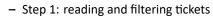

B0B36DBS: Database Systems | Class 9: Query Evaluation

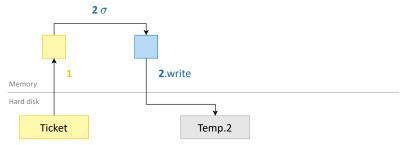
Exercise 1

Evaluation plan

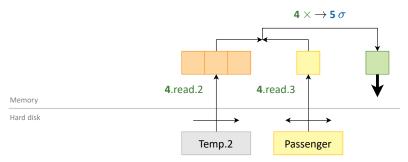
- 1. Table Ticket
 - Heap file
 - $r_1 = r_T = 900000$ records, $b_1 = b_T = 40$, $p_1 = r_1/b_1 = 900000/40 = 22500$ pages
- 2. Selection ((connection = 101) \lor (connection = 102) \lor (connection = 103) \lor (connection = 104))
 - Reduction factor for four selected connections $f_{connections} = 4/V_{T.connection} = 4/20000 = 0.0002$
 - $r_2 = r_1 \cdot f_{connections} = 900000 \cdot 0.0002 = 180$ records
 - $b_2 = b_1 = 40$
 - $p_2 = \lceil r_2/b_2 \rceil = 180/40 = 5$ pages
 - Read cost (sequential scan) $c_2^r = p_1 = 22500$
 - Write $\cot c_2^w = p_2 = 5$
- 3. Table Passenger
 - Sorted file using pid
 - $r_3 = r_P = 30000$ records, $b_3 = b_P = 15$, $p_3 = r_3/b_3 = 30000/15 = 2000$ pages
- 4. Cross join \times
 - $r_4 = r_2 \cdot r_3 = 180 \cdot 30000 = 5400000$ records
 - $b_4 = \lfloor (b_2 \cdot b_3)/(b_2 + b_3) \rfloor = \lfloor (40 \cdot 15)/(40 + 15) \rfloor = \lfloor 600/55 \rfloor = 10$
 - $p_4 = r_4/b_4 = 540000/10 = 540000$ pages
 - Nested loops with zig-zag improvement
 - Memory configuration: $M_4 = [M_4^2 = 3$ as input buffer for sequential read of smaller table $T_2] + [M_4^3 = 1$ as input buffer for zig-zag reading of bigger table $T_3] + [1$ for join output buffer] = 5 pages
 - Read cost (join execution) $c_4^r = p_2 + \lceil p_2/M_4^2 \rceil \cdot (p_3 M_4^3) + M_4^3 = 5 + \lceil 5/3 \rceil \cdot (2000 1) + 1 = 5 + 2 \cdot 1999 + 1 = 4004$
 - Write $\cot c_4^w = p_4 = 540000$
- 5. Selection (passenger = pid)
 - Original foreign key: Ticket (passenger) \subseteq Passenger (pid)
 - Reduction factor $f_{theta} = 1/r_P = 1/30000$
 - I.e., only one appropriate passenger actually exists for a given ticket
 - Reduction factor for non-anonymous tickets $f_{registered} = 1 h_{T.passenger.NULL} = 1 1/3 = 2/3$

- $r_5 = r_4 \cdot f_{theta} \cdot f_{registered} = 5400000 \cdot 1/30000 \cdot 2/3 = 120 \text{ records}$
- $b_5 = b_4 = 10$
- $p_5 = r_5/b_5 = 120/10 = 12$ pages
- Read cost $c_5^r = p_4 = 540000$
- Write $\cot c_5^w = p_5 = 12$ (if not directly forwarded to the user)


Evaluation without pipelining

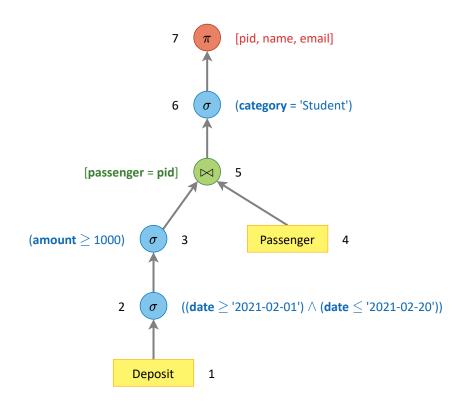

• Evaluation cost

$$\begin{aligned} - & c = [c_2^r + c_2^w] + [c_4^r + c_4^w] + [c_5^r] \\ - & c = [p_1 + p_2] + [p_2 + \lceil p_2/M_4^2 \rceil \cdot (p_3 - M_4^3) + M_4^3 + p_4] + [p_4] \\ - & c = [22500 + 5] + [5 + \lceil 5/3 \rceil \cdot (2000 - 1) + 1 + 540000] + [540000] \\ - & c = [22505] + [544004] + [540000] \\ - & c = 1106509 \end{aligned}$$


Evaluation with pipelining

• Memory configuration

- Step 2: reading passengers and joining them with filtered tickets


Evaluation cost

-
$$c = [c_2^r + c_2^w] + [c_4^r +] + []$$

- $c = [p_1 + p_2] + [p_2 + \lceil p_2/M_4^2 \rceil \cdot (p_3 - M_4^3) + M_4^3]$
- $c = [22500 + 5] + [5 + \lceil 5/3 \rceil \cdot (2000 - 1) + 1]$

$$- c = [22505] + [4004]$$

$$-c = 26509$$

Exercise 2

Evaluation plan

- 1. Table Deposit
 - Sorted file using date and time
 - $r_1 = r_D = 300000$ records, $b_1 = b_D = 60$, $p_1 = r_1/b_1 = 300000/60 = 5000$ pages
- 2. Selection ((date \geq '2021-02-01') \wedge (date \leq '2021-02-20'))
 - Active domain for dates: $min_{D.date} =$ '2021-01-01' and $max_{D.date} =$ '2021-04-10'
 - I.e., $V_{C.date} \doteq (max_{D.date} min_{D.date} + 1) = 100$ different dates
 - Reduction factor for permitted dates $f_{dates} = (2021-02-20' 2021-02-01' + 1) / V_{C.date} = 20/100 = 0.2$
 - $r_2 = r_1 \cdot f_{dates} = 300000 \cdot 0.2 = 60000$ records
 - $b_2 = b_1 = 60$
 - $p_2 = r_2/b_2 = 60000/60 = 1000$ pages
 - Read cost (binary search) $c_2^r = \log_2(p_1) + p_1 \cdot f_{dates} = \log_2(5000) + 5000 \cdot 0.2 = 13 + 1000 = 1013$
 - Write $\cot c_2^w = p_2 = 1000$

3. Selection (amount \geq 1000)

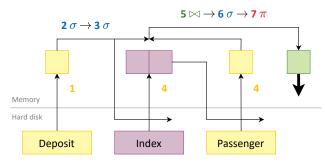
- Reduction factor for amounts $f_{amounts} = h_{D.amount.[1000..]} = 0.05$
- $r_3 = r_2 \cdot f_{amounts} = 60000 \cdot 0.05 = 3000$ records
- $b_3 = b_2 = 60$
- $p_3 = r_3/b_3 = 3000/60 = 50$ pages
- Read cost $c_3^r = p_2 = 1000$
- Write $\cot c_3^w = p_3 = 50$
- 4. Table Passenger
 - Sorted file using pid
 - $r_4 = r_P = 30000$ records, $b_4 = b_P = 15$, $p_4 = r_4/b_4 = 30000/15 = 2000$ pages

5. Theta join [passenger = pid]

- Original foreign key: Deposit (passenger) \subseteq Passenger (pid)
- Currently represented as T_3 (<code>passenger</code>) \subseteq T_4 (<code>pid</code>)
- $r_5 = r_3 = 3000 \text{ records}$
- $b_5 = (b_3 \cdot b_4)/(b_3 + b_4) = (60 \cdot 15)/(60 + 15) = 900/75 = 12$
- $p_5 = r_5/b_5 = 3000/12 = 250$ pages
- Nested loops, direct passenger look-up using clustered index over the Passenger table
- Memory configuration: $M_5 = [1 \text{ as input buffer for } T_3 \text{ sequential read}] + [I_{P.pid} = 2 \text{ for index nodes}] + [1 \text{ as input buffer for } T_4 \text{ retrieval}] + [1 \text{ for join output buffer}] = 5 \text{ pages}$
- Root index node remains loaded in the memory all the time, leaf nodes are fetched iteratively on demand
- Individual read costs (nested loops with index look-up) $c_5^{r.3} = p_3 = 50$ and $c_5^{r.4} = r_3 \cdot (I_{P.pid} 1 + 1) + 1 = 3000 \cdot (2 1 + 1) + 1 = 6001$
- Overall read cost $c_5^r = c_5^{r.3} + c_5^{r.4} = 50 + 6001 = 6051$
- Write $\cot c_5^w = p_5 = 250$

6. Selection (category = 'Student')

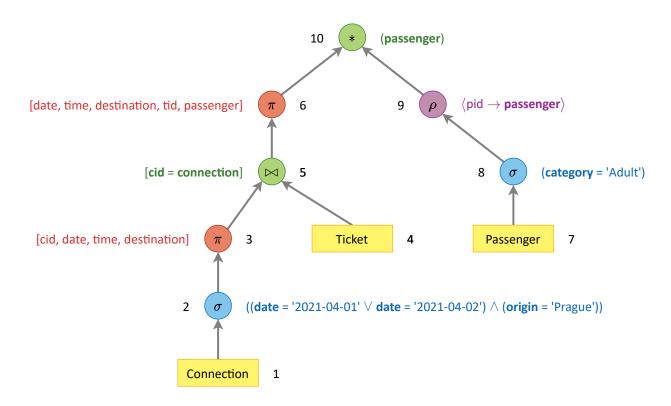
- Reduction factor for student passengers $f_{category} = h_{P.category.Student} = 0.3$
- $r_6 = r_5 \cdot f_{category} = 3000 \cdot 0.3 = 900$ records
- $b_6 = b_5 = 12$
- $p_6 = r_6/b_6 = 900/12 = 75$ pages
- Read cost $c_6^r = p_5 = 250$
- Write cost $c_6^w = p_6 = 75$
- 7. Projection [pid, name, email]
 - Resulting table contains a key for passengers (pid) and no deposit attributes
 - Each passenger is expected to have $n_{deposits.all} = r_D/V_{D.passenger} = 300000/30000 = 10$ deposit transactions during the whole period, and so just $n_{deposits} = n_{deposits.all} \cdot f_{dates} = 10 \cdot 0.2 = 2$ during the selected period
 - Reduction factor for removal of duplicates $f_{distinct} = 1/n_{deposits} = 1/2 = 0.5$
 - $r_7 = r_6 \cdot f_{distinct} = 900 \cdot 0.5 = 450$ records
 - $b_7 = 30$
 - $p_7 = r_7/b_7 = 450/30 = 15$ pages
 - Read cost $c_7^r = p_6 = 75$
 - Write cost $c_7^w = p_7 = 15$ (if not directly forwarded to the user)


Evaluation without pipelining

• Evaluation cost

- $c = [c_2^r + c_2^w] + [c_3^r + c_3^w] + [c_5^r + c_5^w] + [c_6^r + c_6^w] + [c_7^r]$

Evaluation with pipelining


- Memory configuration
 - Step 1: joining deposits and passengers

• Evaluation cost

$$\begin{aligned} - & c = [c_2^r + \varkappa] + [\varkappa + \varkappa] + [\varkappa + \kappa] + [\kappa + c_5^{r.4} + \varkappa] + [\varkappa + \varkappa] + [\varkappa] \\ - & c = [\log_2(p_1) + p_1 \cdot f_{dates}] + [r_3 \cdot (I_{P,pid} - 1 + 1) + 1] \\ - & c = [\log_2(5000) + 5000 \cdot 0.2] + [3000 \cdot (2 - 1 + 1) + 1] \\ - & c = [1013] + [6001] \\ - & c = 7014 \end{aligned}$$

Exercise 3

Evaluation plan

- 1. Table Connection
 - Hashed file using date, $K_C = 80$ buckets
 - $r_1 = r_C = 20000$ records, $b_1 = b_C = 50$, $p_1 = r_1/b_1 = 20000/50 = 400$ pages
 - $C_1 = p_1/K_C = 5$ pages per bucket

2. Selection ((date = '2021-04-01' \lor date = '2021-04-02') \land (origin = 'Prague'))

- Active domain for dates: $min_{C.date} =$ '2021-01-01' and $max_{C.date} =$ '2021-04-10'
- I.e., $V_{C.date} = 100$ different dates
- Reduction factor for two permitted dates $f_{dates} = 2 \cdot 1/V_{C.date} = 2 \cdot 1/100 = 1/50$
- Assumption that s=2 buckets are needed to be scanned
- Reduction factor for the city of origin $f_{origin} = h_{C.origin.Prague} = 1/2$
- $r_2 = r_1 \cdot f_{dates} \cdot f_{origin} = 20000 \cdot 1/50 \cdot 1/2 = 200$ records
- $b_2 = b_1 = 50$
- $p_2 = r_2/b_2 = 200/50 = 4$ pages
- Read cost (bucket retrieval) $c_2^r = 2 \cdot C_1 = 2 \cdot 5 = 10$
- Write $\cot c_2^w = p_2 = 4$

3. Projection [cid, date, time, destination]

- $r_3 = r_2 = 200$ records, $b_3 = 60$, $p_3 = r_3/b_3 = 200/60 \doteq 4$ pages
- Read cost $c_3^r = p_2 = 4$
- Write cost $c_3^w = p_3 = 4$
- 4. Table Ticket
 - Heap file

• $r_4 = r_T = 900000$ records, $b_4 = b_T = 40$, $p_4 = r_4/b_4 = 900000/40 = 22500$ pages

- 5. Theta join [cid = connection]
 - Original foreign key: Ticket(connection) \subseteq Connection(cid)
 - Currently represented as T_4 (connection) \subseteq T_3 (cid)
 - Assumption of $n_5 = r_4/V_{T.connection} = r_4/r_1 = 900000/20000 = 45$ sold tickets per connection
 - $r_5 = r_3 \cdot n_5 = 200 \cdot 45 = 9000$ records
 - $b_5 = (b_3 \cdot b_4)/(b_3 + b_4) = (60 \cdot 40)/(60 + 40) = 2400/100 = 24$
 - $p_5 = r_5/b_5 = 9000/24 = 375$ pages
 - Nested loops, smaller left table T_3 entirely fits the available system memory
 - Memory configuration: $M_5 = [p_3 = 4$ for whole $T_3] + [1$ for T_4 input buffer] + [1 for join output buffer] = 6 pages
 - Individual read costs (nested loops execution) $c_5^{r,3} = p_3 = 4$ and $c_5^{r,4} = p_4 = 22500$
 - Overall read cost $c_5^r = c_5^{r.3} + c_5^{r.4} = p_3 + p_4 = 4 + 22500 = 22504$
 - Write $\cos c_5^w = p_5 = 375$

6. Projection [date, time, destination, tid, passenger]

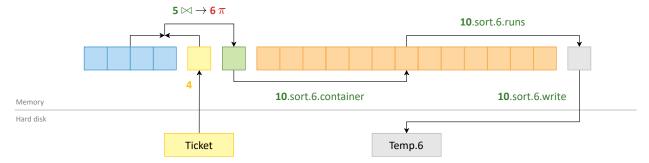
- $r_6 = r_5 = 9000$ records, $b_6 = 30$, $p_6 = r_6/b_6 = 9000/30 = 300$ pages
- Read cost $c_6^r = p_5 = 375$
- Write cost $c_6^w = p_6 = 300$
- 7. Table Passenger
 - Sorted file using pid
 - $r_7 = r_P = 30000$ records, $b_7 = b_P = 15$, $p_7 = r_7/b_7 = 30000/15 = 2000$ pages
- 8. Selection (category = 'Adult')
 - Reduction factor for adult passengers $f_{category} = h_{P.category.Adult} = 0.5$
 - $r_8 = r_7 \cdot f_{category} = 30000 \cdot 0.5 = 15000$ records
 - $b_8 = b_7 = 15$
 - $p_8 = r_8/b_8 = 15000/15 = 1000$ pages
 - Note that the original sorting is maintained
 - Read cost (sequential scan) $c_8^r = p_7 = 2000$
 - Write cost $c_8^w = p_8 = 1000$
- 9. Attribute renaming $\langle pid \rightarrow passenger \rangle$
 - $r_9 = r_8 = 15000$ records, $b_9 = b_8 = 15$, $p_9 = p_8 = 1000$ pages
- 10. Natural join (passenger)
 - Original foreign key: Ticket (passenger)

 Passenger (pid)
 - Currently represented as T_6 (passenger) $\subseteq T_9$ (passenger)
 - Reduction factor for non-anonymous tickets $f_{registered} = 1 h_{T.passenger.NULL} = 1 1/3 = 2/3$
 - Reduction factor for adult passengers $f_{category} = h_{P.category.Adult} = 0.5$
 - $r_{10} = r_6 \cdot f_{registered} \cdot f_{category} = 9000 \cdot 2/3 \cdot 0.5 = 3000$ records
 - $b_{10} \doteq (b_6 \cdot b_9)/(b_6 + b_9) = (30 \cdot 15)/(30 + 15) = 450/45 = 10$
 - $p_{10} = r_{10}/b_{10} = 300$

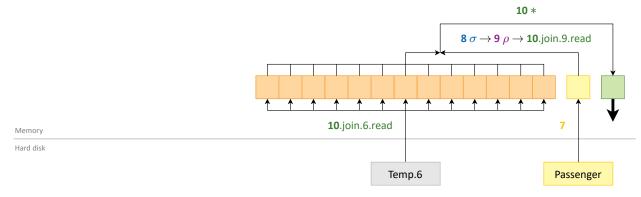
- Sort-merge join algorithm, left table T_6 needs to be sorted, right table T_9 is already sorted using passenger
- 2-passes only, integrated priority queue, extension allowing duplicates in one table (T_6)
- $M_6^{1.container} = \sqrt{p_6/2} = \sqrt{300/2} = \sqrt{150} \doteq 13$ pages are needed for priority queue container to ensure 2-passes
- Sorting phase (pass 1) is likely to produce ≈ 13 runs with length of $\approx 2 \cdot 13 = 26$ pages each
- Memory configuration (sorting phase for T_6): $M_6^1 = [M_6^{1.container} = 13$ for priority queue container] + [1 for T_6 input buffer] + [1 for sorting output buffer] = 15 pages
- Read cost $c_{10}^{r.sort.6} = p_6 = 300$
- Write cost $c_{10}^{w.sort.6} \doteq p_6 = 300$
- Memory configuration (joining phase): $M_6^2 = [M_6^{1.container} = 13$ as input buffer for individual runs of presorted $T_6] + [1$ as input buffer for the only run of already sorted $T_9] + [1$ for join output buffer] = 15 pages
- Individual read costs $c_{10}^{r.join.6}=c_{10}^{w.sort.6}\doteq p_6=300$ and $c_{10}^{r.join.9}=p_9=1000$
- Overall read cost $c_{10}^{r.join} = c_{10}^{r.join.6} + c_{10}^{r.join.9} \doteq p_6 + p_9 = 300 + 1000 = 1300$
- Write $\cot c_{10}^{w.join} = p_{10} = 300$ (if not directly forwarded to the user)

Evaluation without pipelining

Evaluation cost


 $-c = [c_2^r + c_2^w] + [c_3^r + c_3^w] + [c_5^r + c_5^w] + [c_6^r + c_6^w] + [c_8^r + c_8^w] + [c_{10}^{r.sort.6} + c_{10}^{w.sort.6} + c_{10}^{r.join}]$

Evaluation with pipelining


- Memory configuration
 - Step 1: reading, filtering and projecting connections

- Step 2: reading tickets and joining them with connections, projecting extended tickets, and creating sorted runs

- Step 3: joining extended tickets with passengers

• Evaluation cost

- c = 25110