
Czech Technical University in Prague, Faculty of InformaƟon Technology
MIE-PDB: Advanced Database Systems
hƩp://www.ksi.mff.cuni.cz/~svoboda/courses/2016-2-MIE-PDB/

Lecture 7

NoSQL Databases: Principles
MarƟn Svoboda
svoboda@ksi.mff.cuni.cz

7. 4. 2017

Charles University, Faculty of MathemaƟcs and Physics
NDBI040: Big Data Management and NoSQL Databases

http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-2-MIE-PDB/

Lecture Outline
Different aspects of data distribuƟon

• Scaling
VerƟcal vs. horizontal

• DistribuƟon models
Sharding
ReplicaƟon: master-slave vs. peer-to-peer architectures

• CAP properƟes
Consistency, availability and parƟƟon tolerance
ACID vs. BASE guarantees

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 2

Scalability
What is scalability?

• = capability of a system to handle growing amounts of data
and/or queries without losing performance, or its potenƟal to
be enlarged in order to accommodate such a growth

Two general approaches
• VerƟcal scaling
• Horizontal scaling

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 3

VerƟcal Scalability
VerƟcal scaling (scaling up/down)

• = adding resources to a single node in a system
E.g. increasing the number of CPUs, extending system memory,
using larger disk arrays, …
I.e. larger and more powerful machines are involved

• TradiƟonal choice
In favor of strong consistency
Easy to implement and deploy
No issues caused by data distribuƟon
…

Works well in many cases but …

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 4

VerƟcal Scalability: Drawbacks
Performance limits

• Even the most powerful machine has a limit
• Moreover, everything works well…

unless we start approaching such limits
Higher costs

• The cost of expansion increases exponenƟally
In parƟcular, it is higher than the sum of costs of equivalent
commodity hardware

ProacƟve provisioning
• New projects / applicaƟons might evolve rapidly
• Upfront budget is needed when deploying new machines
• And so flexibility is seriously suppressed

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 5

VerƟcal Scalability: Drawbacks
Vendor lock-in

• There are only a few manufacturers of large machines
• Customer is made dependent on a single vendor

Their products, services, but also implementaƟon details,
proprietary formats, interfaces, …

• I.e. it is difficult or impossible to switch to another vendor
Deployment downƟme

• Inevitable downƟme is oŌen required when scaling up

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 6

Horizontal Scalability
Horizontal scaling (scaling out/in)

• = adding more nodes to a system
I.e. system is distributed across mulƟple nodes in a cluster

• Choice of many NoSQL systems
Advantages

• Commodity hardware, cost effecƟve
• Flexible deployment and maintenance
• OŌen surpasses the verƟcal scaling
• OŌen no single point of failure
• …

Unfortunately, there are also plenty of false assumpƟons …

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 7

Horizontal Scalability: Fallacies
False assumpƟons

• Network is reliable
• Latency is zero
• Bandwidth is infinite
• Network is secure
• Topology does not change
• There is one administrator
• Transport cost is zero
• Network is homogeneous

Source: hƩps://blogs.oracle.com/jag/resource/Fallacies.html

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 8

Horizontal Scalability: Consequences
Significantly increases complexity

• Complexity of management, programming model, …
Introduces new issues and problems

• SynchronizaƟon of nodes
• Data distribuƟon
• Data consistency
• Recovery from failures
• …

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 9

Horizontal Scalability: Conclusion
⇒ a standalone node sƟll might be a beƩer opƟon in certain cases

• E.g. for graph databases
Simply because it is difficult to split and distribute graphs

• In other words
It can make sense to run even a NoSQL database system
on a single node
No distribuƟon at all is the most preferred / simple scenario

But in general, horizontal scaling really opens new possibiliƟes

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 10

Horizontal Scalability: Architecture
What is a cluster?

• = a collecƟon of mutually interconnected commodity nodes
• Based on the shared-nothing architecture

Nodes do not share their CPUs, memory, hard drives, …
Each node runs its own operaƟng system instance
Nodes send messages to interact with each other

• Nodes of a cluster can be heterogeneous
• Data, queries, computaƟon, workload, …

this is all distributed among the nodes within a cluster

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 11

DistribuƟon Models
Generic techniques of data distribuƟon

• Sharding
Different data on different nodes
MoƟvaƟon: increasing volume of data, increasing performance

• ReplicaƟon
Copies of the same data on different nodes
MoƟvaƟon: increasing performance, increasing fault tolerance

Both the techniques are mutually orthogonal
• I.e. we can use either of them, or combine them both

DistribuƟon model
• = specific way how sharding and replicaƟon is implemented

NoSQL systems oŌen offer automaƟc sharding and replicaƟon

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 12

Sharding
Sharding (horizontal parƟƟoning)

• Placement of different data on different nodes
What different datameans? Different aggregates

– E.g. key-value pairs, documents, …
Related pieces of data that are accessed together
should also be kept together

– Specifically, operaƟons involving data on mulƟple
shards should be avoided

The quesƟons are…
• how to design aggregate structures?
• how to actually distribute these aggregates?

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 13

Sharding

Source: Sadalage, Pramod J. - Fowler, MarƟn: NoSQL DisƟlled. Pearson EducaƟon, Inc., 2013.

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 14

Sharding
ObjecƟves

• Uniformly distributed data (volume of data)

• Balanced workload (read and write requests)
• RespecƟng physical locaƟons

E.g. different data centers for users around the world

• …
Unfortunately, these objecƟves…

• maymutually contradict each other
• may change in Ɵme

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 15

Sharding
How to actually determine shards for aggregates?

• We not only need to be able to place new data when handling
write requests, but also find the data in case of read requests

• I.e. when a given search criterion is provided (e.g. key, id, …),
we must be able to determine the corresponding shard

So that the requested data can be accessed and returned, or
failure can be correctly detected when the data is missing

Sharding strategies
• Based on mapping structures

Placing of data on shards in a random fashion (e.g.
round-robin)
Mapping of individual aggregates to parƟcular shards must be
maintained (this is oŌen not suitable)

• Based on general rules: hash parƟƟoning, range parƟƟoning
MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 16

ReplicaƟon
ReplicaƟon

• Placement of mulƟple copies – replicas – of the same data on
different nodes

• ReplicaƟon factor = the number of copies
Two approaches

• Master-slave architecture
• Peer-to-peer architecture

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 17

ReplicaƟon
Master-Slave Architecture

Source: Sadalage, Pramod J. - Fowler, MarƟn: NoSQL DisƟlled. Pearson EducaƟon, Inc., 2013.

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 18

ReplicaƟon
Master-Slave Architecture

Architecture
• One node is primary (master), all the other secondary (slave)
• Master node bears all the management responsibility
• All the nodes contain idenƟcal data

Read requests can be handled by both the master or slaves
• Suitable for read-intensive applicaƟons

More read requests to deal with→more slaves to deploy

• When the master fails, read operaƟons can sƟll be handled

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 19

ReplicaƟon
Master-Slave Architecture

Write requests can only be handled by the master
• Newly wriƩen replicas are propagated to all the slaves
• Consistency issue

Luckily enough, at most one write request is handled at a Ɵme
But the propagaƟon sƟll takes some Ɵme during which
obsolete reads might happen
Hence certain synchronizaƟon is required to avoid conflicts

• In case ofmaster failure, a new one needs to be appointed
Manually (user-defined) or automaƟcally (cluster-elected)
Since the nodes are idenƟcal, appointment can be fast

• Master might therefore represent a boƩleneck
(because of the performance or failures)

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 20

ReplicaƟon
Peer-to-Peer Architecture

Source: Sadalage, Pramod J. - Fowler, MarƟn: NoSQL DisƟlled. Pearson EducaƟon, Inc., 2013.

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 21

ReplicaƟon
Peer-to-Peer Architecture

Architecture
• All the nodes have equal roles and responsibiliƟes
• All the nodes contain idenƟcal data once again

Both read and write requests can be handled by any node
• No boƩleneck, no single point of failure
• Both the operaƟons scale well

More requests to deal with→more nodes to deploy

• Consistency issues
Unfortunately,mulƟple write requests can be iniƟated
independently and handled at the same Ɵme
Hence synchronizaƟon is required to avoid conflicts

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 22

Sharding and ReplicaƟon
ObservaƟons with respect to replicaƟon:

• Does the replicaƟon factor really need to correspond to the
number of nodes?

No, replicaƟon factor of 3 will oŌen be the right choice
Consequences

– Nodes will no longer contain idenƟcal data
– Replica placement strategy will be needed

• Do all the replicas really need to be successfully wriƩenwhen
write requests are handled?

No, but consistency issues have to be tackled carefully

Sharding and replicaƟon can be combined… but how?

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 23

Sharding and ReplicaƟon
Sharding and Master-Slave ReplicaƟon

Source: Sadalage, Pramod J. - Fowler, MarƟn: NoSQL DisƟlled. Pearson EducaƟon, Inc., 2013.

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 24

Sharding and ReplicaƟon
Sharding and Peer-to-Peer ReplicaƟon

Source: Sadalage, Pramod J. - Fowler, MarƟn: NoSQL DisƟlled. Pearson EducaƟon, Inc., 2013.

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 25

Sharding and ReplicaƟon
CombinaƟons of sharding and replicaƟon

• Sharding + master-slave replicaƟon
MulƟple masters, each for different data
Roles of the nodes can overlap

– Each node can be master for some data and/or slave for other

• Sharding + peer-to-peer replicaƟon
Placement of anything anywhere

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 26

Sharding and ReplicaƟon
QuesƟons to figure out for any distribuƟon model

• Can all the nodes serve both read and write requests?
• Which replica placement strategy is used?
• How themapping of replicas is maintained?
• What extent of infrastructure knowledge do the nodes have?
• What level of consistency and availability is provided?
• …

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 27

CAP Theorem
AssumpƟons

• System with sharding and replicaƟon
• Read and write operaƟons on a single aggregate

CAP properƟes = properƟes of a distributed system
• Consistency
• Availability
• ParƟƟon tolerance

CAP theorem
It is not possible to have a distributed system that would gua-
rantee consistency, availability, and parƟƟon tolerance at
the same Ɵme. Only 2 of these 3 properƟes can be enforced.

But, what these properƟes actually mean?

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 28

CAP ProperƟes
Consistency

• Read and write operaƟons must be executed atomically
A bit more formally…
There must exist a total order on all operaƟons such that each
operaƟon looks as if it was completed at a single instant,
i.e. as if all the operaƟons were executed one by one on a
single standalone node

• PracƟcal consequence:
aŌer a write operaƟon, all readers see the same data

Since any node can be used for handling of read requests,
atomicity of write operaƟons means that changes must be
propagated to all the replicas

– As we will see later on, other ways for such a strong consistency
exist as well

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 29

CAP ProperƟes
Availability

• If a node is working, it must respond to user requests
A bit more formally…
Every read or write request received by a non-failing node in
the system must result in a response

ParƟƟon tolerance
• System conƟnues to operate even when two or more sets of
nodes get isolated

A bit more formally…
The network is allowed to lose arbitrarily many messages sent
from one node to another

• I.e. a connecƟon failure must not shut the whole system down

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 30

CAP Theorem Consequences
If at most two properƟes can be guaranteed…

• CA = consistency + availability
TradiƟonal ACID properƟes are easy to achieve
Examples: RDBMS, Google BigTable
Any single-node system, but even clusters (at least in theory)

– However, should the network parƟƟon happen, all the nodes
must be forced to stop accepƟng user requests

• CP = consistency + parƟƟon tolerance
Other examples: distributed locking

• AP = availability + parƟƟon tolerance
New concept of BASE properƟes
Examples: Apache Cassandra, Apache CouchDB
Other examples: web caching, DNS

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 31

CAP Theorem Consequences
ParƟƟon tolerance is necessary in clusters

• Why?
Because it is difficult to detect network failures

• Does it mean that only purely CP and AP systems are possible?
• No…

The real meaning of the CAP theorem:
• The real-world does not need to be just black and white
• ParƟƟon tolerance is a must,

but we can trade off consistency versus availability
Just a liƩle bit relaxed consistency can bring a lot of availability
Such trade-offs are not only possible,
but oŌen works very well in pracƟce

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 32

ACID ProperƟes
TradiƟonal ACID properƟes

• Atomicity
ParƟal execuƟon of transacƟons is not allowed (all or nothing)

• Consistency
TransacƟons bring the database from one consistent (valid)
state to another

• IsolaƟon
TransacƟons executed in parallel do not see uncommiƩed
effects of each other

• Durability
Effects of commiƩed transacƟons must remain durable

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 33

BASE ProperƟes
New concept of BASE properƟes

• Basically Available
The system works basically all the Ɵme
ParƟal failures can occur, but without total system failure

• SoŌ State
The system is in flux (unstable), non-determinisƟc state
Changes occur all the Ɵme

• Eventual Consistency
Sooner or later the system will be in some consistent state

BASE is just a vague term, no formal definiƟon was provided
• Proposed to illustrate design philosophies at the opposite
ends of the consistency-availability spectrum

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 34

ACID and BASE
ACID

• Choose consistency over availability
• PessimisƟc approach
• Implemented by tradiƟonal relaƟonal databases

BASE
• Choose availability over consistency
• OpƟmisƟc approach
• Common in NoSQL databases
• Allows levels of scalability that cannot be acquired with ACID

Current trend in NoSQL:
strong consistency→ eventual consistency

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 35

Consistency
Consistency in general…

• Consistency is the lack of contradicƟon in the database
• However, it has many facets

For example, we only considered atomic operaƟons
manipulaƟng exactly one aggregate, but set operaƟons
could also be considered etc.

Strong consistency is achievable even in clusters,
but eventual consistencymight oŌen be sufficient

• A one minute stale arƟcle on a news portal does not maƩer
• Even when an already unavailable hotel room is booked once

again, the situaƟon can be figured out in the real world
• …

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 36

Consistency
Write consistency (update consistency)

• Problem: write-write conflict
Two or more write requests on the same aggregate are
iniƟated concurrently

• Issue: lost update
• QuesƟon: Do we need to solve the problem in the first place?
• If yes, than there are two general soluƟons

PessimisƟc approaches
– PrevenƟng conflicts from occurring
– Techniques: write locks, …

OpƟmisƟc approaches
– Conflicts may occur, but are detected and resolved later on
– Techniques: version stamps, …

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 37

Consistency
Read consistency (replicaƟon consistency)

• Problem: read-write conflict
Write and read requests on the same aggregate are iniƟated
concurrently

• Issue: inconsistent read
• When not treated, inconsistency window will exist

PropagaƟon of changes to all the replicas takes some Ɵme
UnƟl this process is finished, inconsistent reads may happen
Even the iniƟator of the write request may read wrong data!

– Session consistency (read-your-writes): sƟcky session

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 38

Strong Consistency
How many nodes need to be involved to get strong consistency?

• Write quorum: W > N/2
Idea: only one write request can get majority
Context: peer-to-peer architecture only
W = number of nodes successfully parƟcipaƟng in the write
N = number of nodes involved in replicaƟon (replicaƟon factor)

• Read quorum: R > N − W
Idea: concurrent write requests cannot happen
Context: both master-slave and peer-to-peer architectures
R = number of nodes parƟcipaƟng in the read
Should the retrieved replicas be mutually different,
the newest version is resolved and then returned

When a quorum is not aƩained→ the request cannot be handled

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 39

Strong Consistency
Examples

Examples for replicaƟon factor N = 3
• Write quorum W = 3 and read quorum R = 1

All the replicas are always updated
⇒ we can read any one of them

• Write quorum W = 2 and read quorum R = 2
Typical configuraƟon, reasonable trade-off

Consequence
• Quora can be designed to balance read and write workload

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 40

Conclusion
There is a wide range of opƟons influencing…

• Scalability – how well the system scales (data and requests)?
• Availability – when nodes may refuse to handle user requests?
• Consistency – what level of consistency is required?
• Latency – how complicated is to handle user requests?
• Durability – are the commiƩed data wriƩen reliably?
• Resilience – can the data be recovered in case of failures?

⇒ it’s good to know these properƟes and choose the right trade-off

MIE-PDB: Advanced Database Systems | Lecture 7: NoSQL Databases: Principles | 7. 4. 2017 41

	Scalability
	Vertical Scalability
	Horizontal Scalability

	Distribution
	Sharding
	Replication
	Sharding and Replication

	CAP Theorem
	ACID and BASE

	Consistency
	Strong Consistency

	Conclusion

