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Lecture Outline
MapReduce

• Programming model and implementa on
• Mo va on, principles, details, …

Apache Hadoop
• HDFS (Hadoop Distributed File System)
• MapReduce

MongoDB
• MapReduce queries
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Programming Models
What is a programming model?

• Abstrac on of an underlying computer system
Describes a logical view of the provided func onality
Offers a public interface, resources or other constructs
Allows for the expression of algorithms and data structures
Conceals physical reality of the internal implementa on
Allows us to work at a (much) higher level of abstrac on

• The point is
how the intended user thinks in order to solve their tasks
and not necessarily how the system actually works
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Programming Models
Examples

• Tradi onal von Neumann model
Architecture of a physical computer with several components
such as a central processing unit (CPU), arithme c-logic unit
(ALU), processor registers, program counter, memory unit, etc.
Execu on of a stream of instruc ons

• Java Virtual Machine (JVM)
• …

Do not confuse programming models with
• Programming paradigms (procedural, func onal, logic, modular,

object-oriented, recursive, generic, data-driven, parallel, …)
• Programming languages (Java, C++, …)
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Parallel Programming Models
Process interac on

Mechanisms of mutual communica on of parallel processes
• Shared memory – shared global address space, asynchronous read

and write access, synchroniza on primi ves
• Message passing
• Implicit interac on

Problem decomposi on
Ways of problem decomposi on into tasks executed in parallel

• Task parallelism – different tasks over the same data
• Data parallelism – the same task over different data
• Implicit parallelism
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MapReduce



MapReduce Framework
What is MapReduce?

• Programming model + implementa on
• Developed by Google in 2008

Google:
A simple and powerful interface that enables automa c par-
alleliza on and distribu on of large-scale computa ons,
combined with an implementa on of this interface that
achieves high performance on large clusters of commodity
PCs.
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History and Mo va on
Google PageRank problem (2003)

• How to rank tens of billions of web pages by their importance
… efficiently in a reasonable amount of me
… when data is scattered across thousands of computers
… data files can be enormous (terabytes or more)
… data files are updated only occasionally (just appended)
… sending the data between compute nodes is expensive
… hardware failures are rule rather than excep on

• Centralized index structure was no longer sufficient
• Solu on

Google File System – a distributed file system
MapReduce – a programming model
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MapReduce Framework
MapReduce programming model

• Cluster of commodity personal computers (nodes)
Each running a host opera ng system, mutually interconnected
within a network, communica on based on IP addresses, …

• Data is distributed among the nodes
• Tasks executed in parallel across the nodes

Classifica on
• Process interac on: message passing
• Problem decomposi on: data parallelism
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Basic Idea
Divide-and-conquer paradigm

• Breaks down a given problem into simpler sub-problems
• Solu ons of the sub-problems are then combined together

Two core func ons
• Map func on

Generates a set of so-called intermediate key-value pairs
• Reduce func on

Reduces values associated with a given intermediate key
And that’s all!
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Basic Idea
And that’s really all!
It means...

• We only need to implementMap and Reduce func ons
• Everything else such as

input data distribu on,
scheduling of execu on tasks,
monitoring of computa on progress,
inter-machine communica on,
handling of machine failures,
…

is managed automa cally by the framework!
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Model Descrip on
Map func on

• Input: input key-value pair = input record
• Output: list of intermediate key-value pairs

Usually from a different domain
Keys do not have to be unique
Duplicate pairs are permi ed

• (key, value) → list of (key, value)
Reduce func on

• Input: intermediate key + list of (all) values for this key
• Output: possibly smaller list of values for this key

Usually from the same domain
• (key, list of values) → (key, list of values)
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Example: Word Frequency
/**
* Map function
* @param key Document identifier
* @param value Document contents
*/

map(String key, String value) {
foreach word w in value: emit(w, 1);

}

/**
* Reduce function
* @param key Particular word
* @param values List of count values generated for this word
*/

reduce(String key, Iterator values) {
int result = 0;
foreach v in values: result += v;
emit(key, result);

}
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Logical Phases
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Logical Phases
Mapping phase

• Map func on is executed for each input record
• Intermediate key-value pairs are emi ed

Shuffling phase
• Intermediate key-value pairs are grouped and sorted

according to the keys
Reducing phase

• Reduce func on is executed for each intermediate key
• Output key-value pairs are generated
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Cluster Architecture
Master-slave architecture

• Two types of nodes, each with two basic roles
• Master

Manages the execu on of MapReduce jobs
– Schedules individual Map / Reduce tasks to idle workers
– …

Maintains metadata about input / output files
– These are stored in the underlying distributed file system

• Slaves (workers)
Physically store the actual data contents of files

– Files are divided into smaller parts called splits
– Each split is stored by one / or even more par cular workers

Accept and execute assigned Map / Reduce tasks
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Cluster Architecture
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MapReduce Job Submission
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MapReduce Job Submission
Submission of MapReduce jobs

• Jobs can only be submi ed to the master node
• Client provides the following:

Implementa on of (not only)Map and Reduce func ons
Descrip on of input file (or even files)
Descrip on of output directory

Localiza on of input files
• Master determines loca ons of all involved splits

I.e. workers containing these splits are resolved
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Input Splits Localiza on
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Input Splits Localiza on
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Map Task Assignment
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Map Task Execu on
Map Task = processing of 1 split by 1 worker

• Assigned by the master to an idle worker that is (preferably)
already containing (physically storing) a given split

Individual steps…
• Input reader is used to parse contents of the split

I.e. input records are generated
• Map func on is applied on each input record

Intermediate key-value pairs are emi ed
• These pairs are stored locally and organized into regions

Either in the system memory,
or flushed to a local hard drive when necessary
Par on func on is used to determine the intended region

– Intermediate keys (not values) are used for this purpose
– E.g. hash of the key modulo the overall number of reducers
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Input Parsing
Parsing phase

• Each split is parsed so that input records are retrieved
(i.e. input key-value pairs are obtained)
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Map Phase
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Map Phase
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Map Task Confirma on
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Reduce Task Assignment
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Reduce Task Execu on
Reduce Task = reduc on of selected key-value pairs by 1 worker

• Goal: processing of all emi ed intermediate key-value pairs
belonging to a par cular region

Individual steps…
• Intermediate key-value pairs are first acquired

All relevant mapping workers are addressed
Data of corresponding regions are transfered (remote read)

• Once downloaded, they are locally merged
I.e. sorted and grouped based on keys

• Reduce func on is applied on each intermediate key
• Output key-value pairs are emi ed and stored (output writer)

Note that each worker produces its own separate output file
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Region Data Retrieval
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Region Data Retrieval
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Reduce Phase
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Reduce Phase
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Reduce Task Confirma on
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MapReduce Job Termina on
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Combine Func on
Op onal Combine func on

• Objec ve
Decrease the amount of intermediate data
i.e. decrease the amount of data that is needed to be
transferred from Mappers to Reducers

• Analogous purpose and implementa on to Reduce func on
• Executed locally by Mappers
• However, only applicable when the reduc on is…

Commuta ve
Associa ve
Idempotent: f(f(x)) = f(x)
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Improved Map Phase
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Improved Reduce Phase
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Improved Reduce Phase
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Func ons Overview
Input reader

• Parses a given input split and prepares input records
Map func on
Par on func on

• Determines a par cular Reducer for a given intermediate key
Compare func on

• Mutually compares two intermediate keys
Combine func on
Reduce func on
Output writer

• Writes the output of a given Reducer
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Advanced Aspects
Counters

• Allow to track the progress of a MapReduce job in real me
Predefined counters

– E.g. numbers of launched / finished Map / Reduce tasks,
parsed input key-value pairs, …

Custom counters (user-defined)
– Can be associated with any ac on that a Map or Reduce

func on does
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Advanced Aspects
Stragglers

• Straggler = node that takes unusually long me to complete
a task it was assigned

• Solu on
When a MapReduce job is close to comple on, the master
schedules backup execu ons of the remaining in-progress tasks
A given task is considered to be completed whenever either
the primary or the backup execu on completes
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Addi onal Examples
URL access frequency

• Input: HTTP server access logs
• Map: parses a log, emits (accessed URL, 1) pairs
• Reduce: computes and emits the sum of the associated values
• Output: overall number of accesses to a given URL

Inverted index
• Input: text documents containing words
• Map: parses a document, emits (word, document ID) pairs
• Reduce: emits all the associated document IDs sorted
• Output: list of documents containing a given word
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Addi onal Examples
Distributed sort

• Input: records to be sorted according to a specific criterion
• Map: extracts the sor ng key, emits (key, record) pairs
• Reduce: emits the associated records unchanged

Reverse web-link graph
• Input: web pages with <a href="…">…</a> tags
• Map: emits (target URL, current document URL) pairs
• Reduce: emits the associated source URLs unchanged
• Output: list of URLs of web pages targe ng a given one
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Addi onal Examples
Reverse web-link graph
/**
* Map function
* @param key Source web page URL
* @param value HTML contents of this web page
*/

map(String key, String value) {
foreach <a> tag t in value: emit(t.href, key);

}

/**
* Reduce function
* @param key URL of a particular web page
* @param values List of URLs of web pages targeting this one
*/

reduce(String key, Iterator values) {
emit(key, values);

}
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Use Cases: General Pa erns
Coun ng, summing, aggrega on

• When the overall number of occurrences of certain items or a
different aggregate func on should be calculated

Colla ng, grouping
• When all items belonging to a certain group should be found,

collected together or processed in another way
Filtering, querying, parsing, valida on

• When all items sa sfying a certain condi on should be found,
transformed or processed in another way

Sor ng
• When items should be processed in a par cular order with respect

to a certain ordering criterion
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Use Cases: Real-World Problems
Just a few real-world examples…

• Risk modeling, customer churn
• Recommenda on engine, customer preferences
• Adver sement targe ng, trade surveillance
• Fraudulent ac vity threats, security breaches detec on
• Hardware or sensor network failure predic on
• Search quality analysis
• …

Source: h p://www.cloudera.com/
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Apache Hadoop



Apache Hadoop
Open-source so ware framework

• h p://hadoop.apache.org/
• Distributed storage and processing of very large data sets

on clusters built from commodity hardware
Implements a distributed file system
Implements aMapReduce programming model

• Derived from the original Google MapReduce and GFS
• Developed by Apache So ware Founda on
• Implemented in Java
• Opera ng system: cross-pla orm
• Ini al release in 2011
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Apache Hadoop
Modules

• Hadoop Common
Common u li es and support for other modules

• Hadoop Distributed File System (HDFS)
High-throughput distributed file system

• Hadoop Yet Another Resource Nego ator (YARN)
Cluster resource management
Job scheduling framework

• HadoopMapReduce
YARN-based implementa on of the MapReduce model
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Apache Hadoop
Hadoop-related projects

• Apache Cassandra – wide column store
• Apache HBase – wide column store
• Apache Hive – data warehouse infrastructure
• Apache Avro – data serializa on system
• Apache Chukwa – data collec on system
• ApacheMahout – machine learning and data mining library
• Apache Pig – framework for parallel computa on and analysis
• Apache ZooKeeper – coordina on of distributed applica ons
• …
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Apache Hadoop
Real-world Hadoop users (year 2016)

• Facebook – internal logs, analy cs, machine learning, 2 clusters
1100 nodes (8 cores, 12 TB storage), 12 PB
300 nodes (8 cores, 12 TB storage), 3 PB

• LinkedIn – 3 clusters
800 nodes (2×4 cores, 24 GB RAM, 6×2 TB SATA), 9 PB
1900 nodes (2×6 cores, 24 GB RAM, 6×2 TB SATA), 22 PB
1400 nodes (2×6 cores, 32 GB RAM, 6×2 TB SATA), 16 PB

• Spo fy – content genera on, data aggrega on, repor ng, analysis
1650 nodes, 43000 cores, 70 TB RAM, 65 PB, 20000 daily jobs

• Yahoo! – 40000 nodes with Hadoop, biggest cluster
4500 nodes (2×4 cores, 16 GB RAM, 4×1 TB storage), 17 PB

Source: h p://wiki.apache.org/hadoop/PoweredBy
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MapReduce
Executes aMapReduce job on a selected collec on

dbdb .. collectioncollection .. mapReducemapReduce

(( map functionmap function ,, reduce functionreduce function

,, optionsoptions

))

• Parameters
Map: JavaScript implementa on of the Map func on
Reduce: JavaScript implementa on of the Reduce func on
Op ons
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MapReduce
Map func on

• Current document is accessible via this
• emit(key, value) is used for emissions

Reduce func on
• Intermediate key and values are provided as arguments
• Reduced value is published via return

Op ons
• query: only matching documents are considered
• sort: they are processed in a specific order
• limit: at most a given number of them is processed
• out: output is stored into a given collec on

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 55



MapReduce: Example
Count the number of movies filmed in each year, star ng in 2005

db.movies.mapReduce(
function() {
emit(this.year, 1);

},
function(key, values) {
return Array.sum(values);

},
{
query: { year: { $gte: 2005 } },
sort: { year: 1 },
out: "statistics"

}
)
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Lecture Conclusion
MapReduce cri cism

• MapReduce is a step backwards
Does not use database schema
Does not use index structures
Does not support advanced query languages
Does not support transac ons, integrity constraints, views, …
Does not support data mining, business intelligence, …

• MapReduce is not novel
Ideas more than 20 years old and overcome
Message Passing Interface (MPI), Reduce-Sca er

The end of MapReduce?
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