
NDBI006: Query Languages II
h p://www.ksi.mff.cuni.cz/~svoboda/courses/202-NDBI006/

Lecture 14

MapReduce
Mar n Svoboda
svoboda@ksi.mff.cuni.cz

1. 6. 2021

Charles University, Faculty of Mathema cs and Physics

http://www.ksi.mff.cuni.cz/~svoboda/courses/202-NDBI006/
mailto:svoboda@ksi.mff.cuni.cz

Lecture Outline
MapReduce

• Programming model and implementa on
• Mo va on, principles, details, …

Apache Hadoop
• HDFS (Hadoop Distributed File System)
• MapReduce

MongoDB
• MapReduce queries

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 2

Programming Models
What is a programming model?

• Abstrac on of an underlying computer system
Describes a logical view of the provided func onality
Offers a public interface, resources or other constructs
Allows for the expression of algorithms and data structures
Conceals physical reality of the internal implementa on
Allows us to work at a (much) higher level of abstrac on

• The point is
how the intended user thinks in order to solve their tasks
and not necessarily how the system actually works

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 3

Programming Models
Examples

• Tradi onal von Neumann model
Architecture of a physical computer with several components
such as a central processing unit (CPU), arithme c-logic unit
(ALU), processor registers, program counter, memory unit, etc.
Execu on of a stream of instruc ons

• Java Virtual Machine (JVM)
• …

Do not confuse programming models with
• Programming paradigms (procedural, func onal, logic, modular,

object-oriented, recursive, generic, data-driven, parallel, …)
• Programming languages (Java, C++, …)

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 4

Parallel Programming Models
Process interac on

Mechanisms of mutual communica on of parallel processes
• Shared memory – shared global address space, asynchronous read

and write access, synchroniza on primi ves
• Message passing
• Implicit interac on

Problem decomposi on
Ways of problem decomposi on into tasks executed in parallel

• Task parallelism – different tasks over the same data
• Data parallelism – the same task over different data
• Implicit parallelism

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 5

MapReduce

MapReduce Framework
What is MapReduce?

• Programming model + implementa on
• Developed by Google in 2008

Google:
A simple and powerful interface that enables automa c par-
alleliza on and distribu on of large-scale computa ons,
combined with an implementa on of this interface that
achieves high performance on large clusters of commodity
PCs.

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 7

History and Mo va on
Google PageRank problem (2003)

• How to rank tens of billions of web pages by their importance
… efficiently in a reasonable amount of me
… when data is scattered across thousands of computers
… data files can be enormous (terabytes or more)
… data files are updated only occasionally (just appended)
… sending the data between compute nodes is expensive
… hardware failures are rule rather than excep on

• Centralized index structure was no longer sufficient
• Solu on

Google File System – a distributed file system
MapReduce – a programming model

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 8

MapReduce Framework
MapReduce programming model

• Cluster of commodity personal computers (nodes)
Each running a host opera ng system, mutually interconnected
within a network, communica on based on IP addresses, …

• Data is distributed among the nodes
• Tasks executed in parallel across the nodes

Classifica on
• Process interac on: message passing
• Problem decomposi on: data parallelism

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 9

Basic Idea
Divide-and-conquer paradigm

• Breaks down a given problem into simpler sub-problems
• Solu ons of the sub-problems are then combined together

Two core func ons
• Map func on

Generates a set of so-called intermediate key-value pairs
• Reduce func on

Reduces values associated with a given intermediate key
And that’s all!

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 10

Basic Idea
And that’s really all!
It means...

• We only need to implementMap and Reduce func ons
• Everything else such as

input data distribu on,
scheduling of execu on tasks,
monitoring of computa on progress,
inter-machine communica on,
handling of machine failures,
…

is managed automa cally by the framework!

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 11

Model Descrip on
Map func on

• Input: input key-value pair = input record
• Output: list of intermediate key-value pairs

Usually from a different domain
Keys do not have to be unique
Duplicate pairs are permi ed

• (key, value) → list of (key, value)
Reduce func on

• Input: intermediate key + list of (all) values for this key
• Output: possibly smaller list of values for this key

Usually from the same domain
• (key, list of values) → (key, list of values)

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 12

Example: Word Frequency
/**
* Map function
* @param key Document identifier
* @param value Document contents
*/

map(String key, String value) {
foreach word w in value: emit(w, 1);

}

/**
* Reduce function
* @param key Particular word
* @param values List of count values generated for this word
*/

reduce(String key, Iterator values) {
int result = 0;
foreach v in values: result += v;
emit(key, result);

}

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 13

Logical Phases

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 14

Logical Phases
Mapping phase

• Map func on is executed for each input record
• Intermediate key-value pairs are emi ed

Shuffling phase
• Intermediate key-value pairs are grouped and sorted

according to the keys
Reducing phase

• Reduce func on is executed for each intermediate key
• Output key-value pairs are generated

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 15

Cluster Architecture
Master-slave architecture

• Two types of nodes, each with two basic roles
• Master

Manages the execu on of MapReduce jobs
– Schedules individual Map / Reduce tasks to idle workers
– …

Maintains metadata about input / output files
– These are stored in the underlying distributed file system

• Slaves (workers)
Physically store the actual data contents of files

– Files are divided into smaller parts called splits
– Each split is stored by one / or even more par cular workers

Accept and execute assigned Map / Reduce tasks

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 16

Cluster Architecture

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 17

MapReduce Job Submission

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 18

MapReduce Job Submission
Submission of MapReduce jobs

• Jobs can only be submi ed to the master node
• Client provides the following:

Implementa on of (not only)Map and Reduce func ons
Descrip on of input file (or even files)
Descrip on of output directory

Localiza on of input files
• Master determines loca ons of all involved splits

I.e. workers containing these splits are resolved

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 19

Input Splits Localiza on

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 20

Input Splits Localiza on

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 21

Map Task Assignment

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 22

Map Task Execu on
Map Task = processing of 1 split by 1 worker

• Assigned by the master to an idle worker that is (preferably)
already containing (physically storing) a given split

Individual steps…
• Input reader is used to parse contents of the split

I.e. input records are generated
• Map func on is applied on each input record

Intermediate key-value pairs are emi ed
• These pairs are stored locally and organized into regions

Either in the system memory,
or flushed to a local hard drive when necessary
Par on func on is used to determine the intended region

– Intermediate keys (not values) are used for this purpose
– E.g. hash of the key modulo the overall number of reducers

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 23

Input Parsing
Parsing phase

• Each split is parsed so that input records are retrieved
(i.e. input key-value pairs are obtained)

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 24

Map Phase

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 25

Map Phase

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 26

Map Task Confirma on

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 27

Reduce Task Assignment

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 28

Reduce Task Execu on
Reduce Task = reduc on of selected key-value pairs by 1 worker

• Goal: processing of all emi ed intermediate key-value pairs
belonging to a par cular region

Individual steps…
• Intermediate key-value pairs are first acquired

All relevant mapping workers are addressed
Data of corresponding regions are transfered (remote read)

• Once downloaded, they are locally merged
I.e. sorted and grouped based on keys

• Reduce func on is applied on each intermediate key
• Output key-value pairs are emi ed and stored (output writer)

Note that each worker produces its own separate output file

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 29

Region Data Retrieval

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 30

Region Data Retrieval

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 31

Reduce Phase

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 32

Reduce Phase

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 33

Reduce Task Confirma on

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 34

MapReduce Job Termina on

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 35

Combine Func on
Op onal Combine func on

• Objec ve
Decrease the amount of intermediate data
i.e. decrease the amount of data that is needed to be
transferred from Mappers to Reducers

• Analogous purpose and implementa on to Reduce func on
• Executed locally by Mappers
• However, only applicable when the reduc on is…

Commuta ve
Associa ve
Idempotent: f(f(x)) = f(x)

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 36

Improved Map Phase

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 37

Improved Reduce Phase

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 38

Improved Reduce Phase

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 39

Func ons Overview
Input reader

• Parses a given input split and prepares input records
Map func on
Par on func on

• Determines a par cular Reducer for a given intermediate key
Compare func on

• Mutually compares two intermediate keys
Combine func on
Reduce func on
Output writer

• Writes the output of a given Reducer

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 40

Advanced Aspects
Counters

• Allow to track the progress of a MapReduce job in real me
Predefined counters

– E.g. numbers of launched / finished Map / Reduce tasks,
parsed input key-value pairs, …

Custom counters (user-defined)
– Can be associated with any ac on that a Map or Reduce

func on does

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 41

Advanced Aspects
Stragglers

• Straggler = node that takes unusually long me to complete
a task it was assigned

• Solu on
When a MapReduce job is close to comple on, the master
schedules backup execu ons of the remaining in-progress tasks
A given task is considered to be completed whenever either
the primary or the backup execu on completes

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 42

Addi onal Examples
URL access frequency

• Input: HTTP server access logs
• Map: parses a log, emits (accessed URL, 1) pairs
• Reduce: computes and emits the sum of the associated values
• Output: overall number of accesses to a given URL

Inverted index
• Input: text documents containing words
• Map: parses a document, emits (word, document ID) pairs
• Reduce: emits all the associated document IDs sorted
• Output: list of documents containing a given word

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 43

Addi onal Examples
Distributed sort

• Input: records to be sorted according to a specific criterion
• Map: extracts the sor ng key, emits (key, record) pairs
• Reduce: emits the associated records unchanged

Reverse web-link graph
• Input: web pages with … tags
• Map: emits (target URL, current document URL) pairs
• Reduce: emits the associated source URLs unchanged
• Output: list of URLs of web pages targe ng a given one

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 44

Addi onal Examples
Reverse web-link graph
/**
* Map function
* @param key Source web page URL
* @param value HTML contents of this web page
*/

map(String key, String value) {
foreach <a> tag t in value: emit(t.href, key);

}

/**
* Reduce function
* @param key URL of a particular web page
* @param values List of URLs of web pages targeting this one
*/

reduce(String key, Iterator values) {
emit(key, values);

}

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 45

Use Cases: General Pa erns
Coun ng, summing, aggrega on

• When the overall number of occurrences of certain items or a
different aggregate func on should be calculated

Colla ng, grouping
• When all items belonging to a certain group should be found,

collected together or processed in another way
Filtering, querying, parsing, valida on

• When all items sa sfying a certain condi on should be found,
transformed or processed in another way

Sor ng
• When items should be processed in a par cular order with respect

to a certain ordering criterion

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 46

Use Cases: Real-World Problems
Just a few real-world examples…

• Risk modeling, customer churn
• Recommenda on engine, customer preferences
• Adver sement targe ng, trade surveillance
• Fraudulent ac vity threats, security breaches detec on
• Hardware or sensor network failure predic on
• Search quality analysis
• …

Source: h p://www.cloudera.com/

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 47

Apache Hadoop

Apache Hadoop
Open-source so ware framework

• h p://hadoop.apache.org/
• Distributed storage and processing of very large data sets

on clusters built from commodity hardware
Implements a distributed file system
Implements aMapReduce programming model

• Derived from the original Google MapReduce and GFS
• Developed by Apache So ware Founda on
• Implemented in Java
• Opera ng system: cross-pla orm
• Ini al release in 2011

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 49

http://hadoop.apache.org/

Apache Hadoop
Modules

• Hadoop Common
Common u li es and support for other modules

• Hadoop Distributed File System (HDFS)
High-throughput distributed file system

• Hadoop Yet Another Resource Nego ator (YARN)
Cluster resource management
Job scheduling framework

• HadoopMapReduce
YARN-based implementa on of the MapReduce model

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 50

Apache Hadoop
Hadoop-related projects

• Apache Cassandra – wide column store
• Apache HBase – wide column store
• Apache Hive – data warehouse infrastructure
• Apache Avro – data serializa on system
• Apache Chukwa – data collec on system
• ApacheMahout – machine learning and data mining library
• Apache Pig – framework for parallel computa on and analysis
• Apache ZooKeeper – coordina on of distributed applica ons
• …

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 51

Apache Hadoop
Real-world Hadoop users (year 2016)

• Facebook – internal logs, analy cs, machine learning, 2 clusters
1100 nodes (8 cores, 12 TB storage), 12 PB
300 nodes (8 cores, 12 TB storage), 3 PB

• LinkedIn – 3 clusters
800 nodes (2×4 cores, 24 GB RAM, 6×2 TB SATA), 9 PB
1900 nodes (2×6 cores, 24 GB RAM, 6×2 TB SATA), 22 PB
1400 nodes (2×6 cores, 32 GB RAM, 6×2 TB SATA), 16 PB

• Spo fy – content genera on, data aggrega on, repor ng, analysis
1650 nodes, 43000 cores, 70 TB RAM, 65 PB, 20000 daily jobs

• Yahoo! – 40000 nodes with Hadoop, biggest cluster
4500 nodes (2×4 cores, 16 GB RAM, 4×1 TB storage), 17 PB

Source: h p://wiki.apache.org/hadoop/PoweredBy

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 52

MongoDB MapReduce

MapReduce
Executes aMapReduce job on a selected collec on

dbdb .. collectioncollection .. mapReducemapReduce

((map functionmap function ,, reduce functionreduce function

,, optionsoptions

))

• Parameters
Map: JavaScript implementa on of the Map func on
Reduce: JavaScript implementa on of the Reduce func on
Op ons

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 54

MapReduce
Map func on

• Current document is accessible via this
• emit(key, value) is used for emissions

Reduce func on
• Intermediate key and values are provided as arguments
• Reduced value is published via return

Op ons
• query: only matching documents are considered
• sort: they are processed in a specific order
• limit: at most a given number of them is processed
• out: output is stored into a given collec on

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 55

MapReduce: Example
Count the number of movies filmed in each year, star ng in 2005

db.movies.mapReduce(
function() {
emit(this.year, 1);

},
function(key, values) {
return Array.sum(values);

},
{
query: { year: { $gte: 2005 } },
sort: { year: 1 },
out: "statistics"

}
)

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 56

Lecture Conclusion
MapReduce cri cism

• MapReduce is a step backwards
Does not use database schema
Does not use index structures
Does not support advanced query languages
Does not support transac ons, integrity constraints, views, …
Does not support data mining, business intelligence, …

• MapReduce is not novel
Ideas more than 20 years old and overcome
Message Passing Interface (MPI), Reduce-Sca er

The end of MapReduce?

NDBI006: Query Languages II | Lecture 14: MapReduce | 1. 6. 2021 58

	Outline
	Programming Models
	MapReduce
	Programming Model
	Example
	Logical Phases
	Cluster Architecture
	Job Submission
	Mapping Phase
	Reducing Phase
	Combine Function
	Advanced Aspects
	Additional Examples
	Use Cases

	Apache Hadoop
	MongoDB MapReduce
	Conclusion

