BOB36DBS: Database Systems

http://www.ksi.mff.cuni.cz/~svoboda/courses/202-B0B36DBS/

Practical Class 9

Query Evaluation

Author: Martin Svoboda, martin.svoboda@fel.cvut.cz

Tutors: Ahmad, Černoch, Kostov, Nagyová, Řimnáč, Svoboda, Šír

13. 4. 2021

Czech Technical University in Prague, Faculty of Electrical Engineering

Ticketing information system

- Passenger (<u>pid</u>, name, email, phone, address, category)
 - $r_P = 30000 \text{ tuples}$
 - Blocking factor $b_P = 15$
 - Histogram for passenger categories
 - $h_{P.category.Child} = 0.1$
 - $h_{P.category.Student} = 0.3$
 - $-h_{P.category.Adult} = 0.5$
 - $h_{P.category.Senior} = 0.1$
 - Sorted file using pid
 - Clustered B⁺-tree index using pid
 - $f_{P.pid} = 200$
 - $-I_{P.pid} = 2$
 - $p_{P.pid} = 175$

Ticketing information system (cont'd)

- Ticket (<u>tid</u>, connection, passenger, data)
 - $r_T = 900000$ tuples
 - Blocking factor $b_T = 40$
 - Connection references
 - Foreign key: Ticket (connection) \subseteq Connection (cid)
 - $-V_{T.connection}=r_{C}=20000$ different connections
 - Passenger references
 - Foreign key: Ticket (passenger) ⊆ Passenger (pid)
 - $-h_{T.passenger.NULL} = 1/3$
 - I.e., not all tickets are sold to registered passengers
 - Heap file

Tickets with passenger details for connections with identifiers 101, 102, 103, and 104

```
( Ticket ((connection = 101) \lor (connection = 102) \lor (connection = 103) \lor (connection = 104)) \times Passenger ) (passenger = pid)
```

- Requirements
 - Cross join using nested loops with zig-zag improvement
- Available system memory: M=5 pages

Ticketing information system (cont'd)

- Deposit (<u>did</u>, date, time, passenger, amount)
 - $r_D = 300000$ tuples, blocking factor $b_D = 60$
 - Active domain for dates

$$-\ min_{D.\,date} =$$
 '2021-01-01' and $max_{D.\,date} =$ '2021-04-10'

- Histogram for amounts
 - $-h_{D.amount.[0..500)} = 0.80$
 - $-h_{D.amount.[500..1000)} = 0.15$
 - $-h_{D.amount.[1000...]} = 0.05$
- Passenger references
 - Foreign key: Deposit (passenger) \subseteq Passenger (pid)
 - Deposits can only be made by registered passengers
 - $-V_{D.passenger} = r_P = 30000$ different passengers
- Sorted file using date and time

Student passengers with at least one deposit of at least 1000 CZK between February 1 and 20, 2021

```
(
    Deposit ((date ≥ '2021-02-01') ∧ (date ≤ '2021-02-20'))
        (amount ≥ 1000)
        [passenger = pid]
        Passenger
) (category = 'Student') [pid, name, email]
```

- Requirements
 - Theta join using nested loops with passenger index traversal
- Available system memory: M=5 pages
- Assumptions: blocking factor for projection $b_7 = 30$

Ticketing information system (cont'd)

- Connection (cid, date, time, origin, destination, capacity)
 - $r_C = 20000$ tuples
 - Blocking factor $b_C = 50$
 - Active domain for dates

$$min_{C.date}=$$
'2021-01-01' and $max_{C.date}=$ '2021-04-10'

- Concealed motivation
 - Two-way star-shaped lines between Prague and 10 other cities
 - 10 connections each day in both directions
- Histogram for origin and destination cities
 - $h_{C.origin.Prague} = h_{C.destination.Prague} = 1/2$
 - $-h_{C.origin.c} = h_{C.destination.c} = 1/20$ for any other city c
- Hashed file using date
 - $-K_C=80$ buckets

Tickets of adult passengers leaving Prague on April 1 and 2, 2021

```
(
    Connection ((date = '2021-04-01' ∨ date = '2021-04-02') ∧
        (origin = 'Prague')) [cid, date, time, destination]
        [cid = connection]
        Ticket
) [date, time, destination, tid, passenger]
*
Passenger (category = 'Adult') ⟨pid → passenger⟩
```

- Requirements
 - Theta join using nested loops, natural join using sort-merge join
- Available system memory: M = 20 pages
- Assumptions: blocking factors for projections $b_3 = 60$, $b_6 = 30$

