Czech Technical University in Prague, Faculty of Information Technology
MIE-PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-2-MIE-PDB/

Lecture 5

XML Databases: XQuery Language

Martin Svoboda
svoboda@ksi.mff.cuni.cz

24. 3. 2017

{XG Charles University, Faculty of Mathematics and Physics
- waos  NDBIO40: Big Data Management and NoSQL Databases


http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-2-MIE-PDB/

Lecture Outline

XML format

¢ Elements, attributes, texts
XQuery and XPath languages

* Data model

e Expressions
= Path expressions
= FLWOR expressions
= Conditional, quantified, switch and other expressions




XML

Extensible Markup Language



Introduction

XML = Extensible Markup Language

Representation and interchange of semi-structured data

= + a family of related technologies, languages, specifications, ...
Derived from SGML, developed by W3C, started in 1996
Design goals

= Simplicity, generality and usability across the Internet
File extension: *.xml, content type: text/xml
Versions: 1.0 and 1.1
W3C recommendation

» http://www.w3.org/TR/xml11/

XML formats = particular languages
= XSD, XSLT, XHTML, DocBook, ePUB, SVG, RSS, SOAP, ...

MIE-PDB: Advanced Database Systems | Lecture 5: XML Databases: XQuery Language | 24. 3. 2017


http://www.w3.org/TR/xml11/

Example

<?xml version="1.1" encoding="UTF-8"7>
<movie year="2007">
<title>Medvidek</title>
<actors>
<actor>
<firstname>Ji¥i</firstname>
<lastname>Machaéek</lastname>
</actor>
<actor>
<firstname>Ivan</firstname>
<lastname>Trojan</lastname>
</actor>
</actors>
<director>
<firstname>Jan</firstname>
<lastname>Hfebejk</lastname>
</director>
</movie>




Document Structure

Document
e Prolog: XML version + some other stuff

* Exactly one root element
= Contains other nested elements and/or other content

-G ED-©-O-ED-0-- @

—
Example
<?xml version="1.1" encoding="UTF-8"7>
<movie>
</movie>



Constructs

Element

* Marked using opening and closing tags
= ...or an abbreviated tag in case of empty elements

e Each element can be associated with a set of attributes
* Well-formedness is required

(<)~Cname) &
g

o000




Constructs

Types of element content
* Empty content
e Text content
¢ Element content

= Sequence of nested elements

* Mixed content

= Elements arbitrarily interleaved with text




Constructs

Attribute
* Name-value pair

o G~ DD~

Escaping sequences (predefined entities)
e Used within values of attributes or text content of elements
e E.g.: &lt; for <, &gt ; for >, &quot; for ", ...

All available XML constructs
e Basic: element, attribute, text
e Other: comment, processing instruction, ...



XQuery and XPath

XML Query Language
XML Path Language



Introduction

XPath = XML Path Language

¢ Navigation in an XML tree,
selection of nodes by a variety of criteria

* Versions: 1.0 (1999), 2.0, 3.0, 3.1 (2015, just draft)
* W3C recommendation
= http://www.w3.org/TR/xpath-30/
XQuery = XML Query Language
* Complex functional query language
¢ Contains XPath
* Versions: 1.0 (2007), 3.0 (2014)

e W3C recommendation
= http://www.w3.org/TR/xquery-30/


http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/xquery-30/

Data Model

XDM = XQuery and XPath Data Model
e XML tree consisting of nodes of different kinds
= Document, element, attribute, text, ...
¢ Document order / reverse document order
= The order in which nodes appear in the XML file

The result of a query is a sequence

e Ordered collection of items
= Flat, mixed, duplicate atomic values are allowed

* |tem is an atomic value or a node




Sample Data

<?xml version="1.1" encoding="UTF-8"7>
<movies>
<movie year="2006" rating="76" director="Jan Svérak">
<title>Vratné lahve</title>
<actor>Zdenék Svérak</actor>
<actor>Jifi Machacek</actor>
</movie>
<movie year="2000" rating="84">
<title>Samotari</title>
<actor>Jitka Schneiderova</actor>
<actor>Ivan Trojan</actor>
<actor>Jiri Machacek</actor>
</movie>
<movie year="2007" rating="53" director="Jan Hrebejk">
<title>Medvidek</title>
<actor>Jifi Machacek</actor>
<actor>Ivan Trojan</actor>
</movie>
</movies>




Expressions

XQuery expressions

* FLWOR expressions

= for .. let .. where .. order by .. return ..

¢ Conditional expressions

= if .. then .. else ..



Expressions

XQuery expressions
* Switch expressions

" switch .. case .. default ..

Quantified expressions

" somel|every .. satisfies ..

Boolean expressions
= and, or, not logical connectives

Path expressions
= Selection of nodes of an XML tree

* Primary expressions
= Literals, variable references, function calls, constructors, ...



Path Expressions

Path expression
* Describes navigation within an XML tree
e Consists of individual navigational steps

* Absolute paths = path expressions starting with /
= Navigation always starts at the document node

* Relative paths
= Navigation starts at an explicitly specified node / nodes



Path Expressions

Examples

Absolute paths
/
/movies
/movies/movie
/movies/movie/title/text ()
/movies/movie/@year
Relative paths
actor/text ()

@director



Path Expressions

Evaluation of path expressions
e Let P be a path expression
* Let C'be an initial context set
= If Pis absolute, then (' contains just the document node
= Otherwise (P is relative) C'is given by the user or the context
e If Pdoes not contain any step
= Then C'is the final result

* Otherwise (i.e when P contains at least one step)
= Let Sbe the first step, P’ the remaining steps (if any)
= Let C' ={}
= For each node u € C:
evaluate S with respect to « and add the result to C’
= Evaluate P’ with respect to C’

MIE-PDB: Advanced Database Systems | Lecture 5: XML Databases: XQuery Language | 24. 3. 2017

18



Path Expressions

Step
* Each step consists of (up to) 3 components

H®+ node test |

e AXxis
= Specifies the relation of nodes to be selected for a given node «

¢ Node test
= Filters nodes selected by the given axis using basic tests

¢ Predicates
= Filter the nodes again, this time using advanced conditions



Path Expressions: Axes

Axis

» Specifies the relation of nodes to be selected for a given node
Forward axes

e self, child, descendant(-or-self), following(-sibling)

* The order of the nodes corresponds to the document order
Reverse axes

* parent, ancestor(-or-self), preceding(-sibling)

* The order of the nodes is reversed
Attribute axis

* attribute —the only axis that selects attributes

However, the final result of a step is always in document order

MIE-PDB: Advanced Database Systems | Lecture 5: XML Databases: XQuery Language | 24. 3. 2017 20



Path Expressions: Axes

Available axes

self

descendant-or-self

following-sibling

Gt

preceding-sibling

-ttt )




Path Expressions: Axes

ancestor-or-self

i ancestor
preceding

parent

preceding-sibling /
'd

O\O\]

_——-—_—-_—‘_‘___‘———-—_
___———"__—_-_‘__-“‘——_

\ following-sibling

bﬂ

self
attribute g E E child

following

wl

W

descendant

descendant-or-self



Path Expressions

Examples

Axes
/child: :movies
/child: :movies/child: :movie/child::title/child: :text ()
/child: :movies/child: :movie/attribute: :year

/descendant: :movie/child::title

/descendant: :movie/child::title/following-sibling: :actor




Path Expressions: Node Tests

Node test
o Filters the nodes selected by the given axis using basic tests

=l

¢ name — all elements / attributes with a given name

Available node tests

e % —all elements / attributes
* node() —all nodes (i.e. no filtering takes place)

¢ text () — all text nodes




Path Expressions

Examples

Node tests

/movies
/child: :movies
/descendant: :movie/title/text ()

/movies/*

/movies/movie/attribute: :*




Path Expressions: Predicates

Predicate
* Performs additional filtering of the selected nodes using
advanced conditions
(D[ expression }-(1)

Commonly used conditions
* Boolean expressions
e Path expressions
= Return true when evaluated to a non-empty sequence
e Comparisons, position testing, ...
When multiple predicates are provided, they must all be satisfied



Path Expressions

Examples

Predicates

/movies/movie[actor]
/movies/movie[actor]/title/text ()

/descendant: :movie[count (actor) >= 3]/title
/descendant: :movie[@year > 2000 and @director]

/descendant: :movie[@director] [@year > 2000]

/descendant: :movie/actor [position() = last()]




Path Expressions: Abbreviations

Multiple (mostly syntax) abbreviations are provided

e ../..(i.e. no axis is specified) < ../child: :..

/0. & . /attribute: :..

wl on &> /self::node()..

wl ... & /parent: :node()..

wl /.. & ../descendant-or-self: :node()/..
wf/..[number].. & ../..[position() = number]..




Path Expressions

Examples

Abbreviations
/movie/title

/child: :movie/child::title

/movie/@year

/child: :movie/attribute: :year

//actor

/descendant-or-self::node()/child: :actor

/movie/actor [2]

/child: :movie/child: :actor[position() = 2]



Constructors

Constructors
¢ Allow us to create new nodes for elements, attributes, ...
e Direct constructor

= Well-formed XML fragment with nested query expressions
= Names of elements and attributes are fixed,
their content can be dynamic

e Computed constructor

= Special syntax
= Both names and content can be dynamic




Constructors

Direct constructor

(O Came) O
\>®+( name @
|

Ll element content constructor }—»@—»@—»@V
\.D J

e Both attribute value and element content may contain
an arbitrary number of nested query expressions

= Enclosed by curly braces {}
= Escaping sequences: {{ and }}



Constructors

Direct constructor
o Attribute

o)D) oF
{ |- }

¢ Element content

(ch
‘k direct constructor

(O-[omessin}-(D)




Constructors

Example: Direct Constructor

Create a summary of all the movies

<movies>
<count>{ count(//movie) }</count>
{
for $m in //movie
return
<movie year="{ data($m/@year) }">{ $m/title/text() }</movie>
}
</movies>
<movies>
<count>3</count>

<movie year="2006">Vratné lahve</movie>

<movie year="2000">Samotafi</movie>

<movie year="2007">Medvidek</movie>
</movies>



Constructors

Computed constructor

T( element name ) expressmn
expressnon

(attribute (attrlbute name )T®W®

@" expresslon
()~ [mwrsson (1)
-




Constructors

Example: Computed Constructor

Create a summary of all the movies

element movies {
element count { count(//movie) },
for $m in //movie
return
element movie {
attribute year { data($m/@year) 7},
text { $m/title/text() }
}

<movies>
<count>3</count>
<movie year="2006">Vratné lahve</movie>
<movie year="2000">Samot&fi</movie>
<movie year="2007">Medvidek</movie>
</movies>



FLWOR Expressions

FLWOR expression
* Versatile construct allowing for iterations over sequences
* Generates one flat result sequence

o> [ for clause Wwhere clause W order by clause }7>[ return clause }—»c

let clause

Clauses
e for —sequence to be iterated
e let — binding of variables
* where —filtering conditions
* order by - ordering of the result
* return — construction of the result



FLWOR Expressions

Example

Find titles of all the movies with rating 75 and more

for $m in //movie

let $r := $m/Q@rating
where $r >= 75

order by $m/@year
return $m/title/text ()

Samotari
Vratné lahve




FLWOR Expressions: Clauses

For clause
» Specifies a sequence of values or nodes to be iterated over
* Multiple sequences can be specified at once

= Then the behavior is identical as when more single-variable for
clauses would be provided

HT* variable name @—» expression o
)

o/

Let clause
* Defines one or more auxiliary variable assignments

H»I®—> variable name ®—> expression o
)
s




FLWOR Expressions: Clauses

Where clause
* Allows to describe complex filtering conditions
* Items not satisfying the conditions are skipped

0+ expression [>o

Order by clause
* Describes mutual order of items in the result sequence

order by expression |
}: ascending ﬂ

descendlng




FLWOR Expressions: Clauses

Return clause
* Defines how the result sequence should be constructed

H expression (>

Various supported use cases

e Querying, joining, grouping, aggregation, integration,
transformation, validation, ...




FLWOR Expressions

Examples

Find titles of movies filmed in 2000 and later such that they have at
most 3 actors and also a rating above the overall average

let $r := avg(//movie/@rating)

for $m in //movie[@rating >= $r]

let $a := count($m/actor)

where ($a <= 3) and ($m/@year >= 2000)
order by $a ascending, $m/title descending
return $m/title

<title>Vratné lahve</title>
<title>Samotari</title>




FLWOR Expressions

Examples

Find all the movies in which each individual actor stared

for $a in distinct-values(//actor)
return <actor name="{ $a }'">
{
for $m in //movielactor[text() = $al]
return <movie>{ $m/title/text() }</movie>
¥

</actor>

<actor name="Zdenék Svérak">
<movie>Vratné lahve</movie>

</actor>

<actor name="Jiri Machacek">
<movie>Vratné lahve</movie>
<movie>Samotafri</movie>
<movie>Medvidek</movie>

</actor>



FLWOR Expressions

Examples

Construct an HTML table with data about movies

<table>
<tr><th>Title</th><th>Year</th><th>Actors</th></tr>
{
for $m in //movie
return
<tr>
<td>{ $m/title/text() }</td>
<td>{ data($m/@year) }</td>
<td>{ count($m/actor) }</td>
</tr>

}
</table>




FLWOR Expressions

Examples

Construct an HTML table with data about movies

<table>
<tr><th>Title</th><th>Year</th><th>Actors</th></tr>
<tr><td>Vratné lahve</td><td>2006</td><td>2</td></tr>
<tr><td>Samotari</td><td>2000</td><td>3</td></tr>
<tr><td>Medvidek</td><td>2007</td><td>2</td></tr>
</table>




Conditional Expressions

Conditional expression
* Note that the else branch is compulsory
= Empty sequence () can be returned if needed

H@»@—»@—»[ expression }—»[ expression }—»o

Example

if (count(//movie) > 0)
then <movies>{ string-join(//movie/title, ", ") }</movies>
else O

<movies>Vratné lahve, Samota¥i, Medvidek</movies>



Switch Expressions

Switch

* The first matching branch is chosen,
its return clause is evaluated
and the result returned

o—»(swi!ch}®+l expression }—-CD7

[ expression | .—> expression n

U - o> -

e The default branch is compulsory
and must be provided as the last option



Switch Expressions

Example

Return all movies with aggregated information about their actors

xquery version "3.0";
for $m in //movie
return
<movie>
{ $m/title }
{
switch (count($m/actor))
case 0 return <no-actors/>
case 1 return <actor>{ $m/actor/text() }</actor>
default return <actors>{ string-join($m/actor, ", ") }</actors>
}

</movie>




Quantified Expressions

Quantifier
e Returns true if and only if...

= in case of some at least one item
= in case of every all the items

» ... of a given sequence/s satisfy the provided condition

W@»[ expression T( isfi )—»[ expression }—»c
)

o/




Quantified Expressions

Examples

Find titles of movies in which Ivan Trojan played

for $m in //movie
where

some $a in $m/actor satisfies $a = "Ivan Trojan"
return $m/title/text ()

Samotari
Medvidek

Find names of all actors that played in all movies
for $a in distinct-values(//actor)
where

every $m in //movie satisfies $m/actor([text() = $al

return $a

Jiri Machéacek



Comparison Expressions

Comparisons
* Value comparisons
= Two atomic values are expected to be compared
" eq, ne, 1t, 1le, ge, gt
* General comparisons
= Two sequences of values are expected to be compared
- = !=, <’ <=' >=' >

’

* Node comparisons

= is —tests identity of nodes
= <<, >> —test positions of nodes
= Similar behavior as in case of value comparisons



Comparison Expressions

Value comparison
* Both the operands are expected to be evaluated to
single values (or sequences with just one value)

= Then these values are mutually compared in a standard way

* Empty sequence () is returned...
= when at least one operand is evaluated to an empty sequence

e Errorisrisen...
= when at least one operand is evaluated to a longer sequence

o> value expression value expression [>o

QLGICION

MIE-PDB: Advanced Database Systems | Lecture 5: XML Databases: XQuery Language | 24. 3. 2017 51



Comparison Expressions

General comparison (existentially quantified comparisons)

* Both the operands can be evaluated to sequences of values
of any length

e The result is true if and only if there exists at least one pair of
individual values satisfying the given relationship

@ value expression >0

o>

value expression




Comparison Expressions

Atomization of values
» Takes place in case of both the value and general comparisons
* Items (of a given sequence) are first atomized

= Atomic value is kept untouched
= Node is transformed into a string with concatenated text
values it contains (even indirectly)

— Note that attribute values are not included!

» Corresponds to the effect of data () function

MIE-PDB: Advanced Database Systems | Lecture 5: XML Databases: XQuery Language | 24. 3. 2017 53



Comparison Expressions

Examples

1 le 2= true

e (1) le (2) = true

e (1) le (2,1) = error
e (1) 1le O=0

* <a>b</a> eq <b>5</b> = true
e 1 < 2= true

o (1) < (2) = true

e (1) < (2,1) = true

e (1) < () = false

e (0,1) = (1,2) = true
e (0,1) '= (1,2) = true



Primary Expressions

Primary expression

numeric literal 7
E@»@
(O~ (atingteran) ()

S@» variable name ~

-~ Ciunction ame )~ o

k.@ @ v

expression

\t direct constructor
computed constructor

] v




Lecture Conclusion

XML format

¢ Elements, attributes, texts
XPath expressions

¢ Absolute / relative paths

e Axes, node tests and predicates
XQuery expressions

e Constructors: direct, computed

* FLWOR

* Conditional, quantified, ...

e Comparison, arithmetic, ...



	XML
	XQuery and XPath
	Data Model
	Expressions
	Paths
	Constructors
	FLWOR
	Conditions
	Switch
	Quantifiers
	Comparisons
	Primary Expressions

	Conclusion

