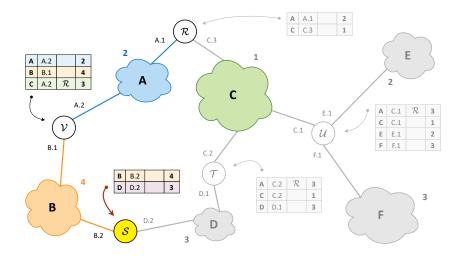
- Destination: identifier of the target network to be reached
- Direction: local interface to be used for this purpose
- Gateway: neighboring router to be contacted
 - Omitted in case of direct forwarding within our network
- Metric: overall cost of reaching the target network
 - Generic cost, hop count, bandwidth, delay, ...

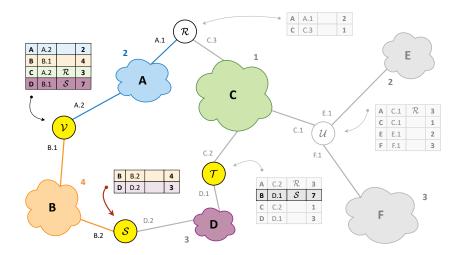




Convergence process

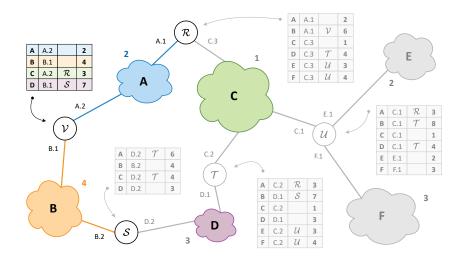
- Initial routing table is constructed
 - Only directly reachable local networks are included
 - Via L2 interfaces a given node has
- Tables are then regularly interchanged between neighbors
 - Only <u>immediate</u> neighbors are involved!
 - Entire process is asynchronous
 - I.e., individual nodes are not mutually synchronized, they act independently on each other
 - Time interval is relatively short
 - E.g., just 30 seconds
- Whenever an advertised table is received from our neighbor
 - It is used for the refinement of our own routing table

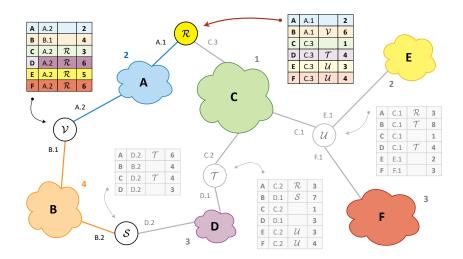


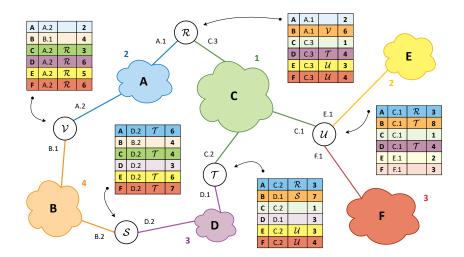

Refinement principle

- Let us assume that node X can directly reach a neighboring node Y with cost $c_{X \rightarrow Y}$
- Whenever Y advertises that it can reach network N with an overall cost c_{Y→N}, we can conclude that X can also reach N, in particular via Y, with overall cost c_{X→N} = c_{X→Y} + c_{Y→N}
 - The question is, whether this observation should be exploited
 - I.e., whether it leads to something new or better

Formal background


- Distributed variation of Bellman-Ford algorithm
 - Allows to find shortest paths from a single source vertex to all other vertices in a given weighted graph





Complete refinement rules

- If N is so far unknown
 - New record for N via Y is created
- Else if N is already reachable via the same node Y
 - The current record is preserved an only its cost is updated
 - Even in case the new cost is worse
- Else if *N* is already reachable but via a different neighbor and the new cost is better
 - The current record is fully replaced with the new option via $\,Y\,$
- Otherwise nothing is updated

Observations and drawbacks

- Routing records are discovered and refined iteratively
 - Sooner or later the whole system converges
 - Good news spreads relatively fast
 - Unfortunately, bad news spreads too slow...
- Calculation of routing paths as such is distributed
 - Reality is perceived from the perspective of the neighbors
 - I.e., we are relying on the information received from others
 - We cannot determine its validity
 - If someone makes a mistake, it confuses everyone else
 - \Rightarrow Routing by Rumor
- Volume of update information is too large
 - I.e., frequency of messages with routing tables and their size
 - The whole approach is hence not suitable for larger networks

Count-to-infinity: possible solutions

- Small Infinity
 - Space of permitted values of costs is always limited
 - This limit (i.e., as if infinity) can be made small enough
 - However, choice of infinity is a tradeoff between network size and speed of convergence
 - If it is not high enough, longer routes cannot be handled
- Split Horizon
 - Routes are not advertised to nodes they were learned from
- Poisoned Reverse
 - Such routes are advertised, but their cost is set to infinity
- Triggered Updates
 - Updates are sent immediately after any change is detected

Routing Information Protocol (RIP)

- Very old protocol (in BSD UNIX since 1980s)
- Features
 - Metric is based on a hop count
 - Infinity is $16 \Rightarrow$ routes longer than 15 hops will get unreachable
 - Routing table only supports 25 routing records
 - Updates are sent every 30 seconds
 - Neighbor is considered as unavailable if update is not received within 180 seconds
 - Integrated directly into OS (daemon routed)
 - Runs at L7 and uses UDP datagrams at port 520
- Disadvantages
 - Does not scale well, not stable enough, count-to-infinity, ...
 - \Rightarrow cannot be used in larger networks

Link-State Routing

Link-State Routing

- Each router has <u>complete</u> information about the topology
- Principles
 - Reachability status of neighbors is regularly monitored
 - Whenever a change is detected...
 - Update message is sent to <u>all</u> nodes
- Features
 - Calculation is not incremental and distributed
 - Mistakes cannot influence others
 - Faster convergence, lower overhead and better scalability
 - But still not suitable for larger networks
- Example
 - OSPF (Open Shortest Path First)

Routing Challenges

Size of routing tables

- The larger the system, the higher the number of records
- Two strategies
 - Aggregation of routing records (if possible)
 - The same interface / neighboring gateway
 - Shared and aligned address prefix
 - Default route

Volume of update information

- Routing tables need to be interchanged in regular intervals
 - Both in case of distance-vector and link-state approaches
- Even bigger problem than the size of routing tables...

 \Rightarrow the only solution is **decomposition**

Hierarchical Routing

Routing domains

• System of networks is decomposed into smaller parts

- So called routing domains in general
- Autonomous systems in case of the Internet
 - Typically (but not necessarily) one ISP means one AS

Routing information becomes localized

Different approaches are used within / across domains

Hierarchical routing

- Interior gateway protocols
 - E.g.: RIP, OSPF, ...
- Exterior gateway protocols
 - Path-Vector Routing: based on reachability, not lowest costs
 - E.g.: Border Gateway Protocol (BGP)

Lecture Conclusion

Routing strategies

- Non-adaptive / adaptive
- Centralized / distributed
- Isolated / non-isolated

Particular approaches

- Fixed Directory Routing, Random Walk, Flooding
- Backward Learning, Source Routing, Hot Potato Routing
- Distance-Vector / Link-State / Path-Vector Routing