
B0B36DBS: Database Systems
hƩp://www.ksi.mff.cuni.cz/~svoboda/courses/202-B0B36DBS/

Lecture 6

Database TransacƟons
Authors: Tomáš Skopal, Irena Holubová
Lecturer: MarƟn Svoboda, marƟn.svoboda@fel.cvut.cz

23. 3. 2021

Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/202-B0B36DBS/
mailto:martin.svoboda@fel.cvut.cz

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 2

Today’s lecture outline

• motivation and the ACID properties

• schedules („interleaved“ transaction execution)

▪ serializability

▪ conflicts

▪ (non)recoverable schedule

• locking protocols

▪ 2PL, strict 2PL, conservative 2PL

▪ deadlock and prevention

▪ phantom

• alternative protocols

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 3

Motivation

• problem: we need to execute complex database operations
▪ e.g., stored procedures, triggers, etc.

▪ in a multi-user and parallel environment

• database transaction
▪ sequence of actions on database objects (+ others like arithmetic, etc.)

• example:
▪ Let us have a bank database with table Accounts and the following

transaction to transfer the money (pseudocode):

transaction PaymentOrder(amount, fromAcc, toAcc)

{

1. SELECT Balance INTO X FROM Accounts WHERE accNr = fromAcc;

2. if (X < amount) AbortTransaction(“Not enough money!”);

3. UPDATE Accounts SET Balance = Balance – amount WHERE accNr = fromAcc;

4. UPDATE Accounts SET Balance = Balance + amount WHERE accNr = toAcc;

5. CommitTransaction;

}

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 4

Transaction management in DBMS

• application launches transactions

• transaction manager executes transactions

• scheduler dynamically schedules the parallel transaction
execution, producing a schedule (history)

• data manager executes partial operation of transactions

application

DBMS

transaction
manager

transaction
scheduler

data
manager

database

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 5

Transaction management in DBMS

• transaction termination
▪ successful – terminated by COMMIT command in the transaction code

‒ the performed actions are confirmed

▪ unsuccessful – transaction is cancelled
1. termination by the transaction code – ABORT (or ROLLBACK) command

• user can be notified

2. system abort – DBMS aborts the transaction

• some integrity constraint is violated – user is notified

• by transaction scheduler (e.g., a deadlock occurs) – user is not notified

3. system failure – HW failure, power loss – transaction must be restarted

• main objectives of transaction management
▪ enforcement of ACID properties

▪ maximal performance (throughput)
‒ parallel/concurrent execution of transactions

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 6

ACID – desired properties of transaction management

• Atomicity – partial execution is not allowed (all or nothing)

▪ prevents from incorrect transaction termination (or failure)

= consistency at the DBMS level

• Consistency

▪ any transaction will bring the database from one consistent (valid) state to another

= consistency at application level

• Isolation

▪ transactions executed in parallel do not “see” effects of each other unless committed

▪ parallel/concurrent execution is necessary to achieve high throughput

• Durability

▪ once a transaction has been committed, it will remain so, even in the event of power
loss, crashes, or errors

▪ logging necessary (log/journal maintained)

?

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 7

Transaction

• an executed transaction is a sequence of actions

T = <AT
1, AT

2, ... , COMMIT or ABORT>

• basic database actions (operations)

• for now consider a static database (no inserts/deletes, just updates), let A be a
database object (table, row, attribute in row)

‒ we omit other actions such as control construct (if, for), etc.

• READ(A) – reads A from database

• WRITE(A) – writes A to database

• COMMIT – confirms executed actions
as valid, terminates transaction

• ABORT – cancels executed actions,
terminates transaction (with error)

• SQL commands SELECT, INSERT, UPDATE,
could be viewed as transactions implemented
using the basic actions (in SQL command ROLLBACK is used instead of abort)

Example:

Subtract 5 from A (some attribute),

such that A>0.

T = <READ(A), // action 1

if (A  5) then ABORT

else WRITE(A – 5), // action 2

COMMIT> // action 3

or
T = <READ(A), // action 1
if (A  5) then ABORT // action 2
else ... >

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 8

Transaction programs vs. schedules

• database program

▪ “design-time” (not running) piece of code (that will be executed as a transaction)

▪ i.e., nonlinear – branching, loops, jumps

• schedule (history) is a sorted list of actions coming from several
transactions (i.e., transactions as interleaved)

▪ „runtime“ history of already concurrently executed actions of several transactions

▪ i.e., linear – sequence of primitive operations, w/o control constructs

T1 T2 T3
READ(A)

WRITE(A)
READ(B)

WRITE(A)
READ(C)

COMMIT
ABORT

COMMIT

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 9

Serial schedules

• specific schedule, where all actions of a transaction are coupled together

▪ no action interleaving

• given a set S of transactions, we can obtain |S|! serial schedules
▪ from the definition of ACID properties, all the schedules are equivalent – it does not

matter if one transaction is executed before or after another one
‒ if it matters, they are not independent and so they should be merged into single transactions

• example:

T1 T2 T3
READ(A)
WRITE(A)
ABORT

WRITE(A)
COMMIT

READ(B)
READ(C)
COMMIT

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 10

Why to interleave transactions?

• every schedule leads to interleaved sequential execution of transactions
(there is no parallel execution of database operations)

▪ simplified model justified by single storage device

• Question: So why to interleave transactions when the number of steps is the
same as in a serial schedule?

• two reasons
▪ parallel execution of non-database operations with database operations

▪ response proportional to transaction complexity (e.g., OldestEmployee vs. ComputeTaxes)

• example

T1 T2 T3
READ(A)

WRITE(A)
READ(B)

WRITE(A)
READ(C)

COMMIT
ABORT

COMMIT

print(‘Start T2’) A := 5
A := A +1
print(A) print(‘Written’)

X := B;

print(‘error’) X := X + C

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 11

Serializability

• a schedule is serializable if its execution leads to consistent database
state, i.e., if the schedule is equivalent to any serial schedule
▪ for now we consider only committed transactions and a static database

▪ note that non-database operations are not considered so that consistency cannot be
provided for non-database state (e.g., print on console)

▪ it does not matter which serial schedule is equivalent (independent transactions)

• strong property
▪ secures the Isolation and Consistency in ACID

• view serializability extends serializability by including aborted
transactions and dynamic database
▪ however, testing is NP-complete, so it is not used in practice

▪ instead, conflict serializability + other techniques are used

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 12

“Dangers” caused by interleaving

• to achieve serializability (i.e., consistency and isolation), the action of
interleaving cannot be arbitrary

• there exist 3 types of local dependencies in the schedule, so-called conflict
pairs

• four possibilities of reading/writing the same resource in schedule
▪ read-read – ok, by reading the transactions do not affect each other

▪ write-read (WR) – T1 writes, then T2 reads – reading uncommitted data

▪ read-write (RW) – T1 reads, then T2 writes – unrepeatable reading

▪ write-write (WW) – T1 writes, then T2 writes – overwrite of uncommitted data

T1 T2
Read(A)

Write(A)
Read(A)
Write(A)

RW

WR

WW

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 13

Conflicts (WR)

• reading uncommitted data (write-read conflict)

▪ transaction T2 reads A that was earlier updated by transaction T1,
but T1 did not commit so far, i.e., T2 reads potentially inconsistent data

‒ so-called dirty read

Example: T1 transfers 1000 USD from account A to account B (A = 12000, B = 10000)
T2 adds 1% per account

T1 T2

R(A) // A = 12000

A := A – 1000

W(A) // database is now inconsistent – account B still contains the old balance

R(A) // uncommitted data is read
R(B)
A := 1.01*A
B := 1.01*B
W(A)

W(B)
COMMIT

R(B) // B = 10100
B := B + 1000

W(B)

COMMIT // inconsistent database, A = 11110, B = 11100

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 14

Conflicts (RW)
• unrepeatable read (read-write conflict)

▪ transaction T2 writes A that was read earlier by T1 that didn’t finish yet
▪ T1 cannot repeat the reading of A (A now contains another value)

‒ so-called unrepeatable read

Example: T1 transfers 1000 USD from account A to account B (A = 12000, B = 10000)
T2 adds 1% per account

T1 T2

R(A) // A = 12000

R(A)
R(B)
A := 1.01*A
B := 1.01*B
W(A) // update of A

W(B)
COMMIT

// database now contains A = 12120
R(B)

A := A – 1000

W(A)

B := B + 1000

W(B)

COMMIT // inconsistent database, A = 11000, B = 11100

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 15

Conflicts (WW)

• overwrite of uncommitted data (write-write conflict)
▪ transaction T2 overwrites A that was earlier written by T1 that still runs

▪ loss of update (original value of A is lost)
‒ so-called blind write (update of unread data)

Example: Set the same price to all DVDs.
(let’s have two instances of this transaction, one setting price to 10 USD, second 15 USD)

T1 T2
DVD1 := 15
W(DVD1)

DVD2 := 10
W(DVD2)

DVD2 := 15

W(DVD2) // overwrite of uncommitted data

COMMIT
DVD1 := 10
W(DVD1)

COMMIT // inconsistent database, DVD1 = 10, DVD2 = 15

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 16

Conflict serializability

• two schedules are conflict equivalent if they share the set of conflict pairs

• a schedule is conflict serializable if it is conflict-equivalent to some serial schedule,

i.e., there are no “real” conflicts

▪ more restrictive than serializability (defined only by consistency preservation)

• conflict serializability alone does not consider:

▪ cancelled transactions

– ABORT/ROLLBACK, so the

schedule could be unrecoverable

▪ dynamic database (inserting / deleting database objects)

– so-called phantom may occur

▪ hence, conflict serializability is not sufficient condition

to provide ACID (view serializability is ultimate condition)

Example: schedule, that is serializable

(serial schedule <T1, T2, T3>),

but is not conflict serializable

(writes in T1 and T2 are in wrong order)

T1 T2 T3

R(A)

W(A)

COMMIT

W(A)

COMMIT

W(A)

COMMIT

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 17

Example: conflict serializable
T1 T2 T3
R(A)

R(A)
COMMIT

W(A)
COMMIT

W(A)
COMMIT

Detection of conflict serializability

• precedence graph (also serializability graph) on a schedule

▪ nodes Ti are committed transactions

▪ edges represent RW, WR, WW conflicts in the schedule

• schedule is conflict serializable
if its precedence graph is acyclic

Example: not conflict serializable

T1 T2 T3

R(A)
W(A)
COMMIT

W(A)

COMMIT
W(A)

COMMIT

T1
T2

T3

RW

WW

WW

WW,
RW

T1

T3

RW

RW

WW,
RW

T2

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 18

Unrecoverable schedule

• at this moment we extend the transaction model by ABORT which brings
another “danger” – unrecoverable schedule

▪ one transaction aborts so that undos of every write must be done, however,
this cannot be done for already committed transactions that read changes
caused by the aborted transaction

‒ durability property of ACID

• in recoverable schedule
a transaction T is committed
after all other transactions
that affected T commit (i.e., they
changed data later read by T)

• if reading changed data is allowed

only for committed transactions,

we also avoid cascade aborts of

transactions

Example: T1 transfers 1000 USD from A to B,
T2 adds annual interests
T1 T2
R(A)
A := A - 1000
W(A)

R(A)
A := A *1.01

W(A)
R(B)
B := B *1.01

W(B)
COMMIT

ABORT

commited,
cannot be

undone! →

cascade aborts

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 19

Protocols for concurrent transaction scheduling

• transaction scheduler works under some protocol that allows to guarantee the
ACID properties and maximal throughput

• pessimistic control (highly concurrent workloads)

▪ locking protocols

▪ time stamps

• optimistic control (not very concurrent workloads)

• why protocol?

▪ the scheduler cannot create the entire schedule beforehand

▪ scheduling is performed in local time context – dynamic

transaction execution, branching parts in code

R(A)

W(B)

W(A)

R(C)

W(C)

R(A)

R(B)

R(C)

T1 T2 T3

Schedule
T1 T2 T3

R(A)
R(C)

R(A)
W(C)

R(B)
W(B)
W(A)

R(C)

DB client(s)

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 20

Locking protocols

• locking of database entities can be used to control the order of reads and
writes and so to secure the conflict serializability

• exclusive locks

▪ X(A) locks A so that reads and writes of A are allowed only to the lock owner/creator

▪ can be granted to just one transaction

• shared locks

▪ S(A) – only reads of A are allowed

▪ can be granted to (shared by) multiple transactions

• unlocking by U(A)

• if a lock that is not available is required for a transaction, the transaction execution
is suspended and waits for releasing the lock

▪ in the schedule, the lock request is denoted, followed by empty rows of waiting

• the un/locking code is added by the transaction scheduler

▪ i.e., operation on locks appear just in the schedules, not in the original transaction code

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 21

Example: schedule with locking

T1 T2
X(A)

X(C)
W(A)

R(C)
W(C)

U(A)
S(A)

S(B)
R(A)

R(B)
U(C)

X(C)
U(A)

S(A)
COMMIT

W(C)
R(A)
U(B)
U(C)
U(A)
X(B)
W(B)
U(B)
COMMIT

X(A)

S(B)

X(C)
COMMIT

S(A)

X(B)

S(A)

X(C) COMMITT1

T2

order of actions in schedule

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 22

Two-phase locking protocol (2PL)

2PL protocol applies two rules for building the schedule:

1) if a transaction wants to read (write) an entity A, it must first acquire a
shared (exclusive) lock on A

2) transaction cannot requests a lock, if it already released one
(regardless of the locked entity)

Two obvious phases – locking and unlocking

Example: 2PL adjustment of the second transaction in the previous schedule

X(A)

X(B)

X(C)
COMMIT/ABORT

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 23

Properties of 2PL

• the 2PL restriction of schedule ensures that the precedence graph is acyclic,
i.e., the schedule is conflict serializable

• 2PL does not guarantee recoverable schedules

Example: 2PL-compliant schedule, but not recoverable, if T1 aborts

T1 T2

X(A)

R(A)

W(A)

U(A)

X(A)
R(A)
A := A *1.01

W(A)

X(B)
U(A)

R(B)
B := B *1.01
W(B)

U(B)
COMMIT

ABORT / COMMIT

T1

T2

RW, WR, WW

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 24

Strict 2PL

Strict 2PL protocol makes the second rule of 2PL stronger, so that both rules become:

1) if a transaction wants to read (write) an entity A, it must first acquire a shared
(exclusive) lock on A

2) all locks are released at the transaction termination

Example: strict 2PL adjustment of second transaction in the previous example

Insertions of U(A) are not needed (implicit at the time of COMMIT/ABORT).

X(A)

X(B)

X(C)
COMMIT/ABORT

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 25

Properties of strict 2PL

• the 2PL restriction of schedule ensures that the precedence graph is acyclic,
i.e., the schedule is conflict serializable

• moreover, strict 2PL ensures

▪ schedule recoverability

▪ avoids cascade aborts

Example: schedule built using strict 2PL

T1 T2
S(A)
R(A)

S(A)
R(A)
X(B)

X(C)
R(C)

R(B)
W(B)
COMMIT

W(C)
ABORT / COMMIT

T1

T2

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 26

Deadlock

• during transaction execution it may happen that transaction T1 requests a lock that was
already granted to T2, but T2 cannot release it because it waits for another lock kept by T1

▪ could be generalized to multiple transactions,
T1 waits for T2, T2 waits for T3, ..., Tn waits for T1

• strict 2PL cannot prevent from deadlock (not speaking about the weaker protocols)

Example:
T1 T2 T3 T4

S(A)

R(A)

X(B)

W(B)

S(B)

S(C)

R(C)

X(C)

X(B)

X(A)

waiting for a lock

waiting for a lock

waiting for a lockwaiting for a lock

all transactions wait for a lock
→ no one can release a lock
→ scheduler cannot schedule

nor execute transactions
→ deadlock

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 27

Deadlock detection

• deadlock can be detected by repeated checking the waits-for graph

• waits-for graph is a dynamic graph that captures the waiting of
transactions for locks

▪ nodes are active transactions

▪ an edge denotes waiting of transaction for lock kept by another transaction

▪ a cycle in the graph = deadlock

Example: waits-for graph for the previous example

(a) T3 requests X(A) (b) T3 does not request X(A)

T1 T2

T4 T3

T1 T2

T4 T3

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 28

Deadlock resolution and prevention

• deadlocks are usually not very frequent, so the resolution could be simple
▪ abort of the waiting transaction and its restart (user will not notice)

▪ testing waits-for graph – if a deadlock occurs, abort and restart
a transaction in the cycle

‒ such transaction is aborted, that
• holds the smallest number of locks

• performed the least amount of work

• is far from completion

‒ an aborted transaction is not aborted again (if another deadlock occurs)

• deadlocks could be prevented
▪ prioritizing

‒ each transaction has a priority (e.g., time stamp); if T1 requests a lock kept by T2,
the lock manager chooses between two strategies

• wait-die – if T1 has higher priority, it can wait, if not, it is aborted and restarted

• wound-wait – if T1 has higher priority, T2 is aborted, otherwise T1 waits

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 29

Coffman Conditions

• Deadlocks can arise if all of the following conditions
hold simultaneously in a system
▪ Mutual exclusion – resources can be held in a non-shareable mode

▪ Resource holding (hold and wait) – additional resources may be
requested even when already some resources are held

▪ No preemption – resources can be released only voluntarily

▪ Circular wait – transactions can request and wait for resources in
cycles

• Unfulfillment of any of these conditions is enough to prevent
deadlocks from occurring

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 30

Phantom

• now consider dynamic database

▪ allowing inserts and deletes

• if one transaction works with some set of data entities, while another
transaction changes this set (inserts or deletes), it could lead to
inconsistent database (inserializable schedule)

▪ Why? T1 locks all entities that at the given moment are relevant

‒ e.g., fulfill some WHERE condition of a SELECT command

▪ during execution of T1 a new transaction T2 could logically extend the set of
entities

‒ i.e., at that moment the number of locks defined by WHERE would be larger

‒ so that some entities are locked and some are not

• applied also to strict 2PL

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 31

phantom
a new male employee can be
inserted, although all men
should be locked

Example – phantom
T1: find the oldest male and female employees

(SELECT * FROM Employees ...) + INSERT INTO Statistics ...
T2: insert new employee Phill and delete employee Eve (employee replacement)

(INSERT INTO Employees ..., DELETE FROM Employees ...)

Initial state of the database: {[Peter, 52, m], [John, 46, m], [Eve, 55, f], [Dana, 30, f]}

T1 T2

lock men, i.e.,

S(Peter)

S(John)

M = max{R(Peter), R(John)}

Insert(Phill, 72, m)

X(Eve)

Delete(Eve)

COMMIT

lock women, i.e.,

S(Dana)

F = max{R(Dana)}

Insert(M, F) // result is inserted into table Statistics

COMMIT

Although the schedule is strict 2PL compliant, the result [Peter, Dana] is not correct as it does
not follow the serial schedule T1, T2, resulting in [Peter, Eve], nor T2, T1, resulting [Phill, Dana].

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 32

Phantom – prevention

• if there do not exist indexes, everything relevant must be locked

▪ e.g., entire table or even multiple tables must be locked

• if there exist indexes (e.g., B+-trees) on the entities defined by the „lock
condition“, it is possible to “watch for phantom“ at the index level – index
locking

▪ external attempt for the set modification is identified by the index locks updated

▪ as an index usually maintains just one attribute, its applicability is limited

• generalization of index locking is predicate locking, when the locks are
requested for the logical sets, not particular data instances

▪ however, this is hard to implement and so not used much in practice

B0B36DBS: Database Systems | Lecture 6: Database Transactions | 23. 3. 2021 33

Optimistic (not locking) protocols

• if concurrently executed transactions are not often in conflict (not
competing for resources), the locking overhead is unnecessarily large

• 3-phase optimistic protocol
1. Read: transaction reads data from database but writes into its private local

data space

2. Validation: if the transaction wants to commit, it forwards the private data
space to the transaction manager (i.e., request on database update)

‒ the transaction manager decides if the update is in conflict with another
transaction

• if there is a conflict, the transaction is aborted and restarted

• if not, the last phase takes place:

3. Write: the private data space is copied into the database

