Czech Technical University in Prague, Faculty of Information Technology
MIE-PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-2-MIE-PDB/

Lecture 9

Document Databases: MongoDB

Martin Svoboda
svoboda@ksi.mff.cuni.cz

28. 4. 2017

{XG Charles University, Faculty of Mathematics and Physics
- waos NDBIO40: Big Data Management and NoSQL Databases

http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-2-MIE-PDB/

Lecture Outline

JSON format

* Objects, arrays, values
MongoDB

* Data model

e CRUD operations

* Insert

= Update

* Remove

= Find: projection, selection, modifiers

¢ Index structures

JSON

JavaScript Object Notation

Introduction

JSON = JavaScript Object Notation
* Open standard for data interchange
e Design goals

= Simplicity: text-based, easy to read and write
= Universality: object and array data structures

— Supported by majority of modern programming languages
e Derived from JavaScript (but language independent)
e Started in 2002
* File extension: *.json
* Content type: application/json
e http://www.json.org/

http://www.json.org/

Example

{

"title" : "Medvidek",

"year" : 2007,

"actors" : [

{
"firstname" : "Ji¥i",
"lastname" : "Machacek"
}’
{
"firstname" : "Ivan",
"lastname" : "Trojan"
}

1,

"director" : {
"firstname" : "Jan",
"lastname" : "Hrebejk"

}

¥

Data Structure

Object
* Unordered collection of name-value pairs (properties)

= Correspond to structures such as objects, records, structs,
dictionaries, hash tables, keyed lists, associative arrays, ...

~({ O
- (-]
O,
Examples
e { "name" : "Ivan Trojan", "year" : 1964 }
e {1}

Data Structure

Array
¢ Ordered collection of values
= Correspond to structures such as arrays, vectors, lists,
sequences, ...

* Values can be of different types, duplicate values are allowed

.
@~

Examples
e [2,7, 7,51
e ["Ivan Trojan", 1964, -5.6]
e []

Data Structure

Value
e Unicode string
= Enclosed with double quotes
= Backslash escaping sequences
= Example: "a \n b \" ¢ \\ 4"
e Number
(u)

= Decimal integers or floats
= Examples: 1,-0.5, 1.5e3

Nested object

Nested array

Boolean value: true, false

Missing information: null

MongoDB Document Database

\b mongo

MongoDB

JSON document database

https://www.mongodb.com/

Features
= Open source, high availability, eventual consistency, automatic
sharding, master-slave replication, automatic failover,
secondary indices, ...

Developed by MongoDB

Implemented in C++, C, and JavaScript

Operating systems: Windows, Linux, Mac OS X, ...

Initial release in 2009

https://www.mongodb.com/

Example

Collection of movies Query statement

{ Titles of movies filmed in 2005 and later,

_id: ObjectId("1"), . . .
title: "Vratné lahve", sorted by these titles in descending order

year: 2006
} db.movies.find(
{ year: { $gt: 2005 } 1},
{ { _id: false, title: true }

_id: 0bjectId("2"),).sort({ title: -1 })

title: "Samotari",
year: 2000 Query result

{ title: "Vratné lahve" }
_id: ObjectId("3"),

title: "Medvidek",
year: 2007

{ title: "Medvidek" }

Data Model

Database system structure

Instance — databases — collections — documents

e Database
e Collection
= Collection of documents, usually of a similar structure

e Document

= MongoDB document = one JSON object
= Each document...

— belongs to exactly one collection
— has a unique identifier _id

Data Model

MongoDB document = one JSON object
* Internally stored as BSON (Binary JSON)
e Maximal allowed size: 16 MB (in BSON)
= GridFS can be used to split larger files into smaller chunks
Restrictions on field names
e _id (at the top level) is reserved for a primary key

* Field names cannot start with $
= Reserved for query operators

* Field names cannot contain .
= Used when accessing nested fields

MIE-PDB: Advanced Database Systems | Lecture 9: Document Databases: MongoDB | 28. 4. 2017 13

Data Model

Primary Keys

Features of identifiers
* Unique within a collection
* Immutable (cannot be changed once assigned)
e Can be of any type other than an array

Design of identifiers
* Natural identifier
* Auto-incrementing number — not recommended
e UUID (Universally unique identifier)

* Objectld — special 12-byte BSON type (default option)

= Small, likely unique, fast to generate, ordered, based on a
timestamp, machine id, process id, and a process-local counter

MIE-PDB: Advanced Database Systems | Lecture 9: Document Databases: MongoDB | 28. 4. 2017 14

Data Model

Design Questions

Flexible schema
* No document schema is provided, nor expected or enforced
= However, documents within a collection are similar in practice

* MongoDB document = one JSON object

= |.e. even a complex JSON object with other recursively nested
objects, arrays or values

Design challenge

* Balancing application requirements, performance aspects, and
data retrieval patterns,

» while considering structure of data and mutual relationships
Two main concepts: references vs. embedded documents

MIE-PDB: Advanced Database Systems | Lecture 9: Document Databases: MongoDB | 28. 4. 2017

15

Data Model

Design Questions: Denormalized Data Models

Embedded documents
* Related data in a single structure with subdocuments

= Suitable for one-to-one or one-to-many relationships

* Brings ability to read / write related data
in a single operation

= |.e. better performance, less queries need to be issued

{
_id: ObjectId("2"), title: "Samotafri", year: 2000,
actors: [
{ firstname: "Jitka", lastname: "Schneiderova" 1},
{ firstname: "Ivan", lastname: "Trojan" },
{ firstname: "Ji¥i", lastname: "Machadéek" }
]
}

Data Model

Design Questions: Normalized Data Models

References
* Directed links between documents, expressed via identifiers
= |dea analogous to foreign keys in relational databases
= Suitable for many-to-many relationships
— Embedding in this case would result in data duplication
e References provide more flexibility than embedding
= Follow up queries might be needed, however

{ {
_id: ObjectId("2"), _id: ObjectId("6"),
title: "Samotari", firstname: "Jitka",
year: 2000, lastname: "Schneiderova"
actors: [ObjectId("6' — ¥

"),
ObjectId("4"),
")

ObjectId("5") 1]

Sample Data

Collection of movies Collection of actors
{ { _id: ObjectId("4"),
_id: ObjectId("1"), firstname: "Ivan",
title: "Vratné lahve", year: 2006, lastname: "Trojan" }
actors: [ObjectId("7"), ObjectId("5")]
} { _id: ObjectId("5"),
firstname: "Jifi",
{ lastname: "Machalek" }
_id: ObjectId("2"),
title: "SamotaFi", year: 2000, { _id: ObjectId("6"),
actors: [ObjectId("6"), ObjectId("4"), firstname: "Jitka",
ObjectId("5")] lastname: "Schneiderova" }
}
{ _id: ObjectId("7"),
{ firstname: "Zden&k",
_id: ObjectId("3"), lastname: "Své&rak" }

title: "Medvidek", year: 2007,
actors: [ObjectId("5"), ObjectId("4")]

Application Interfaces

mongo shell
* Interactive JavaScript interface to MongoDB

° ./bin/mongo --username user —--password pass
--host host —--port 28015

Drivers

e Java, C, C++, CH, Perl, PHP, Python, Ruby, Scala, ...

Query Language

Single JavaScript command / complex script

e Each individual command is evaluated over exactly one
collection

* Read queries return a cursor
= Allows us to iterate over all the selected documents

Query patterns
e Basic CRUD operations
= Accessing documents via identifiers or conditions on fields

» Aggregations: MapReduce, pipelines, grouping

MIE-PDB: Advanced Database Systems | Lecture 9: Document Databases: MongoDB | 28. 4. 2017 20

CRUD Operations

Overview
e db.collection.insert ()
= Inserts a new document into a collection
* db.collection.update()

= Modifies an existing document / documents or
inserts a new one

e db.collection.remove()
= Deletes an existing document / documents

e db.collection.find ()

= Finds documents based on filtering conditions
= Projection and / or sorting may be applied too

Insert Operation

Inserts a new document / documents into a given collection

-®-0-E®-0-ED

%E o) O o

©

* Document identifier (_id field)

= The provided value must be unique within the collection
= When missing, it is genereated automatically (Objectld)

e The collection is created automatically when not yet exists

Insert Operation

Examples

Insert a new actor document

db.actors.insert({

{ _id: ObjectId("8"),
firstname: "Anna", firstname: "Anna",
lastname: "Geislerova" lastname: "Geislerova"

¥ }

)

Insert two new movies

db.movies.insert(

[
{
_id: ObjectId("9"), title: "Zelary", year: 2003,
actors: [ObjectId("4"), ObjectId("8")]
}’
{ title: "Anthropoid", year: 2016, actors: [ObjectId("8") 1 },
]

)

Update Operation

Modifies / replaces an existing document / documents

:»O»Ccollection}»@—»(update)j

L query update
(O avery (O upoate | Vot O

e Parameters

= Query: description of documents to be updated
= Update: modification actions to be applied

¢ Just at most one document is updated by default
= Unless {multi: true } option is specified

Update Operation

Examples

Replace the whole document of at most one specified actor

db.actors.update({
{ _id: ObjectId("8") }, _id: ObjectId("8"),
{ firstname: "Ana", firstname: "Ana",
lastname: "Geislerova" } lastname: "Geislerova"
) ¥

Update all the movies filmed in 2015 or later

db.movies.update(
{ year: { $gt: 2015 } 1},
{
$set { new: true 1},
$inc { rating: 3 }
},
{ multi: true }
)

Update Operation

Update / replace behavior
* Replace
when the update parameter contains no update operators
= $set, $unset, $inc, $mul, ...

* Update
otherwise

= |t must then only have update operators and no value fields!
= |.e. mutual combinations of the both are not allowed

Update Operation: Upsert

Upsert behavior
* New single document is inserted when
= {upsert: true } option is specified, and, at the same time,
no document was updated

e The new document contains
= when replacement takes place
all the (value) fields from the update parameter, or
= otherwise
all the value fields from the query parameter
(i.e. comparison operations are omitted) +
the outcome of all the update operations
from the update parameter,
= and a newly generated _id if necessary

Update Operation: Upsert

Examples

Unsuccessful update of a movie resulting to an insertion

db.movies.update(
{ title: "Tmavomodry svét", year: { $gt: 2000 } I},
{
$set: {
director: { firstname: "Jan", lastname: "Svérak" },
year: 2001
},
$inc: { rating: 2 }
},
{ upsert: true }
)

{ _id: ObjectId("11"),
title: "Tmavomodry svét",
director: { firstname: "Jan", lastname: "Svérak" },
year: 2001,
rating: 2 }

Update Operation: Operators

Field operators
* $set — sets the value of a given field / fields

»»@@» 0N
()
o/

* $unset — removes a specified field

o>(sunset)~()~(0 OO
N

e $rename — renames a field

”@*@*T(DW
)
)

Update Operation: Operators

Field operators
* $inc —increments the value of a field by the specified amount

o G-~ D~ -G
o

e $mul — multiplies the value of a field by the specified amount
. “ee

Array operators
* $push —adds one item at the end of an array

o++®+ array field}>®+[value / array / document IT(D»

)
o/

Update Operation: Operators

Array operators
* $addToSet — adds a value to an array unless already present
e $pull —removes all array items that match a specified query

D EORO S CTDNO, D
)
N

* $pop — removes the first / last item of an array

»@» O @~
ST
O

Remove Operation

Removes a document / documents from a given collection

w@»(collection)»@—»(remove)ﬁ

- .
- e

* Query parameter describes documents to be removed

* All the matching documents are removed
unless { justOne: true } option is provided in options

Find Operation

Selects documents from a given collection

H@*@»T

L

@T@\'@JJ@»

* Query parameter describes documents to be selected

* Projection parameter enumerates fields to be
included / excluded in / from the result

* Matching documents are returned via an iterable cursor
= This allows us to chain further sort, skip or 1imit operations

Find Operation

Examples

Select all the movies from our collection

db.movies.find ()

db.movies.find({ })

Select a particular movie based on its document identifier

db.movies.find({ _id: Objectld("2") })

Select all the movies from year 2000 with a rating greater than 1

db.movies.find({ year: 2000, rating: { $gt: 1 } })

Select all the movies filmed between 2005 and 2015

db.movies.find({ year: { $gte: 2005, $lte: 2015 } })

Find Operation: Projection

Projection allows us to determine the fields returned in the result

2O, (fiei)~() 1» (true) yf O
= J
(aray) »()+(0)~ apeton perter}-(1)
)

true or 1 for the fields to be included

false or O for the fields to be excluded

Positive and negative enumerations cannot be combined!
= The only exception is _id which is included by default

Projection operator

= Allows us to select particular items from an array
* $elemMatch, $slice, ...

MIE-PDB: Advanced Database Systems | Lecture 9: Document Databases: MongoDB | 28. 4. 2017

35

Find Operation: Projection

Projection Operators

Projection operators for array fields
* $elemMatch — selects the first matching item of an array
This item must satisfy all the operations included in query
When no matching item is found, the field is not returned at all

o+<$elemM.’=llt:h }@‘ query }—»G

* $slice —selects the first count items of an array (when
count is positive) / the last count items (when negative)
Certain number of items can also be skipped

ey W WG
Lo-@-0-@>-a-

MIE-PDB: Advanced Database Systems | Lecture 9: Document Databases: MongoDB | 28. 4. 2017 36

Find Operation: Projection

Examples

Find a particular movie, select its identifier, title and actors

db.movies.find({
{ _id: ObjectId("2") }, _id: ObjectId("2"),
{ title: true, actors: 1 } title: "Samotari",
) actors: [ObjectId("6"),
ObjectId("4"),
ObjectId("5")]
}

Find all the movies from 2000, select a title and the last two actors

db.movies.find({

{ year: 2000 }, title: "Samotafi",

{ actors: [ObjectId("4"),
title: true, ObjectId("5")]
_id: false, ¥
actors: { $slice: -2 }

}

)

Find Operation: Selection

Query parameter describes the documents we are interested in
(O (ield) QT O
e
> |
—~
o/

* Condition based on value equality

= The actual field value must be identical to the specified value
(including, e.g., the order of nested fields or array items)

* Condition based on query operators
= The actual field value must satisfy all the provided operations

Find Operation: Selection

Value Equality Conditions: Examples

Select all the movies having a specific director

db.movies.find(
{ director: { firstname: "Jan", lastname: "Svérak" } }

)

db.movies.find(
{ director: { lastname: "Sv&rak", firstname: "Jan" } }

)

Select all the movies having specific actors

db.movies.find({ actors: [ObjectId("7"), ObjectId("5") 1 })

db.movies.find({ actors: [ObjectId("5"), ObjectId("7") 1 })

Queries in both the pairs are not equivalent!
Solution: dot notation and $all operator respectively (see later)

Find Operation: Selection

Query Operators

Comparison operators

O gma

@—» value

7@» ©)
o

e Comparisons take particular BSON data types into account

e Certain numeric conversions might be automatically applied

Find Operation: Selection

Query Operators

Comparison operators
* $eq, $ne
= Tests the actual field value for equality / inequality
* $1t, $1te, $gte, $gt

= Tests whether the actual field value is less than / less than or
equal / greater than or equal / greater than the provided value

* $in
= Tests whether the actual field value is equal to at least one
of the provided values

* $nin
= Negation of $in

Find Operation: Selection

Query Operators
Logical operators

OO avery O avery (O avery [~
T -y T
(snot)~ auery |

e $and, $or

= Logical connectives for conjunction / disjunction
= At least 2 involved query expressions must be provided

¢ $not
= Logical negation of right 1 involved query expression

Find Operation: Selection

Query Operators

Element operators
* $exists — tests whether a given field exists / not exists

o) - 7»

Evaluation operators

* $regex — tests whether the field value matches
a regular expression (PCRE)

* $text — performs text search (text index must exists)

Find Operation: Selection

Query Operators

Array operators
* $all - tests whether a given array contains all the specified
items (in any order)

»»@» D~
o)

* $size —tests the size of a given array against a particular
number (and not, e.g., a range, unfortunately)

o>(ssize)~(:)(size)=
* $elemMatch — tests whether a given array contains at least
one item that satisfies all the involved query operations

Find Operation: Selection

Dot Notation

The dot notation is used when...
* accessing fields of embedded documents
= "field.subfield"
— E.g.: "director.firstname"

* accessing items of arrays

= "field.index" —used in query selection or projection
in order to access particular array items, positions start at 0

— E.g.: "actors.2"

= "field.$" —usedin query projection in order to access
the very first array item that satisfies the query condition

— E.g.: "actors.$"

Find Operation: Selection

Value Equality Conditions: Examples Revisited

Select all the movies having a specific director

db.movies.find(
{ director: { firstname: "Jan", lastname: "Svérak" } }

)

db.movies.find(
{ director.firstname: "Jan", director.lastname: "Sv&rak" }

)

Select all the movies having specific actors

db.movies.find(
{ actors: [ObjectId("5"), ObjectId("7")] }
)

db.movies.find(
{ actors: { $all: [ObjectId("5"), ObjectId("7") 1 } }
)

Find Operation: Selection

Querying Arrays

Condition based on value equality is satisfied when...

* the given field as a whole is identical to the provided value,
or

* at least one item of the array is identical to the provided value

db.movies.find({ actors: ObjectId("5") })
{ actors: ObjectId("5") }

{ actors:

[ObjectId("5"), ObjectId("7") 1 }

Find Operation: Selection

Querying Arrays

Condition based on query operators is satisfied when...

* the given field as a whole satisfies all the involved operations,
or

» each of the involved operations is satisfied by at least one item
of the given array, but this item might not be the same for all
the individual operations

db.movies.find({ ratings: { $gte: 2, $lte: 3 } })

{ ratings: } { ratings: [3, 7, 511} { ratings: [1, 13

Note: use $elemMatch when exactly one witnessing item should
be found for all the operations

MIE-PDB: Advanced Database Systems | Lecture 9: Document Databases: MongoDB | 28. 4. 2017 48

Find Operation: Modifiers

Modifiers change the order and number of returned documents
* sort —orders the documents in the result
e limit — returns at most the specified number of documents

o(limit)~ O Ceount)>())

* skip — skips the specified number of documents from the
beginning

(ki)~(O-~(affset)~())

All the modifiers are optional, can be chained in any mutual order,
but must be specified before retrieving any documents via the
cursor

MIE-PDB: Advanced Database Systems | Lecture 9: Document Databases: MongoDB | 28. 4. 2017

49

Find Operation: Modifiers

Sort modifier orders the documents in the result

(o)~(O~ @t® O~
2eh
i

1 for ascending, -1 for descending order

Multiple fields can be used

The order of documents is undefined, unless explicitly sorted

Sorting of larger datasets should be supported by indices

Sorting happens before the projection phase
= |.e. excluded fields can be used for sorting purposes as well

MIE-PDB: Advanced Database Systems | Lecture 9: Document Databases: MongoDB | 28. 4. 2017

50

MapReduce

Executes a MapReduce job on a selected collection

HQ—»(COII(éCtiOﬂ}»Q—»(mapReduce)7

7O

¢
k—»@—»‘ map function }—»@—»‘ reduce function |
|

-t

e Both map and reduce functions are implemented as ordinary
JavaScript functions
= Map function: current document is accessible via this,
emit (key, value) is used for emissions
= Reduce function: key and array of values are provided as
arguments, reduced value is published via return

* Beside others, query, sort or 1imit options are accepted
* out option determines the output (e.g. a collection name)

MIE-PDB: Advanced Database Systems | Lecture 9: Document Databases: MongoDB | 28. 4. 2017

51

MapReduce

Example

Count the number of movies filmed in each year, starting in 2005

db.movies.mapReduce (
function() {
emit (this.year, 1);
3,
function(key, values) {
return Array.sum(values);
3},
{
query: { year: { $gte: 2005 } },
sort: { year: 1 },
out: "statistics"
¥
)

Index Structures

Motivation

* Full collection scan must be performed when searching
for the documents matching conditions of a given query,
at least unless an appropriate index exists

Primary index
* Unique index on the _id field, created automatically
Secondary indexes

» Created manually for a given key field / fields,
always on a particular collection

MIE-PDB: Advanced Database Systems | Lecture 9: Document Databases: MongoDB | 28. 4. 2017 55

Index Structures

Secondary index creation

c»@»(collection }»Q»Ccrealelndex)j

L keys
vy

RO CORO = CD -
€Y

)

2/

Index Structures

Index types

¢ 1, -1 —standard ascending / descending value indexes
= Both scalar values and embedded documents can be indexed

hashed — hash values of a single field are indexed

text — basic full-text index

2d — points in planar geometry

2dsphere — points in spherical geometry

Index Structures

Index forms

* Single field / composed index for multiple fields

¢ Single value / multi-key index for multiple values in arrays
Index properties

* Unique — duplicate values are rejected (cannot be inserted)

e Partial — only selected documents are indexed

» Sparse — only documents with the index field are indexed

* TTL - documents are removed when timeout elapses

Just some type / form / property combinations can be used!

MIE-PDB: Advanced Database Systems | Lecture 9: Document Databases: MongoDB | 28. 4. 2017 58

Conclusion

MongoDB

* JSON document database

¢ Sharding with master-slave replication architecture
Query functionality

e CRUD operations

= Insert, find, update, remove
= Complex filtering conditions

* MapReduce

¢ Index structures

	JSON
	MongoDB
	Data Model
	Sample Data
	Query Interfaces
	CRUD Operations
	Insert Operation
	Update Operation
	Remove Operation
	Find Operation
	MapReduce
	Index Structures

	Lecture Conclusion

