

B0B36DBS: Database Systems | Classes 5 and 6: SQL: Data Querying

01: Department Teachers

SELECT *

FROM teacher

WHERE (department = "KSI");

SELECT id, name, phone, department …

… WHERE department = "KSI"

02: Study Results

SELECT code, title, result

FROM Enrollment NATURAL JOIN Course

WHERE (student = 4301) AND (semester = 201)

ORDER BY result, title DESC;

… FROM Enrollment NATURAL INNER JOIN Course …

… FROM Enrollment AS E JOIN Course AS C ON (E.code = C.code) …

… FROM Enrollment AS E JOIN Course AS C

WHERE (E.code = C.code) AND (student = 4301) AND (semester = 201) …

… WHERE (E.code = C.code) AND (E.student = 4301) AND (E.semester = 201) …

… FROM Enrollment AS E, Course AS C

WHERE (E.code = C.code) AND (student = 4301) AND (semester = 201) …

… ORDER BY result ASC, name DESC

03: Subordinate Teachers

SELECT T2.name

FROM

 Teacher AS T1

 JOIN Department AS D ON (T1.id = D.chair)

 JOIN Teacher AS T2 ON (D.name = T2.department)

WHERE (T1.name = "Tomáš Skopal");

SELECT T2.name

FROM

 Teacher AS T2

 JOIN Department AS D ON (T2.department = D.name)

 JOIN Teacher AS T1 ON (D.chair = T1.id)

WHERE (T1.name = "Tomáš Skopal");

SELECT T2.name

FROM Teacher AS T1 JOIN Department AS D JOIN Teacher AS T2

WHERE (T1.name = "Tomáš Skopal") AND (T1.id = D.chair) AND (D.name = T2.department);

04: Permitted Courses

SELECT DISTINCT code, title

FROM

 Schedule JOIN

 Course ON (course = code)

WHERE (semester = 202) AND (day = "MON" OR day = "FRI");

SELECT DISTINCT C.code, C.title

FROM

 Schedule AS S

 JOIN Course AS C ON (S.course = C.code)

WHERE (S.semester = 202) AND (S.day = "MON" OR S.day = "FRI");

… WHERE (semester = 202) AND (day IN ("MON", "FRI"))

SELECT code, title

FROM Course

WHERE

 code IN (

 SELECT DISTINCT course

 FROM Schedule

 WHERE (semester = 202) AND (day = "MON" OR day = "FRI")

);

SELECT code, title

FROM Course

WHERE

 EXISTS (

 SELECT *

 FROM Schedule

 WHERE (course = code) AND (semester = 202) AND (day = "MON" OR day = "FRI")

);

SELECT code, title

FROM Course

WHERE

 code = ANY (

 SELECT course

 FROM Schedule

 WHERE (semester = 202) AND (day = "MON" OR day = "FRI")

);

… code = SOME (…) …

SELECT code, title

FROM

 Course

 NATURAL JOIN (

 SELECT DISTINCT course AS code

 FROM Schedule

 WHERE (semester = 202) AND (day = "MON" OR day = "FRI")

);

 SELECT code, title

 FROM Schedule JOIN Course ON (course = code)

 WHERE (semester = 202) AND (day = "MON")

UNION

 SELECT code, title

 FROM Schedule JOIN Course ON (course = code)

 WHERE (semester = 202) AND (day = "FRI");

… UNION DISTINCT …

05: Prohibited Courses

Incorrect:

SELECT code, title

FROM Schedule JOIN Course ON (course = code)

WHERE (semester = 202) AND NOT (day = "MON" OR day = "FRI");

… WHERE (semester = 202) AND (day <> "MON" AND day <> "FRI")

… WHERE NOT((semester = 202) AND (day = "MON" OR day = "FRI"))

Correct:

SELECT code, title

FROM Course

WHERE

 code NOT IN (

 SELECT DISTINCT course

 FROM Schedule

 WHERE (semester = 202) AND (day = "MON" OR day = "FRI")

);

SELECT code, title

FROM Course

WHERE

 NOT EXISTS (

 SELECT *

 FROM Schedule

 WHERE (course = code) AND (semester = 202) AND (day = "MON" OR day = "FRI")

);

SELECT code, title

FROM Course

WHERE

 code <> ALL (

 SELECT course

 FROM Schedule

 WHERE (semester = 202) AND (day = "MON" OR day = "FRI")

);

 SELECT code, title

 FROM Course

EXCEPT

 SELECT code, title

 FROM Schedule JOIN Course ON (course = code)

 WHERE (semester = 202) AND (day = "MON" OR day = "FRI")

SELECT code, title

FROM Course

WHERE

 code IN (

 SELECT code

 FROM Course

 EXCEPT

 SELECT course AS code

 FROM Schedule

 WHERE (semester = 202) AND (day = "MON" OR day = "FRI")

);

SELECT code, title

FROM

 Course

 LEFT OUTER JOIN Schedule ON

 (code = course) AND (semester = 202) AND (day = "MON" OR day = "FRI")

WHERE (course IS NULL);

Incorrect:

… WHERE (course = NULL)

06: Inactive Students

SELECT S.name, S.address

FROM Student AS S

WHERE

 NOT EXISTS (

 SELECT *

 FROM Enrollment AS E

 WHERE (E.student = S.id) AND (E.semester IN (201, 202))

);

…

07: Promising Students

SELECT DISCTINCT S.id, S.name

FROM

 Student AS S

 JOIN Enrollment AS E ON (S.id = E.student)

 JOIN Schedule AS U ON (E.code = U.course) AND (E.semester = U.semester)

 JOIN Teacher AS T ON (U.teacher = T.id)

WHERE (E.semester = 202) AND (T.department = "KSI");

SELECT DISCTINCT S.id, S.name

FROM

 Student AS S JOIN Enrollment AS E JOIN Schedule AS U JOIN Teacher AS T

WHERE

 (E.semester = 202) AND (T.department = "KSI")

 AND

 (S.id = E.student)

 AND

 (E.code = U.course) AND (E.semester = U.semester)

 AND

 (U.teacher = T.id);

SELECT S.id, S.name

FROM Student AS S

WHERE

 EXISTS (

 SELECT *

 FROM

 Enrollment AS E

 JOIN Schedule AS U ON (E.code = U.course) AND (E.semester = U.semester)

 JOIN Teacher AS T ON (U.teacher = T.id)

 WHERE (E.student = S.id) AND (E.semester = 202) AND (T.department = "KSI")

);

SELECT S.id, S.name

FROM Student AS S

WHERE

 EXISTS (

 SELECT E.*

 FROM Enrollment AS E

 WHERE

 (E.student = S.id) AND (E.semester = 202) AND

 EXISTS (

 SELECT U.*

 FROM Schedule AS U

 WHERE

 (U.course = E.code) AND (U.semester = E.semester) AND

 EXISTS (

 SELECT T.*

 FROM Teacher AS T

 WHERE (T.id = U.teacher) AND (T.department = "KSI")

)

)

);

08: Loyal Students

SELECT S.id, S.name

FROM Student AS S

WHERE

 EXISTS (

 SELECT *

 FROM Enrollment AS E

 WHERE (E.student = S.id) AND (E.semester = 202)

)

 AND

 NOT EXISTS (

 SELECT *

 FROM

 Enrollment AS E

 JOIN Schedule AS U ON (E.code = U.course) AND (E.semester = U.semester)

 JOIN Teacher AS T ON (U.teacher = T.id)

 WHERE (E.student = S.id) AND (E.semester = 202) AND (T.department <> "KSI")

);

SELECT DISTINCT id, name

FROM Student JOIN Enrollment ON (id = student)

WHERE

 (semester = 202) AND

 NOT EXISTS (

 SELECT *

 FROM

 Enrollment AS E

 JOIN Schedule AS U ON (E.code = U.course) AND (E.semester = U.semester)

 JOIN Teacher AS T ON (U.teacher = T.id)

 WHERE (E.student = S.id) AND (E.semester = 202) AND (T.department <> "KSI")

);

09: Timetable Conflicts

SELECT T.name

FROM Teacher AS T

WHERE

 EXISTS (

 SELECT *

 FROM

 (Schedule AS U1 JOIN Room AS R1 ON (U1.room = R1.number))

 JOIN

 (Schedule AS U2 JOIN Room AS R2 ON (U2.room = R2.number))

 ON

 (U1.semester = U2.semester) AND

 (U1.teacher = U2.teacher) AND

 (U1.day = U2.day)

 AND

 (U1.time < U2.time)

 WHERE

 (U1.teacher = T.id) AND (U1.semester = 211)

 AND

 (

 ((R1.building = R2.building) AND (U1.time + 90 + 15 > U2.time))

 OR

 ((R1.building <> R2.building) AND (U1.time + 90 + 60 > U2.time))

)

);

SELECT DISTINCT T.name

FROM

 (Schedule AS U1 JOIN Room AS R1 ON (U1.room = R1.number))

 JOIN

 (Schedule AS U2 JOIN Room AS R2 ON (U2.room = R2.number))

 ON

 (U1.semester = U2.semester) AND

 (U1.teacher = U2.teacher) AND

 (U1.day = U2.day)

 AND

 (U1.time < U2.time)

 JOIN Teacher AS T ON (U1.teacher = T.id)

WHERE

 (U1.semester = 211)

 AND

 (

 ((R1.building = R2.building) AND (U1.time + 90 + 15 > U2.time))

 OR

 ((R1.building <> R2.building) AND (U1.time + 90 + 60 > U2.time))

);

10-A: Room Statistics

SELECT AVG(capacity) AS average, COUNT(number) AS count

FROM Room;

SELECT AVG(ALL capacity) AS average, COUNT(ALL number) AS count …

… COUNT(*) AS count …

10-B: Building Statistics

SELECT building, SUM(capacity) AS sum

FROM Room

GROUP BY building;

11: Enrollment Statistics

SELECT title, COUNT(*) as students, AVG(result) AS average

FROM Course NATURAL JOIN Enrollment

WHERE (semester = 201)

GROUP BY code, title

HAVING (COUNT(*) >= 10)

ORDER BY average;

